首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Western blotting with anti-phosphotyrosine antibodies was employed in order to study insulin-dependent protein tyrosine phosphorylation in intact Fao cells. In insulin-treated cells, a prominent 180-kDa protein underwent tyrosine phosphorylation, which peaked at 45 s and then rapidly declined. Pretreatment of the cells with 1 mM Bt2cAMP or 0.16 microM 12-O-tetradecanoylphorbol-13-acetate inhibited the insulin-dependent phosphorylation of pp 180, while 1 mM vanadate or 3 mM H2O2 markedly potentiated it. These results indicate that phosphorylation of pp 180 is respectively regulated by agents that are known to synergize with or antagonize the action of the insulin receptor kinase. pp 180 is therefore likely to mediate physiological functions of this receptor kinase. Incubation of Fao cells with 3 mM H2O2 for 30 min prior to their treatment with insulin for 45 s allowed the detection of additional, previously undescribed, proteins pp 150, 114, 100, 85, 68, and 56 kDa that underwent insulin-dependent tyrosine phosphorylation. The potentiating effects of H2O2 were time- and dose-dependent and could be reversed by 2 mM dithiothreitol. Proteins phosphorylated in response to H2O2 plus insulin maintained their fully phosphorylated state for at least 20 min. We suggest that these phosphoproteins are potential physiological substrates for the insulin receptor kinase.  相似文献   

2.
Acute (10-30 min) treatment of intact rat hepatoma (Fao) cells with H2O2, inhibits in vivo protein tyrosine phosphatase activity. Vanadate markedly potentiates this effect although it has only trivial effects of its own. Here we show that H2O2 inhibits a protein tyrosine phosphatase activity, but not a p-nitro phenyl phosphate hydrolysing activity, in cytosolic extracts of these cells. This effect is completely reversed by 10 mM dithiothreitol. Other oxidants have similar inhibitory effects. Vanadate inhibits the protein tyrosine phosphatase activity in vitro, and its effects are additive with those of H2O2. These findings suggest that H2O2 and vanadate interact with the protein tyrosine phosphatases at two independent sites. They also suggest that in intact cells H2O2 has a direct inhibitory effect on protein tyrosine phosphatase activity and an indirect effect of facilitating the entry of vanadate.  相似文献   

3.
Y Zick  R Sagi-Eisenberg 《Biochemistry》1990,29(44):10240-10245
Treatment of four cell lines [rat hepatoma (Fao), murine muscle (BC3H-1), Chinese hamster ovary (CHO), and rat basophilic leukemia (RBL)] with a combination of 3 mM H2O2 and 1 mM sodium orthovanadate markedly stimulates protein tyrosine phosphorylation, which is accompanied by a dramatic increase (5-15-fold) in inositol phosphate (InsP) formation. H2O2/vanadate stimulate best formation of inositol triphosphate while their effects on the mono and di derivatives are more moderate. In the presence of 3 mM H2O2, both protein tyrosine phosphorylation and InsP formation are highly correlated and manifest an identical dose-response relationship for vanadate. Half-maximal and maximal effects are obtained at 30 and 100 microM, respectively. This stimulatory effect of H2O2/vanadate is not mimicked by other oxidants such as spermine, spermidine, KMnO4, and vitamin K3. In RBL cells, the kinetics of inositol triphosphate formation correlate with tyrosine phosphorylation of a 67-kDa protein, while tyrosine phosphorylation of a 55-kDa protein is closely correlated with both inositol monophosphate formation and serotonin secretion from these cells. Taken together, these results suggest a causal relationship between tyrosine phosphorylation triggered in a nonhormonal manner and polyphosphoinositide breakdown. Furthermore, these results implicate protein tyrosine phosphorylation in playing a role in the stimulus-secretion coupling in RBL cells.  相似文献   

4.
It has been proposed that H(2)O(2) increases tyrosine phosphorylation of cellular proteins by inhibiting protein-tyrosine phosphatase through oxidation of the cysteine residue of the enzyme essential for its catalytic activity. Tyrosine phosphorylation of the delta isoform of protein kinase C (PKC) was induced by H(2)O(2) in CHO and COS-7 cells. H(2)O(2) also induced activation of mitogen-activated protein kinase. Vanadate and molybdate, which inhibit protein-tyrosine phosphatase by binding to its active site, did not induce tyrosine phosphorylation of PKCdelta, but enhanced H(2)O(2)-induced tyrosine phosphorylation of PKCdelta in the cell. The oxoanions, however, generated the active form of mitogen-activated protein kinase. Another protein-tyrosine phosphatase inhibitor, phenylarsine oxide, which bridges the thiol residues of the enzyme, induced tyrosine phosphorylation of PKCdelta, and the reaction was enhanced by vanadate. These results suggest that inhibition of protein-tyrosine phosphatase is insufficient for induction of tyrosine phosphorylation of PKCdelta in the cells, and that presumably activation of protein-tyrosine kinase may be essential for tyrosine phosphorylation of the PKC isoform.  相似文献   

