首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decolourization of Direct Red 80 (DR-80) by the white rot fungus Phanerochaete chrysosporium MTCC 787 was investigated employing sequential design of experiments. Media components for growing the white rot fungus were first screened using Plackett-Burman design and then optimized using response surface methodology (RSM), which resulted in enhancement in the efficiency of dye removal by the fungus. For determining the effect of media constituents on the dye removal, both percent dye decolourization and specific dye removal due to maximum enzyme activity were chosen as the responses from the experiments, and the media constituents glucose, veratryl alcohol, KH2PO4, CaCl2 and MgSO4 were screened to be the most effective with P values less than 0.05. Central composite design (CCD) followed by RSM in the optimization study revealed the following optimum combinations of the screened media constituents: glucose, 11.9 g l−1; veratryl alcohol, 12.03 mM; KH2PO4, 23.08 g l−1; CaCl2, 2.4 g l−1; MgSO4, 10.47 g l−1. At the optimum settings of the media constituents, complete dye decolourization (100% removal efficiency) and a maximum specific dye removal due to lignin peroxidase enzyme of 0.24 mg U−1 by the white rot fungus were observed.  相似文献   

2.
Soil samples collected from dye contaminated sites of Vatva, Gujarat, India were studied for the screening and isolation of organisms capable of decolourizing textile dyes. The most efficient isolate, which showed decolourization zone of 48 mm on 300 ppm Reactive Red BS (C.I.111) containing plate, was identified as Pseudomonas aeruginosa. Reactive Red BS (C.I.111) was used as a model dye for the study. The isolated culture exhibited 91% decolourization of 300 ppm dye within 5.5 h over a wide pH range from 5.0 to 10.5 and temperature ranging from 30 to 40°C. The culture was able to decolourize more than 91% of Reactive Red BS under static conditions in presence of either glucose, peptone or yeast extract. Addition of 300 ppm of Reactive Red BS, in each step, in ongoing dye decolourization flask, gave more than 90% decolourization within 2 h corresponding to 136 mg l−1 h−1 dye removal rate. The isolate had the ability to decolourize six different reactive dyes tested as well as the actual dye manufacturing industry’s effluent. The degradation of the dye was confirmed by HPTLC.  相似文献   

3.
By adding a biomass carrier to an activated sludge system, the biomass concentration will increase, and subsequently the organic removal efficiency will be enhanced. In this study, the possibility of using excess sludge from ceramic and tile manufacturing plants as a biomass carrier was investigated. The aim of this study was to determine the effect of using fireclay as a biomass carrier on biomass concentration, organic removal and nitrification efficiency in an activated sludge system. Experiments were conducted by using a bench scale activated sludge system operating in batch and continuous modes. Artificial simulated wastewater was made by using recirculated water in a ceramic manufactutring plant. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22 h. In the batch mode, aeration time was 8 and 16 h. Fireclay doses were 500, 1,400 and 2,250 mg l−1, and were added to the reactors in each experiment separately. The reactor with added fireclay was called a Hybrid Biological Reactor (HBR). A reactor without added fireclay was used as a control. Efficiency parameters such as COD, MLVSS and nitrate were measured in the control and HBR reactors according to standard methods. The average concentration of biomass in the HBR reactor was greater than in the control reactor. The total biomass concentration in the HBR reactor (2.25 g l−1 fireclay) in the continuous mode was 3,000 mg l−1 and in the batch mode was 2,400 mg l−1. The attached biomass concentration in the HBR reactor (2.25 g l−1 fireclay) in the continuous mode was 1,500 mg l−1 and in the batch mode was 980 mg l−1. Efficiency for COD removal in the HBR and control reactor was 95 and 55%, respectively. In the HBR reactor, nitrification was enhanced, and the concentration of nitrate was increased by 80%. By increasing the fireclay dose, total and attached biomass was increased. By adding fireclay as a biomass carrier, the efficiency of an activated sludge system to treat wastewater from ceramic manufacturing plants was increased.  相似文献   

