首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To facilitate the easier production of d-amino acids using N-carbamyl-d-amino acid amidohydrolase (DCase) in an immobilized form, we improved the enzymatic thermostability of highly soluble DCase-M3 of Ralstonia pickettii using directed mutagenesis. Six novel mutation sites were identified in this study, apart from several thermostability-related amino acid sites reported previously. The most thermostable mutant, in which the 12th amino acid had been changed from glutamine to leucine, showed a 7 °C increase in thermostability. Comparative characterization of the parental and mutant DCases showed that although there was a slight reduction in the oxidative stability of the mutants, their kinetic properties and high solubility were not affected. The mutated enzymes are expected to be applied to the development of a fully enzymatic process for the industrial production of d-amino acids.  相似文献   

2.
l-arabinose isomerase (EC5.3.1.4. AI) mediates the isomerization of d-galactose into d-tagatose as well as the conversion of l-arabinose into l-ribulose. The AI from Lactobacillus plantarum SK-2 was purified to an apparent homogeneity giving a single band on SDS–PAGE with a molecular mass of 59.6 kDa. Optimum activity was observed at 50°C and pH 7.0. The enzyme was stable at 50°C for 2 h and held between pH 4.5 and 8.5 for 1 h. AI activity was stimulated by Mn2+, Fe3+, Fe2+, Ca2+ and inhibited by Cu2+, Ag+, Hg2+, Pb2+. d-galactose and l-arabinose as substrates were isomerized with high activity. l-arabitol was the strongest competitive inhibitor of AI. The apparent Michaelis–Menten constant (K m), for galactose, was 119 mM. The first ten N-terminal amino acids of the enzyme were determined as MLSVPDYEFW, which is identical to L. plantarum (Q88S84). Using the purified AI, 390 mg tagatose could be converted from 1,000 mg galactose in 96 h, and this production corresponds to a 39% equilibrium.  相似文献   

3.
The d-enantiomers of proteinogenic amino acids fulfill essential functions in bacteria, fungi and animals. Just in the plant kingdom, the metabolism and role of d-amino acids (d-AAs) still remains unclear, although plants have to cope with significant amounts of these compounds from microbial decay in the rhizosphere. To fill this gap of knowledge, we tested the inhibitory effects of d-AAs on plant growth and established a method to quantitate 16 out of 19 proteinogenic amino acids and their d-enantiomers in plant tissue extracts. Therefore, the amino acids in the extracts were derivatized with Marfey’s reagent and separated by HPLC–MS. We used two ecotypes (Col-0 and C24) and a mutant (lht1) of the model plant Arabidopsis thaliana to determine the influence and fate of exogenously applied d-AAs. All of them were found in high concentrations in the plant extracts after application, even in lht1, which points to additional transporters facilitating the import of d-AAs. The addition of particular amino acids (d-Trp, d-Phe, d-Met and d-His) led to the accumulation of the corresponding l-amino acid. In almost all cases, the application of a d-AA resulted in the accumulation of d-Ala and d-Glu. The presented results indicate that soil borne d-AAs can actively be taken up and metabolized via central metabolic routes.  相似文献   

4.
The catabolism of d-galactose in yeast depends on the enzymes of the Leloir pathway. In contrast, Aspergillus nidulans mutants in galactokinase (galE) can still grow on d-galactose in the presence of ammonium—but not nitrate—ions as nitrogen source. A. nidulans galE mutants transiently accumulate high (400 mM) intracellular concentrations of galactitol, indicating that the alternative d-galactose degrading pathway may proceed via this intermediate. The enzyme degrading galactitol was identified as l-arabitol dehydrogenase, because an A. nidulans loss-of-function mutant in this enzyme (araA1) did not show NAD+-dependent galactitol dehydrogenase activity, still accumulated galactitol but was unable to catabolize it thereafter, and a double galE/araA1 mutant was unable to grow on d-galactose or galactitol. The product of galactitol oxidation was identified as l-sorbose, which is a substrate for hexokinase, as evidenced by a loss of l-sorbose phosphorylating activity in an A. nidulans hexokinase (frA1) mutant. l-Sorbose catabolism involves a hexokinase step, indicated by the inability of the frA1 mutant to grow on galactitol or l-sorbose, and by the fact that a galE/frA1 double mutant of A. nidulans was unable to grow on d-galactose. The results therefore provide evidence for an alternative pathway of d-galactose catabolism in A. nidulans that involves reduction of the d-galactose to galactitol and NAD+-dependent oxidation of galactitol by l-arabitol dehydrogenase to l-sorbose.  相似文献   