5.
Autophosphorylation of the insulin receptor on tyrosine residues and activation of the endogenous insulin receptor kinase is postulated to be a critical step in the mechanism of action of insulin. To investigate this hypothesis, the insulin-mimicking effects of vanadate (sodium orthovanadate) and H2O2 (hydrogen peroxide) alone and in combination were examined in freshly isolated rat adipocytes. Vanadate and H2O2 stimulated the translocation of insulin-like growth factor II (IGF-II) receptors to the plasma membrane of rat adipocytes in a manner analogous to insulin. IGF-II binding was increased by maximally effective doses of vanadate (1 mM), H2O2 (1 mM), and insulin (10 ng/ml) to 172 +/- 10, 138 +/- 12, and 289 +/- 16% of control, respectively. Previously (Kadota, S., Fantus, I. G., Hersh, B., and Posner, B. I. (1986) Biochem. Biophys. Res. Commun. 138, 174-178), we showed that the combination of these concentrations of vanadate plus insulin was not more potent than insulin alone. In this study, similar results were found with H2O2 plus insulin. In contrast, the combination of vanadate plus H2O2 was synergistic, effecting an increase of IGF-II binding to 488 +/- 23% of control. Amiloride inhibited the effects of vanadate, H2O2, and insulin. Adipocyte insulin receptors purified by wheat germ agglutinin chromatography were assayed for tyrosine kinase activity using the synthetic substrate poly(Glu,Tyr) (4:1). Basal activity (no in vitro insulin) was stimulated by exposure of intact cells to vanadate, H2O2, insulin, and vanadate + H2O2 to 147.7 +/- 4.3, 178.2 +/- 43.4, 495.0 +/- 67.1, and 913.2 +/- 92.0% of control, respectively. The stimulation of tyrosine kinase activity by these agents was accounted for by the insulin receptor as the augmented activity was completely immunoprecipitated with insulin receptor antibody. In these studies, the increase in IGF-II binding correlated significantly with the activation of the insulin receptor-tyrosine kinase (r = 0.927, p less than 0.001). These data support the hypothesis that activation of the insulin receptor kinase is linked to insulin action.  相似文献   

6.
To analyze the mechanism of action of the insulinomimetic agents H2O2, vanadate, and pervanadate (H2O2 and vanadate), CHO cells or CHO cells that overexpress wild-type or mutant insulin receptor and/or the insulin receptor substrate (IRS-1) were used. H2O2 or vanadate treatment alone had little or no effect on tyrosine phosphorylation of cellular proteins; however, pevanadate treatment dramatically enhanced tyrosine phosphorylation of a number of proteins including the insulin receptor and IRS-1. However, the insulin receptor and IRS-1 coimmunoprecipitate from insulin-treated but not from pervanadate-treated cells. Pervanadate-induced tyrosine phosphorylation of the insulin receptor led to an increase in insulin receptor tyrosine kinase activity toward IRS-1 in vivo and IRS-1 peptides in vitro equal to that induced by insulin treatment. Pervanadate-enhanced phosphorylation of IRS-1 led to a fifteenfold increase in IRS-1–associated phosphatidylinositol (Ptdlns) 3-kinase activity. However, insulin receptor–associated Ptdlns 3-kinase activity from pervanadate-treated cells was not detectable, while insulin receptor–associated Ptdlns 3-kinase activity from insulin-treated cells was 20% of the IRS-1-associated activity. Thus, pervanadate but not H2O2 or vanadate alone under these conditions mimics many of insulin actions, but pervanadate treatment does not induce insulin receptor/IRS-1 association.  相似文献   