4.
The discharge of textile wastewater containing dye in the environment is varying for both toxicology and esthetical reasons as dyes impede light penetration, damage the quality of the receiving streams. Upflow anaerobic sludge blanket reactor with anaerobic digester sludge treating starch wastewater has been used to investigate the removal efficiency of chemical oxygen demand (COD) and colour of textile dye wastewater. In this study, the starch and textile dye wastewater was mixed at 70 and 30%, respectively, and the experiments were carried out with recycle of treated wastewater at different percentage as 10, 20, 30 and 40. Maximum removal of COD and colour was 96% and 93.3%, respectively, at 30% recycle. At various OLR and HRT, the maximum removal of COD, colour was 95.9%, 93% at 6.81 kg COD/m3d and 96%, 93% with 24 h of HRT. The maximum production of biogas at 24 h of HRT with 30% recycle was about 355 l/d. The Volatile fatty acid/Alkalinity ratio of methanogenic reactor was found to be 0.049–0.053. The result provided evidence, the starch and dye wastewater have wide variation in their characteristics was treated on combination, this new technology supports the effective utilization of starch waste in destruction of dye.  相似文献   

5.
A spiral packed-bed bioreactor inoculated with microorganisms obtained from activated sludge was used to conduct a feasibility study for phenol removal. The reactor was operated continuously at various phenol loadings ranging from 53 to 201.4 g m−3 h−1, and at different hydraulic retention times (HRT) in the range of 20–180 min to estimate the performance of the device. The results indicated that phenol removal efficiency ranging from 82.9 to 100% can be reached when the reactor is operated at an HRT of 1 h and a phenol loading of less than 111.9 g m−3 h−1. At an influent phenol concentration of 201.4 g m−3, the removal efficiency increased from 18.6 to 76.9% with an increase in the HRT (20–120 min). For treatment of phenol in the reactor, the maximum biodegradation rate (V m) was 1.82 mg l−1 min−1; the half-saturation constant (K s), 34.95 mg l−1.  相似文献   

6.
The fungal strain, Aspergillus niger SA1, isolated from textile wastewater sludge was screened for its decolorization ability for four different textile dyes. It was initially adapted to higher concentration of dyes (10–1,000 mg l−1) on solid culture medium after repeated sub-culturing. Maximum resistant level (mg l−1) sustained by fungal strain against four dyes was in order of; Acid red 151 (850) > Orange II (650) > Drimarene blue K2RL (550) > Sulfur black (500). The apparent dye removal for dyes was seen largely due to biosorption/bioadsorption into/onto the fungal biomass. Decolorization of Acid red 151, Orange II, Sulfur black and Drimarine blue K2RL was 68.64 and 66.72, 43.23 and 44.52, 21.74 and 28.18, 39.45 and 9.33% in two different liquid media under static condition, whereas, it was 67.26, 78.08, 45.83 and 13.74% with 1.40, 1.73, 5.16 and 1.87 mg l−1 of biomass production under shaking conditions respectively in 8 days. The residual amount (mg l−1) of the three products (α-naphthol, sulfanilic acid and aniline) kept quite low i.e., ≤2 in case AR 151 and Or II under shaking conditions. Results clearly elucidated the role of Aspergillus niger SA1 in decolorizing/degrading structurally different dyes into basic constituents.  相似文献   