5.
The ability of Aspergillus fumigatus l-amino acid oxidase (l-aao) to cause the resolution of racemic mixtures of dl-amino acids was investigated with dl-alanine, dl-phenylalanine, dl-tyrosine, and dl-aspartic acid. A chiral column, Crownpak CR+ was used for the analysis of the amino acids. The enzyme was able to cause the resolution of the three dl-amino acids resulting in the production of optically pure d-alanine (100% resolution), d-phenylalanine (80.2%), and d-tyrosine (84.1%), respectively. The optically pure d-amino acids have many uses and thus can be exploited industrially. This is the first report of the use of A. fumigatus l-amino acid oxidase for racemic resolution of dl-amino acids.  相似文献   

6.
A screening of soil samples for d-amino acid oxidase (d-AAO) activity led to the isolation and identification of the gram-positive bacterium Arthrobacter protophormiae. After purification of the wild-type d-AAO, the gene sequence was determined and designated dao. An alignment of the deduced primary structure with eukaryotic d-AAOs and d-aspartate oxidases showed that the d-AAO from A. protophormiae contains five of six conserved regions; the C-terminal type 1 peroxisomal targeting signal that is typical for d-AAOs from eukaryotic origin is missing. The dao gene was cloned and expressed in Escherichia coli. The purified recombinant d-AAO had a specific activity of 180 U mg protein−1 for d-methionine and was slightly inhibited in the presence of l-methionine. Mainly, basic and hydrophobic d-amino acids were oxidized by the strictly enantioselective enzyme. After a high cell density fermentation, 2.29 × 106 U of d-AAO were obtained from 15 l of fermentation broth.  相似文献   

7.
We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h−1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.  相似文献   

8.
d-Tagatose is a highly functional rare ketohexose and many attempts have been made to convert d-galactose into the valuable d-tagatose using l-arabinose isomerase (l-AI). In this study, a thermophilic strain possessing l-AI gene was isolated from hot spring sludge and identified as Anoxybacillus flavithermus based on its physio-biochemical characterization and phylogenetic analysis of its 16s rRNA gene. Furthermore, the gene encoding l-AI from A. flavithermus (AFAI) was cloned and expressed at a high level in E. coli BL21(DE3). l-AI had a molecular weight of 55,876 Da, an optimum pH of 10.5 and temperature of 95°C. The results showed that the conversion equilibrium shifted to more d-tagatose from d-galactose by raising the reaction temperatures and adding borate. A 60% conversion of d-galactose to d-tagatose was observed at an isomerization temperature of 95°C with borate. The catalytic efficiency (k cat /K m) for d-galactose with borate was 9.47 mM−1 min−1, twice as much as that without borate. Our results indicate that AFAI is a novel hyperthermophilic and alkaliphilic isomerase with a higher catalytic efficiency for d-galactose, suggesting its great potential for producing d-tagatose.  相似文献   

9.
A non-characterized gene, previously proposed as the d-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with d-fructose and decreased for other substrates in the order: d-tagatose, d-psicose, d-ribulose, d-xylulose and d-sorbose. Its activity was maximal at pH 9 and 40°C while being enhanced by Mn2+. At pH 9 and 40°C, 118 g d-psicose l−1 was produced from 700 g d-fructose l−1 after 3 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Park CS  Yeom SJ  Kim HJ  Lee SH  Lee JK  Kim SW  Oh DK 《Biotechnology letters》2007,29(9):1387-1391
The rpiB gene, encoding ribose-5-phosphate isomerase (RpiB) from Clostridium thermocellum, was cloned and expressed in Escherichia coli. RpiB converted d-psicose into d-allose but it did not convert d-xylose, l-rhamnose, d-altrose or d-galactose. The production of d-allose by RpiB was maximal at pH 7.5 and 65°C for 30 min. The half-lives of the enzyme at 50°C and 65°C were 96 h and 4.7 h, respectively. Under stable conditions of pH 7.5 and 50°C, 165 g d-allose l1 was produced without by-products from 500 g d-psicose l−1 after 6 h.  相似文献   

