首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A device is described to maintain restricted areas of skin at any temperature between 5 and 45 degrees C. Changes in temperature of controlled intensity up to 10 degrees C at rates from 0.03 degrees C to 2 degrees C/s can be delivered in either the warm or cool directions. The stimulator, which is in contact with the skin, is sufficiently simple so that a number of them can be constructed, each with a different contact area up to 18.2 cm2. The current control apparatus that operates a Peltier device in the stimulator is a feedback control system that maintains a precisely controlled temperature at the stimulator-skin interface. Safety features make it suitable and safe for use in human psychophysical studies and subhuman behavioral measurements of temperature sensitivity. Electrostatic shielding makes it compatible with the electronic instruments used in electrophysiological studies of the temperature sense.  相似文献   

2.
小菜蛾是世界范围内十字花科蔬菜上的重要害虫.临界高温(critical thermal maxi-mum,CTMax)是昆虫耐热性的常用指标.采用动态加热方法,利用自行组装的装置测定了小菜蛾的临界高温,以此作为其耐热性指标,研究发育阶段、饲养温度、世代、性别和热激对小菜蛾耐热性的影响.结果表明:25℃下饲养的小菜蛾4龄幼虫的CTMax均值为50.31℃,显著高于1龄幼虫(43.03℃)、2龄幼虫(46.39℃)、3龄幼虫(49.67℃)以及雌性成虫(45.76℃)和雄性成虫(47.73℃);不同饲养温度(20、25和30℃)下成虫耐热性无显著差异;30℃下饲养1代、3代及6代的不同世代成虫CTMax也无显著变化;所有处理雌雄成虫的CTMax无显著差异;40℃下45 min热激可使5日龄雄成虫的CTMax值从45.51℃增加到46.49℃.  相似文献   

3.
Microwave irradiation (MWIr) of tissues immersed in aldehydes has been used to preserve fine structure in seconds. The purpose of this study was to extend these findings to include rapid primary osmium fixation in a microwave (MW) device with a high volume exhaust. Blocks of rat heart and liver were trimmed to approximately 4 mm3 and exposed to 0.2 M symcollidine-buffered 2% osmium tetroxide for a period of 6-7 sec during MWIr (final solution temperature approximately 45 degrees C). We also evaluated rapid fixation of tissues exposed to MWIr simultaneously with immersion in dilute Karnovsky's fixative (6-7 sec to approximately 50 degrees C) followed by MWIr of specimens immersed in osmium (7 sec to approximately 45 degrees C). Tissues were stored in 0.1 M sodium cacodylate buffer (pH 7.3, 4 degrees C) up to 2 weeks and were stained en bloc in uranyl acetate, dehydrated in a graded series of alcohols, and embedded in propylene oxide-Epon sequence. Thin sections were stained with lead citrate and examined by transmission electron microscopy. We demonstrate that fine structural preservation of tissue blocks can be achieved by MWIr in aldehyde and/or osmium in seconds.  相似文献   

4.
When estimating rate constants using the BIAcore surface plasmon resonance (SPR) biosensor, one must have an accurate mathematical model to interpret sensogram data. Several models of differing complexity are discussed, including the effective rate constant (ERC) approach. This model can be shown formally to be good within O(Da) in the limit of small Damköhler number Da, which is the ratio of the reaction rate to the rate of transport to the surface. Numerical results are presented that show that except for very slow reactions, parameter estimates from the ERC model are very close to those estimated using a more complicated model. The BIAcore measures the behavior of an evanescent wave whose signal strength decays as it penetrates into the device. It is shown that this decay does not appreciably affect the sensogram readout at low Da, but at moderate Da can lead to situations where two vastly different rate constants can produce the same short-time sensogram data.Mathematics Subject Classification (2000): 35B20, 35C15, 35K60, 45J05, 92C45This work was supported in part by NIGMS Grant 1R01GM067244-01.Revised version: 1 August 2003  相似文献   