7.
The fungal strain A. niger SA1 isolated from textile wastewater pond proved to be an important source of remediation (decolorization/degradation) for textile dye, AR 151 (Reactive diazo dye) under different physicochemical conditions. Decolorization assays of AR 151 were carried out in Simulated textile effluent under shake flask condition for 8 days. Decolorization (at 20 mg l−1 of dye) and related biomass production overall decreased with increase in pH from 5 to 9, at 30°C. It was maximum (95.71%) at pH 5 with highest amount of three residual products (36.91 (α-naphthol = 5.72) (sulfanilic acid = 24.81) (aniline = 6.38)) besides 2.05 mg ml−1 of biomass production at an optimum concentration 6 and 0.1 mg l−1 of glucose and urea respectively. The formation of the three products followed a quite different pattern at different pH values, however, it was considerably low (Total = 2.81 mg l−1) compared to the amount of decolorization (67.26%) at pH 8. Decolorization (95–97%) was most favored under mesophilic temperature (25–45°C). It increased i.e., 90–98% with subsequent increase in dye from 10 to 100 mg l−1, kept ≥50% below 400 mg l−1 and drastically declined to 17% at 500 mg l−1 of dye. Apparently, decolorization is found to be associated with fungal growth and hyphal uptake mechanism (Biosorption/Bioadsorption), however, mineralization of AR 151 and related products under different operational conditions also suggested a metabolically mediated decolorization/degradation.  相似文献   

8.
Singh SS  Dikshit AK 《Biodegradation》2011,22(6):1109-1117
Decolourization of anaerobically digested and polyaluminium chloride treated distillery spentwash was studied in a fungal stirred tank aerobic reactor without dilution of wastewater. Aspergillus niger isolate IITB-V8 was used as the fungal inoculum. The main objectives of the study were to optimize the stirrer speed for achieving maximum decolourization and to determine the kinetic parameters. A mathematical model was developed to describe the batch culture kinetics. Volumetric oxygen transfer coefficient (k L a) was obtained using dynamic method. The maximum specific growth rate and growth yield of fungus were determined using Logistic equation and using Luedeking–Piret equation. 150 rpm was found to be optimum stirrer speed for overall decolourization of 87%. At the optimum stirrer speed, volumetric oxygen transfer coefficient (k L a) was 0.4957 min−1 and the maximum specific growth rate of fungus was 0.224 h−1. The values of yield coefficient (Y x/s) and maintenance coefficient (m s) were found to be 0.48 g cells (g substrate)−1 and 0.015 g substrate (g cells)−1 h−1.  相似文献   

9.
Many fungi (particularly the white rot) are well suited for treatment of a broad range of textile dye effluents due to the versatility of the lignin-degrading enzymes produced by them. We have investigated decolourization of a number of recalcitrant reactive azo and acid dyes using the culture filtrate and purified laccase from the fungus Cyathus bulleri. For this, the enzyme was purified from the culture filtrate to a high specific activity of 4,022 IU mg−1 protein, produced under optimized carbon, nitrogen and C/N ratio with induction by 2,6-dimethylaniline. The protein was characterized as a monomer of 58±5.0 kDa with carbohydrate content of 16% and was found to contain all three Cu(II) centres. The three internal peptide sequences showed sequence identity (80–92%) with laccases of a number of white rot fungi. Substrate specificity indicated highest catalytic efficiency (k cat/K M) on guaiacol followed by 2,2′-azino-bis(3-ethylthiazoline-6-sulfonic acid) (ABTS). Decolourization of a number of reactive azo and acid dyes was seen with the culture filtrate of the fungus containing predominantly laccase. In spite of no observable effect of purified laccase on other dyes, the ability to decolourize these was achieved in the presence of the redox mediator ABTS, with 50% decolourization in 0.5–5.4 days.  相似文献   