7.
Insulin and vanadate selectively induce mitogenesis in quiescent SV40 large T antigen-transformed 3T3 T cells (CSV3–1) but not in quiescent nontransformed 3T3 T cells. Insulin and vanadate mediate this effect in CSV3–1 cells by distinct signal transduction mechanisms that involve protein tyrosine kinase activity. To further study these processes, changes in protein tyrosine phosphorylation induced by insulin and vanadate were investigated. Using immunoprecipitation and Western blotting techniques with antiphosphotyrosine antibodies, we report distinct protein phosphorylation characteristics in insulin- and vanadate-stimulated CSV3–1 cells. The insulin receptor β-subunit is phosphorylated within 2 min after insulin stimulation of transformed CSV3–1 cells. Insulin also stimulates a rapid increase in tyrosine phosphorylation of the 170 kDa insulin receptor substrate-1 and complex formation between the phosphorylated insulin receptor substrate-1 and the 85 kDa subunit of phosphatidylinositol 3'-kinase. In contrast, vanadate does not initially increase detectable phosphorylation of any proteins, including neither the insulin receptor nor the insulin receptor substrate-1. After 60 min, however, a marked increase in tyrosine phosphorylation of 55 and 64 kDa proteins is observed in vanadate-treated CSV3–1 cells. Furthermore, treatment of CSV3–1 cells with genistein abolishes the effects of vanadate on protein tyrosine phosphorylation but only minimally inhibits the effects of insulin. Finally, insulin stimulates the phosphorytion of a 33 kDa protein, whereas vanadate does not. By comparison, in nontransformed 3T3 T cells, insulin induces a delayed and weaker tyrosine phosphorylation of the insulin receptor β-subunit and vanadate does not enhance the tyrosine phosphorylation of the 55 and 64 kDa proteins. These data together indicate that the mitogenic effects of insulin and vanadate are associated with distinct protein phosphorylation patterns that appear to be differentially regulated in SV40-transformed and nontransformed 3T3 T cells. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function of the insulin receptor.  相似文献   

9.
In this study, we report on the apparent effect of increased tyrosine phosphorylation events on the assembly and integrity of adherens junctions (AJs) and on paracellular permeability in Caco-2 cells. Cell monolayers were incubated with the phosphotyrosine phosphatase inhibitor vanadate/H2O2. Addition of this compound to monolayer resulted in disruption of the AJs, as revealed by electron microscopy and by a loss of membrane association of the AJ-associated protein uvomorulin/E-cadherin (U/E-c). However, tight junctions (TJs) were unaltered, as determined by measuring the transepithelial resistance (Rt), by ruthenium red labeling, as seen by transmission electron microscopy, and the distribution of TJ strands as seen in freeze-fracture replicas and by hyperphosphorylation of triton-insoluble occludin. Also examination of vanadate/H2O2 treated cells indicated a specific increase in AJ-associated phosphotyrosine residues as evaluated by immunofluorescence microscopy, but no modification of F-actin distribution, as revealed by confocal laser scanning microscopy analysis. To verify that modulation of AJs was indeed related to tyrosine phosphorylation, we tested a range of distinct protein kinase inhibitors. Of the three inhibitors tested (tyrphostin 25, genistein and staurosporine), tyrphostin 25 completely blocked the effects of vanadate/ H2O2 on assembly and integrity of AJs, redistribution of U/E-c and phosphotyrosine labeling. Our results indicate that, after addition of vanadate/H2O2 to Caco-2 monolayers, specific tyrosine phosphorylation of proteins cause disruption of AJs, but no modifications of the TJs' structure and functionality. These observations suggest that, in contrast to what happens with epithelial cells, TJs and AJs of Caco-2 cells are regulated by independent mechanisms.  相似文献   

10.
The intracellular localization of protein kinase C (PKC) is important for the regulation of its biological activity. Recently, it was reported that, whereas phorbol esters such as PMA induce prolonged translocation of PKC to the plasma membrane, with physiological stimuli, the translocation of PKC is transient and followed by rapid return to the cytoplasm. In addition, this membrane dissociation of PKC was shown to require both the kinase activity of PKC and the phosphorylation of its carboxyl terminus autophosphorylation sites. However, the detailed molecular mechanism of PKC reverse translocation remains obscure. We demonstrated that in porcine polymorphonuclear leucocytes (PMNs), phenylarsine oxide (PAO), a putative protein tyrosine phosphatase (PTPase) inhibitor, induced reverse translocation of PMA-stimulated PKCbetaII. Hydrogen peroxide (H(2)O(2)) in combination with vanadate, both of which are PTPase inhibitors, also induced reverse translocation of PKCbetaII. H(2)O(2) or vanadate alone had little effect on PMA-induced PKCbetaII translocation. Furthermore, genistein and ethanol, which are inhibitors of tyrosine kinase and phospholipase D, respectively, prevented the PKCbetaII reverse translocation induced by the PTPase inhibitors. These results indicate, for the first time, that the tyrosine phosphorylation/phospholipase D pathway may be involved in the process of membrane dissociation of PKC.  相似文献   