11.
Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.  相似文献   

12.
Three mutants, isolated by repeated UV mutagenesis of Lactobacillus lactis NCIM 2368, produced increased d-lactic acid concentrations. These mutants were compared with the wild type using 100 g hydrolyzed cane sugar/l in the fermentation medium. One mutant, RM2-24, produced 81 g lactic acid/l which was over three times that of the wild type. The highest d-lactic acid (110 g/l) in batch fermentation was obtained with 150 g cane sugar/l with a 73% lactic acid yield. The mutant utilizes cellobiose efficiently, converting it into d-lactic acid suggesting the presence of cellobiase. Thus, this strain could be used to obtain d-lactic acid from cellulosic materials that are pre-hydrolyzed with cellulase.  相似文献   

13.
l-2-Aminobutyric acid can be synthesized in a transamination reaction from l-threonine and l-aspartic acid as substrates by the action of threonine deaminase and aromatic aminotransferase, but the by-product l-alanine was produced simultaneously. A small amount of l-alanine increased the complexity of the l-2-aminobutyric acid recovery process because of their extreme similarity in physical and chemical properties. Acetolactate synthase has been introduced to remove the pyruvate intermediate for reducing the l-alanine concentration partially. To eliminate the remnant l-alanine, alanine racemase of Bacillus subtilis in combination with d-amino acid oxidase of Rhodotorula gracilis or Trigonopsis variabilis respectively was introduced into the reaction system for the l-2-aminobutyric acid synthesis. l-Alanine could be completely removed by the action of alanine racemase of B. subtilis and d-amino acid oxidase of R. gracilis; thereby, high-purity l-2-aminobutyric acid was achieved. The results revealed that alanine racemase could discriminate effectively between l-alanine and l-2-aminobutyric acid, and selectively catalyzed l-alanine to d-alanine reversibly. d-Amino acid oxidase then catalyzed d-alanine to pyruvate stereoselectively. Furthermore, this method was also successfully used to remove the by-product l-alanine in the production of other neutral amino acids such as l-tertiary leucine and l-valine, suggesting that multienzymatic whole-cell catalysis can be employed to provide high purity products.  相似文献   

14.
A putative ribose-5-phosphate isomerase (RpiB) from Streptococcus pneumoniae was purified with a specific activity of 26.7 U mg−1 by Hi-Trap Q HP anion exchange and Sephacryl S-300 HR 16/60 gel filtration chromatographies. The native enzyme existed as a 96-kDa tetramer with activity maxima at pH 7.5 and 35°C. The RpiB exhibited isomerization activity with l-lyxose, l-talose, d-gulose, d-ribose, l-mannose, d-allose, l-xylulose, l-tagatose, d-sorbose, d-ribulose, l-fructose, and d-psicose and exhibited particularly high activity with l-form monosaccharides such as l-lyxose, l-xylulose, l-talose, and l-tagatose. With l-xylulose (500 g l−1) and l-talose (500 g l−1) substrates, the optimum concentrations of RpiB were 300 and 600 U ml−1, respectively. The enzyme converted 500 g l−1 l-xylulose to 350 g l−1 l-lyxose after 3 h, and yielded 450 g l−1 l-tagatose from 500 g l−1 l-talose after 5 h. These results suggest that RpiB from S. pneumoniae can be employed as a potential producer of l-form monosaccharides.  相似文献   