10.
Batch and continuous reactors inoculated with white-rot fungi were operated in order to study decolorization of textile dyes. Synthetic wastewater containing either Reactive Blue 4 (a blue anthraquinone dye) or Reactive Red 2 (a red azo dye) was used during the first part of the study while real wastewater from a textile industry in Tanzania was used in the later part. Trametes versicolor was shown to decolorize both Reactive Blue 4 and Reactive Red 2 if glucose was added as a carbon source. Reactive Blue 4 was also decolorized when the fungus was allowed to grow on birch wood discs in a continuous biological rotating contactor reactor. The absorbance at 595 nm, the wavelength at which the dye absorbs at a maximum, decreased by 70% during treatment. The initial dye concentration in the medium was 200 mg/l and the hydraulic retention time in the reactor 3 days. No glucose was added in this experiment. Changes of the absorbance in the UV range indicated that the aromatic structures of the dyes were altered. Real textile wastewater was decolorized by Pleurotus flabellatus growing on luffa sponge packed in a continuous reactor. The reactor was operated at a hydraulic retention time of 25 h. The absorbance at 584 nm, the wavelength at which the wastewater absorbed the most, decreased from 0.3 in the inlet to approximately 0.1 in the effluent from the reactor.  相似文献   

11.
Biotreatment of bagasse effluent using Phanerochaete chrysosporium (white rot fungus) is investigated. This study confirmed that lignin is the major pollutant component in this effluent followed by different carbohydrates. The treatment conditions must be very proper, especially in terms of biomass culture to achieve a successful treatment. The best conditions of temperature, biomass concentration, pH and duration for biotreatment of this effluent were 35°C, 552 mg l−1, 6 and 5 to 9 days, respectively. Under these conditions, a 9 days long treatment reduced by 98.7% the original biochemical oxygen demand (of 2,780 mg l−1) and by 98.5% the dissolved chemical oxygen demand (initial 4,200 mg l−1). Moreover, fungal treatment reduced total dissolved solids from 3,950 to 575 mg l−1 and color from 560 mg l−1 PtCo to 111 mg l−1 PtCo.  相似文献   

12.
The aim of this study was to exploit the bacterial biofilms to remove dyes from industrial effluents. Biofilms of strains AK1, AK2, VKY1 and a consortium on sheep bone chips were examined in batch, repeated batch and continuous packed bed bioreactor. Biofilms are more efficient for decolourization of Amaranth dye at three different dye concentrations (200, 400, and 600 mg l−1). 100% decolourization of Amaranth dye was observed even at higher concentrations (400 and 600 mg l−1) by all the tested biofilms in 24 h than that of corresponding free cells. The biofilms were superior over those of free cells and could be reused for more than 18 repeated cycles. In a packed bed bioreactor, biofilms could be operated with much higher dilution rates and at lower hydraulic retention time. Further, the decolourization of dye was confirmed by UV–visible spectrophotometer, TLC and HPLC analysis of Amaranth dye degradation products from packed bed bioreactor effluent.  相似文献   

13.
In this study, the ammonia removal efficiency for high ammonia-containing wastewaters was evaluated via partial nitrification. A nitrifier biocommunity was first enriched in a fill-and-draw batch reactor with a specific ammonium oxidation rate of 0.1 mg NH4 -N/mg VSS.h. Partial nitrification was established in a chemostat at a hydraulic retention time (HRT) of 1.15 days, which was equal to the sludge retention time (SRT). The results showed that the critical HRT (SRT) was 1.0 day for the system. A maximum specific ammonium oxidation rate was achieved as 0.280 mg NH4 -N/mg VSS.h, which is 2.8-fold higher than that obtained in the fill-and-draw reactor, indicating that more adaptive and highly active ammonium oxidizers were enriched in the chemostat. Dynamic modeling of partial nitrification showed that the maximum growth rate for ammonium oxidizers was found to be 1.22 day−1. Modeling studies also validated the recovery period as 10 days.  相似文献   