11.
12.
Both vanadate and hydrogen peroxide (H2O2) are known to have insulin-mimetic effects. We previously reported that the mixture of vanadate plus H2O2 results in the generation of a peroxide(s) of vanadate, which strongly enhances IGF-II binding to rat adipocytes (Kadota et al., 1987b). We now report that pervanadate mimics insulin in isolated rat adipocytes to (1) stimulate lipogenesis, (2) inhibit epinephrine-stimulated lipolysis, and (3) stimulate protein synthesis. The efficacy of pervanadate is comparable to that of insulin. However, it is 10(2)-10(3) times more potent than vanadate alone. Exposure of intact rat adipocytes to pervanadate was found to activate the WGA-purified insulin receptor tyrosine kinase assayed with the exogenous substrate poly(Glu80/Tyr20) in a dose-dependent manner to a maximum of 1464% of control at 10(-3) M compared with a maximum insulin effect of 1046% at 10(-6) M. In contrast, in vitro assayed autophosphorylation of the WGA-purified extract was increased 3-fold after exposure of intact cells to insulin but not significantly increased after pervanadate. Furthermore, high concentrations of pervanadate (10(-5) M) inhibited subsequent in vitro added insulin-stimulated autophosphorylation. In vitro addition of pervanadate to WGA-purified receptors could not stimulate autophosphorylation or exogenous tyrosine kinase activity and did not inhibit insulin-stimulated autophosphorylation. Labeling of intact adipocytes with [32P]orthophosphate followed by exposure to 10(-4) M pervanadate increased insulin receptor beta-subunit phosphorylation (7.9 +/- 3.0)-fold, while 10(-7) M insulin and 10(-4) vanadate increased labeling (5.3 +/- 1.8)- and (1.1 +/- 0.2)-fold, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Hypoxia-inducible factor (HIF)-1 activation in response to hypoxia requires mitochondrial generation of reactive oxygen species (ROS). In contrast, the requirement of ROS for HIF-1 activation by growth factors like insulin remains unexplored. To explore that, insulin-sensitive hepatic cell HepG2 or cardiac muscle cell H9c2 cells were pretreated with NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) or apocynin and HIF-1 activation was tested by electrophoretic mobility shift and reporter gene assay. Antioxidants DPI or apocynin completely blocked insulin-stimulated HIF-1 activation. The restoration of HIF-1 activation by H(2)O(2) in DPI-pretreated cells not only confirmed the role of ROS but also identified H(2)O(2) as the responsible ROS. The role of NADPH oxidase was further confirmed by greater stimulation of HIF-1 during simultaneous treatment of suboptimal concentration of insulin along with NADPH but not by NADH. The role of oxidant generated by insulin is found to inhibit the protein tyrosine phosphatase as suggested by the following observations. First, tyrosine phosphatase-specific inhibitor sodium vanadate compensates DPI-inhibited HIF-1 activity. Second, sodium vanadate stimulates HIF-1 activation with suboptimal concentration of insulin. Third, DPI and pyrrolidene dithiocarbamate (PDTC) blocks insulin-receptor tyrosine kinase activation. The activity of phosphatidylinositol 3-kinase as evidenced by Akt phosphorylation, involved in HIF-1 activation, is also dependent on ROS generation by insulin. Finally, DPI pretreatment blocked insulin-stimulated expression of genes like VEGF, GLUT1, and ceruloplasmin. Overall, our data provide strong evidence for the essential role of NADPH oxidase-generated ROS in insulin-stimulated activation of HIF-1.  相似文献   

14.
《FEBS letters》1994,340(3):269-275
Treatment of Chinese hamster ovary (CHO) cells over-expressing the human insulin receptor (CHO-HIRc) with the insulin mimetic agent, vanadate, resulted in a dose- and time-dependent tyrosine phosphorylation of two proteins with apparent molecular sizes of 42 kDa (p42) and 44 kDa (p44). However, vanadate was unable to stimulate the tyrosyi phosphorylation of theβ-subunit of the insulin receptor. By using myelin basic protein (MBP) as the substrate to measure mitogen-activated protein (MAP) kinase activity in whole cell lysates, vanadate-stimulated tyrosyl phosphorylation of p42 and p44 was associated with a dose- and time-dependent activation of MAP kinase activity. Furthermore, affinity purification of cell lysates on anti-phosphotyrosine agarose column followed by immunoblotting with a specific antibody to MAP kinases demonstrated that vanadate treatment increased the tyrosyl phosphorylation of both p44mapk and p42mapk by several folds, as compared to controls, in concert with MAP kinase activation. In addition, retardation in gel mobility further confirmed that vanadate treatment increased the phosphorylation of p44mapk and p42mapk in CHO-HIRc. A similar effect of vanadate on MAP kinase tyrosyl phosphorylation and activation was also observed in CHO cells over-expressing a protein tyrosine kinase-deficient insulin receptor (CHO-1018). These results demonstrate that the protein tyrosine kinase activity of the insulin receptor may not be required in the signaling pathways leading to the vanadate-mediated tyrosyl phosphorylation and activation of MAP kinases.  相似文献   

