首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Enterococcus mundtii QU 25, a non-dairy bacterial strain of ovine faecal origin, can ferment both cellobiose and xylose to produce l-lactic acid. The use of this strain is highly desirable for economical l-lactate production from renewable biomass substrates. Genome sequence determination is necessary for the genetic improvement of this strain. We report the complete genome sequence of strain QU 25, primarily determined using Pacific Biosciences sequencing technology. The E. mundtii QU 25 genome comprises a 3 022 186-bp single circular chromosome (GC content, 38.6%) and five circular plasmids: pQY182, pQY082, pQY039, pQY024, and pQY003. In all, 2900 protein-coding sequences, 63 tRNA genes, and 6 rRNA operons were predicted in the QU 25 chromosome. Plasmid pQY024 harbours genes for mundticin production. We found that strain QU 25 produces a bacteriocin, suggesting that mundticin-encoded genes on plasmid pQY024 were functional. For lactic acid fermentation, two gene clusters were identified—one involved in the initial metabolism of xylose and uptake of pentose and the second containing genes for the pentose phosphate pathway and uptake of related sugars. This is the first complete genome sequence of an E. mundtii strain. The data provide insights into lactate production in this bacterium and its evolution among enterococci.  相似文献   

2.
Three mutants, isolated by repeated UV mutagenesis of Lactobacillus lactis NCIM 2368, produced increased d-lactic acid concentrations. These mutants were compared with the wild type using 100 g hydrolyzed cane sugar/l in the fermentation medium. One mutant, RM2-24, produced 81 g lactic acid/l which was over three times that of the wild type. The highest d-lactic acid (110 g/l) in batch fermentation was obtained with 150 g cane sugar/l with a 73% lactic acid yield. The mutant utilizes cellobiose efficiently, converting it into d-lactic acid suggesting the presence of cellobiase. Thus, this strain could be used to obtain d-lactic acid from cellulosic materials that are pre-hydrolyzed with cellulase.  相似文献   

3.
We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h−1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.  相似文献   

4.
In order to produce l(+)-lactic acid to be employed in poly-l-lactic acid polymer production, for biomedical applications, the strain Lactobacillus casei subsp. casei DSM 20011 was studied in a conventional batch mode using different initial concentrations of glucose. The results obtained showed that the initial glucose concentration exerts an influence on the fermentation pattern, modifying the different fermentation parameters. Nevertheless, the product yield remained at a constant value of 0.86 g·g–1. The proposed novel system of product recovery, based on the use of ion-exchange resins, gave high yields of pure lactic acid. Correspondence to: D. Matteuzzi  相似文献   

5.
The aim of this study is to investigate production of l-lactic acid from sucrose and corncob hydrolysate by the newly isolated R. oryzae GY18. R. oryzae GY18 was capable of utilizing sucrose as a sole source, producing 97.5 g l−1 l-lactic acid from 120 g l−1 sucrose. In addition, the strain was also efficiently able to utilize glucose and/or xylose to produce high yields of l-lactic acid. It was capable of producing up to 115 and 54.2 g l−1 lactic acid with yields of up to 0.81 g g−1 glucose and 0.90 g g−1 xylose, respectively. Corncob hydrolysates obtained by dilute acid hydrolysis and enzymatic hydrolysis of the cellulose-enriched residue were used for lactic acid production by R. oryzae GY18. A yield of 355 g lactic acid per kg corncobs was obtained after 72 h incubation. Therefore, sucrose and corncobs could serve as potential sources of raw materials for efficient production of lactic acid by R. oryzae GY18.  相似文献   