15.
Ribose-5-phosphate isomerase from Clostridium thermocellum converted d-psicose to d-allose, which may be useful as a pharmaceutical compound, with no by-product. The 12 active-site residues, which were obtained by molecular modeling on the basis of the solved three-dimensional structure of the enzyme, were substituted individually with Ala. Among the 12 Ala-substituted mutants, only the R132A mutant exhibited an increase in d-psicose isomerization activity. The R132E mutant showed the highest activity when the residue at position 132 was substituted with Ala, Gln, Ile, Lys, Glu, or Asp. The maximal activity of the wild-type and R132E mutant enzymes for d-psicose was observed at pH 7.5 and 80°C. The half-lives of the wild-type enzyme at 60°C, 65°C, 70°C, 75°C, and 80°C were 11, 7.0, 4.2, 1.5, and 0.6 h, respectively, whereas those of the R132E mutant enzymes were 13, 8.2, 5.1, 3.1, and 0.9 h, respectively. The specific activity and catalytic efficiency (k cat/K m) of the R132E mutant for d-psicose were 1.4- and 1.5-fold higher than those of the wild-type enzyme, respectively. When the same amount of enzyme was used, the conversion yield of d-psicose to d-allose was 32% for the R132E mutant enzyme and 25% for the wild-type enzyme after 80 min.  相似文献   

16.
The overproduction of d-aminoacylase (d-ANase, 233.8 U/mg), N-acyl-d-glutamate amidohydrolase (d-AGase, 38.1 U/mg) or N-acyl-d-aspartate amidohydrolase (d-AAase, 6.2 U/mg) in Escherichia coli is accompanied by aggregation of the overproduced protein. To facilitate the expression of active enzymes, the molecular chaperones GroEL-GroES (GroELS), DnaK-DnaJ-GrpE (DnaKJE), trigger factor (TF), GroELS and DnaKJE or GroELS and TF were coexpressed with the enzymes. d-ANase (313.3 U/mg) and d-AGase (95.8 U/mg) were overproduced in an active form at levels 1.3- and 1.8-fold higher, respectively, upon co-expression of GroELS and TF. An E. coli strain expressing the d-AAase gene simultaneously with the TF gene exhibited a 4.3-fold enhancement in d-AAase activity (32.0 U/mg) compared with control E. coli expressing the d-AAase gene alone.  相似文献   

17.
The first establishment of a homologous expression system in the host Ralstonia pickettii CGMCC1596 using the compatible broad-host-range plasmid pWB5 is described. When whole cells of the recombinant strain R. pickettii MMYY01 (CGMCC1596/pYY05) were used as the biocatalyst to transform dl-4-hydroxyphenylhydantoin (dl-HPH) to d-4-hydroxyphenylglycine (d-HPG), the conversion rate reached 94 % in first 9 h, at a production rate of 2.8 g L−1 h−1, with the rapid reduction of the intermediate [N-carbamoyl-2-(4-hydroxyphenyl)glycine], compared with 80 % in >50 h at a rate of 0.5 g L−1 h−1 for the CGMCC1596. The stability of the recombinant plasmid pYY05 is sufficient for its application in industrial batch fermentation. An alternative strategy for the conversion of dl-HPH to d-HPG by resting CGMCC1596 cells and heterologous DCase expressed by E. coli is discussed.  相似文献   