5.
1. Cell-free systems prepared from Krebs II ascites cells incubated at 45 degrees C have a much lower endogenous activity than those from cells incubated at 37 degrees C. The endogenous activity is mainly due to completion of polypeptide chains initiated in the intact cell. The low activity of the 45 degrees C system is due to a lesion in initiation in cells incubated at 45 degrees C. 2. Cell-free systems from cells incubated at 45 degrees C can translate efficiently poly (U) at 8 mM Mg2+. However, they initiate poorly on globin mRNA, indicating that these systems reflect the situation in the intact cell. 3. The lesion in globin mRNA translation in 45 degrees C systems can be overcome by addition of reticulocyte initiation factors. At saturation concentrations of factors, the response of a 45 degrees C system is restored to almost normal. 4. 45 degrees C systems from 40-S initiation complexes with methionyl tRNAfmet almost as efficiently as normal, but their ability for form 80-S complexes with globin mRNA is impaired, unless they are supplied with exogenous initiation factors.  相似文献   

6.
This article reports marked modulation of the activity and regulatory properties of phosphoenolpyruvate carboxylase (PEPC) by temperature and light in leaf discs as well as leaves of Amaranthus hypochondriacus. The activity of PEPC increased by 1.7-fold at 45 degrees C over 25 degrees C. Warm temperature also stimulated the photoactivation of PEPC. The activation by light of PEPC was 1.9-fold at 25 degrees C and increased to 2.2-fold at 45 degrees C. The sensitivity of PEPC to its inhibitor malate was less and the activation by glucose-6-phosphate (G-6-P) or inorganic phosphate (Pi) was more at 45 degrees C than that at 25 degrees C. These effects of temperature were quite pronounced in light. Similar responses were observed when detached leaves were exposed to varying ambient temperature (dry heat). The activity of PEPC increased by 1.6-fold at 45 degrees C over 25 degrees C in the dark. The activation of PEPC by light was 2.1-fold at 25 degrees C and increased to 2.6-fold at 45 degrees C. Inhibition by malate was less and activation by G-6-P or Pi was more at 45 degrees C than that at 25 degrees C. Thus, there was a marked modulation of not only the activity but also the regulatory properties of the enzyme by temperature and light, independently as well as cooperatively with each other. Further experiments suggested that PEPC was able to memorize to a significant extent the changes induced by warm temperature and that these changes were complemented by subsequent illumination. These effects were not due to changes in PEPC protein levels. We conclude that temperature and light can modulate PEPC activity and regulatory properties not only individually but also in a significantly cooperative manner with each other. As significant increases in temperature are common during daytime in tropical or subtropical conditions, we suggest that the synergistic effects of temperature and light are quite relevant in optimizing the activity of PEPC in leaves of C(4) plants.  相似文献   

7.
In situations where the accumulation of internal heat limits physical performance, enhanced heat extraction from the body should improve performance capacity. The combined application of local subatmospheric pressure (35-45 mmHg) to an entire hand (to increase blood volume) and a heat sink (18-22 degrees C) to the palmar surface were used to draw heat out of the circulating blood. Subjects walked uphill (5.63 km/h) on a treadmill in a 40 degree C environment. Slopes of the treadmill were held constant during paired experimental trials (with and without the device). Heat extraction attenuated the rate of esophageal temperature rise during exercise (2.1 +/- 0.4 degrees and 2.9 +/- 0.5 degrees C/h, mean +/- SE, with and without the device, respectively; n = 8) and increased exercise duration (46.1 +/- 3.4 and 32.3 +/- 1.7 min with and without the device, respectively; n = 18). Hand cooling alone had little effect on exercise duration (34.1 +/- 3.0, 38.0 +/- 3.5, and 57.0 +/- 6.4 min, for control, cooling only, and cooling, and subatmospheric pressure, respectively; n = 6). In a longer term study, nine subjects participated in two or four trials per week for 8 wk. The individual workloads (treadmill slope) were varied weekly. Use of the device had a beneficial effect on exercise endurance at all workloads, but the benefit proportionally decreased at higher workloads. It is concluded that heat can be efficiently removed from the body by using the described technology and that such treatment can provide a substantial performance benefit in thermally stressful conditions.  相似文献   