6.
In this paper, in order to obtain some industrial strains with high yield of l-(+)-lactic acid, the wild type strain Lactobacillus casei CICC6028 was mutated by nitrogen ions implantation. By study, it was found that the high positive mutation rate was obtained when the output power was 10 keV and the dose of N+ implantation was 50 × 2.6 × 1013 ions/cm2. In addition, the initial screening methods were also studied, and it was found that the transparent halos method was unavailable, for some high yield strains of l-(+)-lactic acid were missed. Then a mutant strain which was named as N-2 was isolated, its optimum fermentation temperature was 40°C and the l-(+)-lactic acid yield was 136 g/l compared to the original strain whose optimum fermentation temperature was 34°C and l-(+)-lactic acid production was 98 g/l. Finally, High Performance Liquid Chromatography method was used to analyze the purity of l-(+)-lactic acid that was produced by the mutant N-2, and the result showed the main production of N-2 was l-(+)-lactic acid.  相似文献   

7.
A kinetic model of the fermentative production of lactic acid from glucose by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour has been developed. The model consists of terms for substrate and product inhibition as well as for the influence of pH and temperature. Experimental data from fermentation experiments under different physical conditions were used to fit and verify the model. Temperatures above 30 °C and pH levels below 6 enhanced the formation of by-products and d-lactic acid. By-products were formed in the presence of maltose only, whereas d-lactic acid was formed independently of the presence of maltose although the amount formed was greater when maltose was present. The lactic acid productivity was highest between 33 °C and 35 °C and at pH 6. In the concentration interval studied (up to 180 g l−1 glucose and 89  g l−1 lactic acid) simulations showed that both substances were inhibiting. Glucose inhibition was small compared with the inhibition due to lactic acid. Received: 28 October 1997 / Received revision: 3 February 1998 / Accepted: 6 February 1998  相似文献   

8.
Semicontinuous fermentation using pellets of Rhizopus oryzae has been recognized as a promising technology for l-lactic acid production. In this work, semicontinuous fermentation of R. oryzae AS 3.819 for l-lactic acid production has been developed with high l-lactic acid yield and volumetric productivity. The effects of factors such as inoculations, CaCO3 addition time, and temperature on l-lactic acid yield and R. oryzae morphology were researched in detail. The results showed that optimal fermentation conditions for the first cycle were: inoculation with 4% spore suspension, CaCO3 added to the culture medium at the beginning of culture, and culture temperature of 32–34°C. In orthogonal experiments, high l-lactic acid yield was achieved when the feeding medium was (g/l): glucose, 100; (NH4)2SO4, 2; KH2PO4, 0.1; ZnSO4·7H2O, 0.33; MgSO4·7H2O, 0.15; CaCO3, 50. Twenty cycles of semicontinuous fermentation were carried out in flask culture. l-lactic acid yield was 78.75% for the first cycle and 80–90% for the repeated cycles; the activities of lactate dehydrogenases (LDH) were 7.2–9.2 U/mg; fermentation was completed in 24 h for each repeated cycle. In a 7-l magnetically stirred fermentor, semicontinuous fermentation lasted for 25 cycles using pellets of R. oryzae AS 3.819 under the optimal conditions determined from flask cultures. The final l-lactic acid concentration (LLAC) reached 103.7 g/l, and the volumetric productivity was 2.16 g/(l·h) for the first cycle; in the following 19 repeated cycles, the final LLAC reached 81–95 g/l, and the volumetric productivities were 3.40–3.85 g/(l·h).  相似文献   

9.
In order to achieve direct fermentation of an optically pure d-lactic acid from cellulosic materials, an endoglucanase from a Clostridium thermocellum (CelA)-secreting plasmid was introduced into an l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum (∆ldhL1) bacterial strain. CelA expression and its degradation of β-glucan was confirmed by western blot analysis and enzyme assay, respectively. Although the CelA-secreting ∆ldhL1 assimilated cellooligosaccharides up to cellohexaose (although not cellotetraose), the main end product was acetic acid, not lactic acid, due to the conversion of lactic acid to acetic acid. Cultivation under anaerobic conditions partially suppressed this conversion resulting in the production of 1.27 g/l of D-lactic acid with a high optical purity of 99.5% from a medium containing 2 g/l of cellohexaose. Subsequently, D-lactic acid fermentation from barley β-glucan was carried out with the addition of Aspergillus aculeatus β-glucosidase produced by recombinant Aspergillus oryzae and 1.47 g/l of D-lactic was produced with a high optical purity of 99.7%. This is the first report of direct lactic acid fermentation from β-glucan and a cellooligosaccharide that is a more highly polymerized sugar than cellotriose.  相似文献   