14.
Results of this study describe the feasibility of anaerobic treatment of highly concentrated phenol synthetic wastewater using an anaerobic fluidized bed reactor (AFBR) in both continuous and batch modes. Wastewater with a maximum load of 2,100 mg C·l−1 was prepared using phenol (maximum concentration of 1,600 mg C·l−1) as substrate and a mixture of acetic, propionic and butyric acids (500 mg C·l−1) as co-substrate. AFBR reached total organic carbon (TOC) and phenol removal efficiency over 95% treating the highest organic loading rate (OLR) containing phenol studied for this kind of reactor (5.03 g C·l−1·d−1). The phenol loading rate rise caused volumetric biogas rate increase up to 4.4 l·l−1·d−1 (average yield of 0.28 l CH4·g−1 CODremoved) as well as variation in the biogas composition; the CO2 percentage increased while the CH4 percentage decreased. Morphological examination of the bioparticles at 4.10 g C·l−1·d−1, revealed significant differences in the biofilm structure, microbial colonization and bacterial morphological type development. The five batch assays showed that phenol degradation may be favoured by the presence of volatile fatty acids (VFAs) (co-metabolism), whereas VFAs degradation may be inhibited by phenol. AFBR reached initial phenol degradation velocity of 0.25 mg C·l−1·min−1.  相似文献   

15.
Detached leaves of tomato (Lycopersicon esculentum Mill.) experienced photoinhibition associated with sharp reductions in net photosynthetic rate (Pn), quantum efficiency of PSII (ΦPSII) and photochemical quenching (qP) even though they were exposed to mild light intensity (400 μmol m−2 s−1 PPFD) at 28°C. Photoinhibition and the reduction in Pn, ΦPSII and qP, however, were significantly alleviated by 1 mg l−1 ABA, 0.1 mg l−1 N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) and 0.01 mg l−1 24-epibrassinolide (EBR). Higher concentrations, however, reduced the effects or even exacerbated the occurrence of photoinhibition. Superoxide dismutase and ascorbate peroxidase activity in leaves increased with the increases in ABA concentration within 1–100 mg l−1, CPPU concentration within 0.1–10 mg l−1 and EBR concentration within 0.01–1.0 mg l−1. Catalase and guaiacol peroxidase activity also increased with the increase in EBR concentration but CPPU and ABA treatments at higher concentrations caused a decrease. Malondialdehyde (MDA) content decreased with the increase in CPPU concentration. ABA and EBR, however, decreased MDA concentration only at 1 and 0.01 mg l−1, respectively. In conclusion, detached leaves had increased sensitivity to PSII photoinhibition. Photoinhibition-induced decrease in photosynthesis, however, was significantly alleviated by EBR, CPPU and ABA at a proper concentration.  相似文献   

16.
Morinda citrifolia adventitious roots were cultured in shake flasks using Murashige and Skoog medium with different types and concentrations of auxin and cytokinin. Root (fresh weight and dry weight) accumulation was enhanced at 5 mg l−1 indole butyric acid (IBA) and at 7 and 9 mg l−1 naphthalene acetic acid (NAA). On the other hand, 9 mg l−1 NAA decreased the anthraquinone, phenolic and flavonoid contents more severely than 9 mg l−1 IBA. When adventitious roots were treated with kinetin (0.1, 0.3 and 0.5 mg l−1) and thidiazuron (TDZ; 0.1, 0.3 and 0.5 mg l−1) in combination with 5 mg l−1 IBA, fresh weight and dry weight decreased but secondary metabolite content increased. The secondary metabolite content (including 1,1-diphenyl-2-picrylhydrazyl activity) increased more in TDZ-treated than in kinetin-treated roots. Antioxidative enzymes such as catalase (CAT) and guaiacol peroxidase (G-POD), which play important roles in plant defense, also increased. A strong decrease in ascorbate peroxidase activity resulted in a high accumulation of hydrogen peroxide. This indicates that adventitious roots can grow under stress conditions with induced CAT and G-POD activities and higher accumulations of secondary metabolites. These results suggest that 5 mg l−1 IBA supplementation is useful for growth and secondary metabolite production in adventitious roots of M. citrifolia.  相似文献   