8.
The relationship between equilibration injury and equilibration dependence of the transverse relaxation time (T2) measurements was examined using NMR in two different seed species (sensitive-soybean and tolerant-wheat) differing in their sensitivity to seed equilibration conditions. The T2 values of both seed species declined with high temperature (45 degrees C) and low RH (5.5-1%) and, also with high temperature (45 degrees C) and high RH (74.5-100%) conditions. A comparison of injury based on electrolyte leakage, seed germination percentage and T2 indicated that membrane permeability increased both at high temperature (45 degrees C) and low RH (5.5-1%) and high temperature (45 degrees C) and high RH (74.5-100%) seed equilibration conditions. There was an increase in T2 until 11.5% and 5.5% RH in soybean and wheat species respectively, followed by a decline. Loss of seed viability during equilibration at very low RH (5.5-1%) at 45 degrees C, and similarly at high RH (74.5-100%) at 45 degrees C indicates that the changes in T2 are probably due to the loss of membrane injury.  相似文献   

9.
The activation energy of thermohemolysis of erythrocytes changes from 36 +/- 5 kcal/mol (35-45 degrees C) to 97 +/- 5 kcal/mol (45-55 degrees C) at the temperature about 45 degrees C in isotonic buffer. The break on Arhenius' plot is preserved also when erythrocytes are placed into plasma. The character of Arhenius' plot is the same when erythrocyte hemoglobin is totally oxidated into methemoglobin by chemical way, though thermal stability of such erythrocytes is decreased. The scheme is presented in which thermohemolysis of erythrocytes occurs by two independent ways: thermodenaturation of hemoglobin (limiting stage of the process when t greater than 45 degrees C) and modification of membrane proteins by hemin, the last being a product of hemoglobin oxidation (limiting stage of the process when t less than 45 degrees C).  相似文献   

10.
The temperature-sensitive (ts) Chinese hamster ovary (CHO) cell mutant tsH1 contains a thermolabile leucyl-tRNA synthetase. Upon incubation at the nonpermissive temperature of 39.5 degrees C, the enzyme became reversibly inhibited over a period of minutes, and the cells lost viability over a period of many hours. However, killing of tsH1 by acute heating at 45 degrees C was identical to that of wild-type (SC) cells. In addition, the heat-induced inhibition of protein synthesis was similar for both cell types, as measured after acute heating at 45 degrees C. Furthermore, both killing and inhibition of protein synthesis showed thermotolerance in both cell types. In contrast to the effects at 45 degrees C, at 39.5 degrees C, neither the inhibition of leucyl-tRNA synthetase activity nor the killing of tsH1 expressed thermotolerance. Also, treatment of tsH1 at 39.5 degrees C did not induce thermotolerance to killing at 45 degrees C. The inhibition of leucyl-tRNA synthetase activity in tsH1 at 39.5 degrees C was further distinguished from the 45 degrees C-induced inhibition of protein synthesis in SC cells by a much more rapid reversal of the inhibition of leucyl-tRNA synthetase activity. Also, the rate of reversal of the inhibition of protein synthesis by 45 degrees C in SC cells was decreased by increased heat dose. Such was not true for the 39.5 degrees C inhibition of leucyl-tRNA synthetase activity in tsH1. The data indicate that there exist two distinct types of thermal inhibition--one slowly reversible type which was observed during and after heating at 45 degrees C and both induced and expressed thermotolerance, and a second, rapidly reversible type, which was evident only during heating of tsH1 at 39.5 degrees C and neither induced nor expressed thermotolerance.  相似文献   

11.
High temperatures during seedling growth are considered as one of the factors that can modify surviving properties in wheat (Triticum aestivum L.) plant. This work attempts to evaluate the heat shock responses of seedling of winter wheat (Bezostaya-1) using growth parameters (seedling length, embryonal root length and embryonal root number), membrane stability index (MSI) and two dimensional (2D) gel electrophoresis analysis of heat shock proteins (HSPs) during heat shock. Seedlings grown until first leaf opening at controlled conditions (23 degrees C, 200 micromol m(-2) s(-1), 16h day/8h night, 50-60% humidity) were exposed to 37 degrees C or 45 degrees C high temperatures for 2, 4 and 8 hours. While 37 degrees C did not cause any significant change, 45 degrees C heat treatments caused significant decrease in terms of seedling and root length, and leaf MSI for all exposure times. However, all the plants from 45 degrees C heat treatments continued to grow during recovery period. 2D protein analysis indicated that 37 degrees C, 8 hours exposure caused stronger and more diverse heat shock response than the other treatments, followed by 37 degrees C, 4 hours, 45 degrees C, 8 hours, 45 degrees C, 4 hours, 45 degrees C, 2 hours treatments. 5 protein spots, ranging from 6-7.8 pl (isoelectric point) and 27-31.7 kDA molecular weight, were expressed at 37 degrees C, 2 hours and continued at 37 and 45 degrees C for all exposure times. This suggests that these early proteins and other newly synthesized proteins may have protective effects at 37 and 45 degrees C and provide plants for healthy growth during the recovery period.  相似文献   