10.
Of six strains of lactic acid-producing alkaliphilic microorganisms, Halolactibacillus halophilus was most efficient. It produced the highest concentration and yield of lactic acid, with minimal amounts of acetic and formic acid when sucrose and glucose were used as substrate. Mannose and xylose were poorly utilized. In batch fermentation at 30°C, pH 9 with 4 and 8% (w/v) sucrose, lactic acid was produced at 37.7 and 65.8 g l−1, with yields of 95 and 83%, respectively. Likewise, when 4 and 8% (w/v) glucose were used, 33.4 and 59.6 g lactic acid l−1 were produced with 85 and 76% yields, respectively. l-(+)-lactic acid had an optical purity of 98.8% (from sucrose) and 98.3% (from glucose).  相似文献   

11.
Production of l(+)-lactic acid by Rhizopus oryzae NRRL 395 was studied in solid medium on sugar-cane bagasse impregnated with a nutrient solution containing glucose and CaCO3. A comparative study was undertaken in submerged and solid-state cultures. The optimal concentrations in glucose were 120 g/l in liquid culture and 180 g/l in solid-state fermentation corresponding to production of l(+)-lactic acid of 93.8 and 137.0 g/l, respectively. The productivity was 1.38 g/l per hour in liquid medium and 1.43 g/l per hour in solid medium. However, the fermentation yield was about 77% whatever the medium. These figures are significant for l(+)-lactic acid production.  相似文献   

12.
Summary A kinetic study regarding product inhibition in lactic acid fermentation by Streptococcus faecalis, which produces l-lactic acid, was performed in a chemostat at various feed concentrations of glucose (10, 20, and 30 g/l) at pH 7.0. Steady-state kinetic constants for the specific consumption rate of glucose and the specific production rate of lactic acid were determined at a residual glucose concentration below 2 g/l, which was accomplished in a chemostat. All the parameters, the specific growth rate, the specific consumption rate of glucose, and the specific production rate of lactic acid, were definitely related to non-competitive inhibition with regard to the concentration of the product, lactic acid.Offprint requests to: K. Hiyama  相似文献   

13.
A strain of Bacillus coagulans that converted mixed sugars of glucose, xylose, and arabinose to l-lactic acid with 85% yield at 50°C was isolated from composted dairy manure. The strain was tolerant to aldehyde growth inhibitors at 2.5 g furfural/l, 2.5 g 5-hydroxymethylfurfural/l, 2.5 g vanillin/l, and 1.2 g p-hydroxybenzaldehyde/l. In a simultaneous saccharification and fermentation process, the strain converted a dilute-acid hydrolysate of 100 g corn fiber/l to 39 g lactic acid/l in 72 h at 50°C. Because of its inhibitor tolerance and ability to fully utilize pentose sugars, this strain has potential to be developed as a biocatalyst for the conversion of agricultural residues into valuable chemicals.  相似文献   

14.
Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150–180 g l−1) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l−1 and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to l(+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations.  相似文献   

15.
A thermophilic Bacillus coagulans WCP10-4 with tolerance to high concentration of glucose was isolated from soil and used to produce optically pure l-lactic acid from glucose and starch. In batch fermentation at pH?6.0, 240 g/L of glucose was completely consumed giving 210 g/L of l-lactic acid with a yield of 95 % and a productivity of 3.5 g/L/h. In simultaneous saccharification and fermentation at 50 °C without sterilizing the medium, 200 g/L of corn starch was completely consumed producing 202.0 g/L of l-lactic acid. To the best of our knowledge, this strain shows the highest osmotic tolerance to glucose among the strains ever reported for lactic acid production. This is the first report of simultaneous saccharification and fermentation of starch for lactic acid production under a non-sterilized condition.  相似文献   