17.
A protocol was developed for the micropropagation of Pinus massoniana and mycorrhiza formation on rooted microshoots. Seedling explants were first cultured on Gresshoff and Doy (GD) medium supplemented with 6-benzyladenine (BA) alone or in combination with α-napthaleneacetic acid (NAA) to stimulate the formation of intercotyledonary axillary buds. The frequency of axillary bud induction was up to 97% on medium supplemented with 4.0 mg l−1 BA and 0. 2 mg l−1 NAA, and the average number of buds per explant reached up to 5.5 on medium with 4.0 mg l−1 BA and 0.1 mg l−1 NAA. Axillary buds elongated rapidly after being transferred to half-strength GD medium containing activated charcoal (0.1% w/v). Shoot proliferation was achieved by cutting elongated shoots into stem segments and subculturing on GD medium containing 2 mg l−1 BA and 0.2 mg l−1 NAA. Root primordia were induced in 82% of shoots when transferred to half-strength GD medium containing 0.2 mg l−1 NAA. Root elongation was achieved in a hormone-free GD agar medium or a perlite substrate. Rooted plantlets were inoculated with the mycelium of ectomycorrhizal fungus Pisolithus tinctorius and the formation of ectomycorrhiza-like structures was achieved in vitro.  相似文献   

18.
Summary A fungus Cladosporium cladosporioides isolated from coal sample as a decolorizing microorganism. It decolorized five different azo and triphenylmethane dyes like acid blue 193, acid black 210, crystal violet, reactive black B(S) and reactive black BL/LPR both on solid and in liquid broth medium. Culture broth of this fungus decolorized completely 100 mg of acid blue 193 l−1 in 8 days. The extracellular enzyme of Cladosporium cladosporioides decolorized acid blue 193 on repeated addition to a total (out of 700 mg l−1) concentration of 564 mg l−1 within 168 h without significant decline in the activity, showing the resistant property of Cladosporium cladosporioides to a high concentration of the dye. The optimal temperature 40 °C, pH 5.6 and sugar concentration of 4% required for decolorization of acid blue 193. Cladosporium cladosporioides showed manganese peroxidase activity with 41 U l−1, laccase activity with 1413 U l−1 and lignin peroxidase activity was negligible after day 8 of incubation.  相似文献   

19.
The purpose of the presented paper was to study the effect of high concentrations of tributyltin (TBT) on the potassium retention and fatty acid (FA) composition of the fungus Cunninghamella elegans recognized as a very efficient TBT degrader. An increase in TBT had a strong influence on the potassium concentration in the fungus. In growth medium without TBT, the potassium content of the fungal cells was 5.8 mg K+ g dry weight−1. The maximum concentration of K+ was 15.06 mg g−1 dry weight at 30 mg l−1 of TBT. The major FAs that characterized the tested strain were C16:0, C18:1, C18:2, C18:3 and C18:0. TBT in the concentration range 5–30 mg l−1 strongly influenced the FA composition. In the presence of the organotin, the degree of saturation increased. It suggests that the observed changes promote an increase in the lipid ordering of the membrane by reducing its permeability and inhibiting potassium ion efflux.  相似文献   

20.
Anaerobic digestions have been proved more successful than aerobic systems for the degradation and destruction of dye-containing wastewaters. The performance of a hybrid up flow anaerobic sludge-filter bed (UASFB) reactor was tested with a synthetic wastewater containing Crystal violet (CV) as a carbon source and sodium acetate as a co-substrate. Continuous feeding of the reactor started with an initial OLR of 0.9 g COD/l-d and then it was increased step wise to 4 g COD l−1 d−1, while maintaining constant HRT (24 h). The optimum pH value and temperature for decolorization of crystal violet by this mixed culture species under anaerobic conditions were found to be 8–9 and 30–35°C respectively. N,N-dimethylaminophenol and N,N-bis (dimethylamino) benzophenone (Michler’s Ketone) were detected as the degradative metabolites of Crystal Violet. Subsequently, N,N-dimethylaminophenol was further degraded to aniline in the reactor whereas Michler’s ketone was not degraded under anaerobic conditions. The UASFB bioreactor was able to remove the CV completely up to a loading rate of 100 mg CV l−1d−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号