12.
Sensitivity of photosynthesis in a C4 plant,maize, to heat stress   总被引:18,自引:0,他引:18       下载免费PDF全文
Our objective was to determine the sensitivity of components of the photosynthetic apparatus of maize (Zea mays), a C4 plant, to high temperature stress. Net photosynthesis (Pn) was inhibited at leaf temperatures above 38 degrees C, and the inhibition was much more severe when the temperature was increased rapidly rather than gradually. Transpiration rate increased progressively with leaf temperature, indicating that inhibition was not associated with stomatal closure. Nonphotochemical fluorescence quenching (qN) increased at leaf temperatures above 30 degrees C, indicating increased thylakoid energization even at temperatures that did not inhibit Pn. Compared with CO(2) assimilation, the maximum quantum yield of photosystem II (F(v)/F(m)) was relatively insensitive to leaf temperatures up to 45 degrees C. The activation state of phosphoenolpyruvate carboxylase decreased marginally at leaf temperatures above 40 degrees C, and the activity of pyruvate phosphate dikinase was insensitive to temperature up to 45 degrees C. The activation state of Rubisco decreased at temperatures exceeding 32.5 degrees C, with nearly complete inactivation at 45 degrees C. Levels of 3-phosphoglyceric acid and ribulose-1,5-bisphosphate decreased and increased, respectively, as leaf temperature increased, consistent with the decrease in Rubisco activation. When leaf temperature was increased gradually, Rubisco activation acclimated in a similar manner as Pn, and acclimation was associated with the expression of a new activase polypeptide. Rates of Pn calculated solely from the kinetics of Rubisco were remarkably similar to measured rates if the calculation included adjustment for temperature effects on Rubisco activation. We conclude that inactivation of Rubisco was the primary constraint on the rate of Pn of maize leaves as leaf temperature increased above 30 degrees C.  相似文献   

13.
We examined thermoregulation in red kangaroos (Macropus rufus) from deserts and in eastern grey kangaroos (Macropus giganteus) from mesic forests/woodlands. Desert kangaroos have complex evaporative heat loss mechanisms, but the relative importance of these mechanisms is unclear. Little is known of the abilities of grey kangaroos. Our detailed study of these kangaroos' thermoregulatory responses at air temperatures (T(a)) from -5 degrees to 45 degrees C showed that, while some differences occur, their abilities are fundamentally similar. Both species show the basic marsupial characteristics of relatively low basal metabolism and body temperature (T(b)). Within the thermoneutral zone, T(b) was 36.3 degrees + or - 0.1 degrees C (X + or - SE) in both species, and except for a small rise at T(a) 45 degrees C, T(b) was stable over a wide range of T(a). Metabolic heat production was 25% higher in red kangaroos at T(a) -5 degrees C. At the highest T(a) (45 degrees C), both species relied on evaporative heat loss (EHL) to maintain T(b); both panting and licking were used. The eastern grey kangaroo utilised panting (76% of EHL) as the principal mode of EHL, and while this was so for red kangaroos, cutaneous evaporative heat loss (CEHL) was significant (40% of EHL). CEHL appeared to be mainly licking, as evidenced from surface temperatures. Both species utilised peripheral vascular adjustments to control heat flow, as indicated by changes in dry conductance (C(dry)). At lower temperatures, C(dry) was minimal, but it increased significantly at T(a) just below T(b) (33 degrees C); in these conditions, the C(dry) of red kangaroos was significantly higher than that of eastern grey kangaroos, indicating a greater reliance on dry heat loss. Under conditions where heat flows into the body from the environment (T(a) 45 degrees C), there was peripheral vasoconstriction to reduce this inflow; C(dry) decreased significantly from the values seen at 33 degrees C in both kangaroos. The results indicated that, while both species have excellent thermoregulatory abilities, the desert red kangaroos may cope better with more extreme temperatures, given that they respond to T(a) 45 degrees C with lower respiratory evaporation than do the eastern grey kangaroos.  相似文献   