16.
In fermentation of lactic acid with Streptococcus faecalis, which produces mainly l-lactic acid, the optical purity of the l-lactic acid produced was improved from 97.1% to 99.8% by the addition of 0.5 g/l of diammonium hydrogen phosphate. The fermentation time was reduced from 130 h to 47 h b9y the improved method. Correspondence to: H. Ohara  相似文献   

17.
It is known that seaweeds differ greatly from land plants in their sugar composition. The current research on the L-lactic acid fermentation process focuses on land plant sugars as a carbon source, with the potential of seaweed sugars being largely ignored. This study examined the feasibility of seaweed biomass as a possible carbon source for the production of l-lactic acid, by comparing the fermentation of seaweed sugars (d-galactose, d-mannitol, l-rhamnose, d-glucuronic acid, and l-fucose) and land plant sugars (d-glucose, d-xylose, d-mannose, and l-arabinose). The experiments were repeated with 2 sugar acids (d-gluconic acid, d-glucaric acid) in order to investigate the effect of the degree of reduction of carbon source on the fermentation yield. This research also examined the effect of bacterial strain on the characteristics of fermentation reactions, by conducting l-lactic acid fermentation with 7 different Lactobacillus species. Taking into account the sugar composition of seaweed and the levels of lactic acid production from each pure sugar, it was possible to predict the lactic acid production yield of various seaweeds and land plants. From comparative analysis of the predicted lactic acid production yield, it was found that seaweeds are already comparable to lignocellulosics at the current stage of technology. If new technologies for the utilization of non-fermentable seaweed sugars are developed, seaweeds show promise as an even more useful biomass feedstock than lignocellulosics.  相似文献   

18.
Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50–55°C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55°C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35°C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55°C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.  相似文献   

19.
Sun  Yaqin  Yang  Yong  Liu  Huihui  Wei  Chuanxiang  Qi  Wenbin  Xiu  Zhilong 《Bioprocess and biosystems engineering》2020,43(9):1717-1724

Simultaneous liquefaction, saccharification, and fermentation (SLSF) has attracted much attention for the production of bio-based chemicals, including l-lactic acid, due to its high efficiency and low cost. In this study, a lactic acid-producing bacterium with high tolerance of temperature up to 55 °C was isolated and characterized as Enterococcus faecalis DUT1805. Various strategies of stepwise controlled temperature were proposed and investigated for glucose utilization. The results indicated that E. faecalis DUT 1805 exhibited an optimal temperature at 50 °C, which could achieve temperature compatibility of enzyme, saccharification, and fermentation, and decrease the possibility of contamination by the other microorganisms during the large-scale fermentation. To reduce the cost of raw material and operation for lactic acid production, aging paddy rice with hull (APRH) was used in l-lactic acid production by simultaneous liquefaction, saccharification, and fermentation (SLSF). An open SLSF operation at 50 °C and pH 6.5, and 17% (w/v) solid loading in 5 L bioreactors was demonstrated with the lactic acid titer, yield, and productivity of 73.75 g/L, 87% to initial starch, and 2.17 g/(L h), respectively.

  相似文献   

20.
Low-energy ion beam irradiation (10–200 keV) has been proved to have a wide range of biological effects in recent years. When Rhizopus oryzae PW352 was irradiated with a 15-keV low-energy ion beam an l(+)-lactic acid high-yield mutant, RQ4015, was obtained. When 150 g/l glucose was used as the sole carbon source, l(+)-lactic acid of RQ4015 reached 121 g/l after 36 h shake-flask cultivation. However, the highest lactic acid concentration 74 g/l was obtained when 100 g/l xylose was present in the medium as the sole carbon source. When mixed xylose (25 g/l) and glucose (75 g/l) were present in a bubble column, l(+)-lactic acid production of RQ4015 reached 83 g. A high mutation rate and a wide mutation spectrum of low-energy ion implantation were observed in the experiment, suggesting that ion implantation can be a highly efficient mutagenic means for microorganism breeding in many commercial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号