18.
l-3,4-dihydroxyphenylalanine (l-DOPA) is an aromatic compound employed for the treatment of Parkinson's disease. Metabolic engineering was applied to generate Escherichia coli strains for the production of l-DOPA from glucose by modifying the phosphoenolpyruvate:sugar phosphotransferase system (PTS) and aromatic biosynthetic pathways. Carbon flow was directed to the biosynthesis of l-tyrosine (l-Tyr), an l-DOPA precursor, by transforming strains with compatible plasmids carrying genes encoding a feedback-inhibition resistant version of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase, transketolase, the chorismate mutase domain from chorismate mutase-prephenate dehydratase from E. coli and cyclohexadienyl dehydrogenase from Zymomonas mobilis. The effects on l-Tyr production of PTS inactivation (PTS gluc+ phenotype), as well as inactivation of the regulatory protein TyrR, were evaluated. PTS inactivation caused a threefold increase in the specific rate of l-Tyr production (q l-Tyr), whereas inactivation of TyrR caused 1.7- and 1.9-fold increases in q l-Tyr in the PTS+ and the PTS gluc+ strains, respectively. An 8.6-fold increase in l-Tyr yield from glucose was observed in the PTS gluc+ tyrR strain. Expression of hpaBC genes encoding the enzyme 4-hydroxyphenylacetate 3-hydroxylase from E. coli W in the strains modified for l-Tyr production caused the synthesis of l-DOPA. One of such strains, having the PTS gluc+ tyrR phenotype, displayed the best production parameters in minimal medium, with a specific rate of l-DOPA production of 13.6 mg/g/h, l-DOPA yield from glucose of 51.7 mg/g and a final l-DOPA titer of 320 mg/l. In a batch fermentor culture in rich medium this strain produced 1.51 g/l of l-DOPA in 50 h.  相似文献   

19.
The fermentation of d-glucose and d-xylose mixtures by the yeast Candida tropicalis NBRC 0618 has been studied under the most favourable operation conditions for the culture, determining the most adequate initial proportion in these sugars for xylitol production. In all the experiments a synthetic culture medium was used, with an initial total substrate concentration of 25 g L−1, a constant pH of 5.0 and a temperature of 30 °C. From the experimental results, it was deduced that the highest values of specific rates of production and of overall yield in xylitol were achieved for the mixtures with the highest percentage of d-xylose, specifically in the culture with the initial d-glucose and d-xylose concentrations of 1 and 24 g L−1, respectively, with an overall xylitol yield of 0.28 g g−1. In addition, the specific rates of xylitol production declined over the time course of the culture and the formation of this bioproduct was favoured by the presence of small quantities of d-glucose. The sum of the overall yield values in xylitol and ethanol for all the experiments ranged from 0.26 to 0.56 g bioproduct/g total substrate.  相似文献   

20.
A thalium chloride-resistant (TlClr) mutant strain and a sodium chloride-resistant (NaClr) mutant strain of the diazotrophic cyanobacterium Anabaena variabilis have been isolated by spontaneous and chemical mutagenesis by using TlCl, a potassium (K+) analog, and nitrosoguanidine (NTG), respectively. The TlClr mutant strain was found to be defective in K+ transport and showed resistance against 10 μM TlCl. However, it also showed sensitivity against NaCl (LD50, 50 mM). In contrast, neither wild-type A. variabilis nor its NaClr mutant strain could survive in the presence of 10 μM TlCl and died even at 1 μM TlCl. The TlClr mutant strain exhibited almost negligible K+ uptake, indicating the lack of a K+ uptake system. High K+ uptake was, however, observed in the NaClr mutant strain, reflecting the presence of an active K+ uptake system in this strain. DCMU, an inhibitor of PS II, inhibited the K+ uptake in wild-type A. variabilis and its TlClr and NaClr mutant strains, suggesting that K+ uptake in these strains is an energy-dependent process and that energy is derived from photophosphorylation. This contention is further supported by the inhibition of K+ uptake under dark conditions. Furthermore, the inhibition of K+ uptake by KCN, DNP, and NaN3 also suggests the involvement of oxidative phosphorylation in the regulation of an active K+ uptake system. The whole-cell protein profile of wild-type A. variabilis and its TlClr and NaClr mutant strains growing in the presence of 50 mM KCl was made in the presence and absence of NaCl. Lack of transporter proteins in TlClr mutant strain suggests that these proteins are essentially required for the active transport and accumulation of K+ and make this strain NaCl sensitive. In contrast, strong expression of the transporter proteins in NaClr mutant strain and its weak expression in wild-type A. variabilis is responsible for their resistance and sensitivity to NaCl, respectively. Therefore, it appears that the increased salt tolerance of the NaClr mutant strain was owing to increased K+ uptake and accumulation, whereas the salt sensitivity of the TlClr mutant strain was owing to the lack of K+ uptake and accumulation. Received: 7 March 2002 / Accepted: 8 April 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号