14.
When human erythrocytes were preincubated at 37-52 degrees C under atmospheric pressure before exposure to a pressure of 200 MPa at 37 degrees C, the value of hemolysis was constant (about 43%) up to 45 degrees C but became minimal at 49 degrees C. The results from anti-spectrin antibody-entrapped red ghosts, spectrin-free vesicles, and N-(1-pyrenyl)iodoacetamide-labeled ghosts suggest that the denaturation of spectrin is associated with such behavior of hemolysis at 49 degrees C. The vesicles released at 200 MPa by 49 degrees C-preincubated erythrocytes were smaller than those released by the treatment at 49 degrees C or 200 MPa alone. The size of vesicles released at 200 MPa was independent of preincubation temperature up to 45 degrees C, and the vesicles released from 49 degrees C-preincubated erythrocytes became smaller with increasing pressure up to 200 MPa. Thus, hemolysis and vesiculation under high pressure are greatly affected by the conformation of spectrin before compression. Since spectrin remains intact up to 45 degrees C, the compression of erythrocytes at 200 MPa induces structural changes of spectrin followed by the release of large vesicles and hemolysis. On the other hand, in erythrocytes that are undergoing vesiculation due to spectrin denaturation at 49 degrees C, compression produces smaller vesicles, so that the hemolysis is suppressed.  相似文献   

15.
Intracellular particle movements, of both saltatory and streaming types, in HeLa S-3 cells were simultaneously interrupted after 1 h exposure of cells to 43 degrees C, within 10 min at 44 degrees C and within 5 min at 45 degrees C. Intracellular movement inhibited after 15 min at 44 degrees C and 10 min at 45 degrees C was not reversible in cells rescued at 37 degrees C. Brownian motion was not observed in heat-treated cells while they were maintained at elevated temperatures, but became pronounced in blebbing which occurred shortly after they were returned to 37 degrees C. Returning these cells to 45 degrees C intensified the Brownian activity inside blebs, and rapidly induced cell lysis. The same heat-treated cells were simultaneously studied by laser-Doppler microscopy, which confirmed: a) that flow (cytoplasmic streaming) is completely arrested at 44 degrees C within 10 min, b) flow recovered in 10-15 min in cells rescued after 10-15 min at 44 degrees C, c) submicroscopic particles down to the size of water molecules had faster self-diffusion coefficients at 44 degrees C than at 37 degrees C. Proton nmr studies on cells exposed from 4 to 45 degrees C gave corrected relaxation times T1 and T2 which rose with temperature in a predictable manner. Inhibition of cellular movement at elevated temperatures was not specifically attributable to the depletion of intracellular ATP levels.  相似文献   

16.
The effect of exposure to elevated temperatures (41-45 degrees C) on the repair of radiation-induced DNA strand breaks was measured in monolayer cultured Chinese hamster ovary (CHO) cells. Prior exposure of cells to temperatures between 43 and 45 degrees C resulted in significant decreases in the rate of repair of DNA damage. Exposure to 45 degrees C for 15 min slowed the rate of DNA repair to 0.17 of the control repair rate. The To for inactivation of DNA repair was observed to be 34, 13 and 6 min at 43, 44 and 45 degrees C, respectively. Stepdown-heating (45 degrees C for 15 min followed by repair at 41 degrees C) resulted in greater inhibition of DNA repair (0.11 of the control rate) than was observed after acute heating alone. Repair at 41 degrees C was observed to proceed in unheated cells at a faster rate than at 37 degrees C. An Arrhenius analysis of the inactivation kinetics of DNA repair between 43 and 45 degrees C indicated an activation energy of 140 kcal mol-1 of protein for the inhibition of DNA repair. In general, the results were inconsistent with either a retardation of the DNA repair rate or an increase in unrepaired DNA lesions being responsible for heat-induced radiosensitization.  相似文献   

17.
The polymorphic and metastable phase behavior of monoelaidin dry and in excess water was studied by using high-sensitivity differential scanning calorimetry and time-resolved x-ray diffraction in the temperature range of 4 degrees C to 60 degrees C. To overcome problems associated with a pronounced thermal history-dependent phase behavior, simultaneous calorimetry and time-resolved x-ray diffraction measurements were performed on individual samples. Monoelaidin/water samples were prepared at room temperature and stored at 4 degrees C for up to 1 week before measurement. The initial heating scan from 4 degrees C to 60 degrees C showed complex phase behavior with the sample in the lamellar crystalline (Lc0) and cubic (Im3m, Q229) phases at low and high temperatures, respectively. The Lc0 phase transforms to the lamellar liquid crystalline (L alpha) phase at 38 degrees C. At 45 degrees C, multiple unresolved lines appeared that coexisted with those from the L alpha phase in the low-angle region of the diffraction pattern that have been assigned previously to the so-called X phase (Caffrey, 1987, 1989). With further heating the X phase converts to the Im3m cubic phase. Regardless of previous thermal history, cooling calorimetric scans revealed a single exotherm at 22 degrees C, which was assigned to an L alpha+cubic (Im3m, Q229)-to-lamellar gel (L beta) phase transition. The response of the sample to a cooling followed by a reheating or isothermal protocol depended on the length of time the sample was incubated at 4 degrees C. A model is proposed that reconciles the complex polymorphic, mesomorphic, and metastability interrelationships observed with this lipid/water system. Dry monoelaidin exists in the lamellar crystalline (beta) phase in the 4 degrees C to 45 degrees C range. The beta phase transforms to a second lamellar crystalline polymorph identified as beta* at 45 degrees C that subsequently melts at 57 degrees C. The beta phase observed with dry monoelaidin is identical to the LcO phase formed by monoelaidin that was dispersed in excess water and that had not been previously heated.  相似文献   

18.
The Angolan free-tailed bat (Mops condylurus) uses roosts that often exceed 40 degrees C, an ambient temperature (Ta) that is lethal to many microchiropterans. We measured the physiological responses of this species at Ta's from 15 degrees to 45 degrees C. Torpor was commonly employed during the day at the lower Ta, but the bats generally remained euthermic at night, with a mean body temperature (Tb) of 35.2 degrees C. Metabolic rate reflected the pattern of Tb, increasing with falling Ta at night but decreasing during the day. Metabolic rate and evaporative losses were lower in torpid than in euthermic bats. Body temperature increased at each Ta >35 degrees C and was 43 degrees C at Ta of 45 degrees C. At Ta of 40 degrees C bats increased dry thermal conductance and evaporative heat loss compared to lower Ta. At 45 degrees C dry thermal conductance was lower than at 40 degrees C and evaporative heat loss was 132% of metabolic heat production. At high Ta there was only a slight increase in metabolic rate despite the employment of evaporative cooling mechanisms and an increase in Tb. Collectively our results suggest that M. condylurus is well suited to tolerate high Ta, and this may enable it to exploit thermally challenging roost sites and to colonise habitats and exploit food sources where less stressful roosts are limiting.  相似文献   

19.
Excised grains of wheat (Triticum aestivum) varieties HD 2285 (relatively tolerant) and HD 2329 (susceptible type) were incubated for 1 hr at 15 degrees, 25 degrees, 35 degrees and 45 degrees C. In an another treatment, excised grains were incubated for 1 hr at increasing temperature (15 degrees, 25 degrees, 35 degrees and 45 degrees C) continuously, thus exposing the grains to gradual rise in temperature. The above treated grains were then analysed for the activity of soluble starch synthase (SSS) and granule bound starch synthase (GBSS) assayed at 20 degrees C. SSS activity decreased as the pre-exposure temperature was higher, though the tolerant variety showed lesser decrease. Decrease in SSS activity was lesser when excised grains were exposed to gradual rise in temperature from 15 degrees to 45 degrees C as compared to direct exposure to 45 degrees C. Pre-exposure of excised grains to different temperatures however, had no significant effect on GBSS activity.  相似文献   

20.
L Wu  N E Welker 《Journal of bacteriology》1991,173(15):4889-4892
Cultures of Bacillus stearothermophilus subjected to a temperature shift-up or shift-down of 15 degrees C within the normal temperature range of growth (45 to 65 degrees C) enter a transient adaptation period before exponential growth at the new temperature. The de novo synthesis of some proteins coincides with the adaptation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号