15.
Summary We have previously reported that ferricyanide reductase activity in human erythrocytes depended on glycolysis and could be modulated by several compounds including oxidants and hormones like insulin. Insulin could activate glycolysis, probably as a consequence of tyrosine phosphorylation of protein band 3, implicating phosphorylation reactions as an important signal for activation of the reductase by insulin. Reversible phosphorylation of cellular proteins is also believed to play a key role in the action of insulin. Cytosolic acid phosphatase activity has been found in human erythrocytes. To further extend initial reports, we studied the effect of modulators on the cytosolic erythrocyte acid phosphatase. Mild oxidants like ferricyanide (1 mM), vanadate (1 mM), Mn2+ (0.5 and 1 mM), and phenylarsine oxide (10 and 100 M) inhibited the phosphatase activity. Similarly, insulin at concentrations that stimulate ferricyanide reduction (500, 1000 IU/ml) inhibited the activity of the phosphatase enzyme. The overall results indicated that oxidants are able to inhibit the acid phosphatase and stimulate the redox enzyme. In addition, a significant negative correlation (r = –0.400; P = 0.006) was observed between phosphatase and reductase activities. The observations discussed here, together with previous ones, emphasize that a close association between reductase and phosphatase enzymes may exist and also suggest a role for redox reactions in tyrosine phosphorylation/dephosphorylation-mediated signal transduction pathways.  相似文献   

16.
Prasad N  Topping RS  Zhou D  Decker SJ 《Biochemistry》2000,39(23):6929-6935
Phosphoinositide-dependent kinase (PDK1) regulates a number of pathways involved in responses to stress and in growth factor signaling; however, little is known concerning the mechanisms governing the activity of PDK1. In this report, we find that oxidative stress (H(2)O(2)) and vanadate induce tyrosine phosphorylation of PDK1. These effects of H(2)O(2) and vanadate were found in 293T cells and CH310T1/2 cells expressing exogenous PDK1 and in A20 lymphoma cells expressing endogenous PDK1. Exogenously expressed PDK1 was also tyrosine-phosphorylated in response to NGF treatment of 293T expressing TrkA. H(2)O(2) induced a more rapid tyrosine phosphorylation of PDK1 relative to vanadate, and only vanadate-induced tyrosine phosphorylation of PDK1 was sensitive to pretreatment of cells with wortmannin. In vitro, PDK1 could be tyrosine-phosphorylated by both the c-Src and Abl tyrosine kinases. Both H(2)O(2) and vanadate treatments increased the activity of PDK1 when the serum/glucocorticoid regulated kinase (SGK) was used as substrate. Vanadate treatment appeared to bypass the requirement for phosphatidylinositol 3,4,5-trisphosphate when Akt was used as substrate for PDK1. Tyrosine phosphorylation of PDK1 by the Abl tyrosine kinase also increased the activity of PDK1 toward SGK and Akt. These data suggest a novel mechanism through which PDK1 activity may be regulated.  相似文献   

17.
Both hyperglycemia and tumor necrosis factor alpha (TNFalpha) were found to induce insulin resistance at the level of the insulin receptor (IR). How this effect is mediated is, however, not understood. We investigated whether oxidative stress and production of hydrogen peroxide could be a common mediator of the inhibitory effect. We report here that micromolar concentrations of H(2)O(2) dramatically inhibit insulin-induced IR tyrosine phosphorylation (pretreatment with 500 microM H(2)O(2) for 5 min inhibits insulin-induced IR tyrosine phosphorylation to 8%), insulin receptor substrate 1 phosphorylation, as well as insulin downstream signaling such as activation of phosphatidylinositol 3-kinase (inhibited to 57%), glucose transport (inhibited to 36%), and mitogen-activated protein kinase activation (inhibited to 7.2%). Both sodium orthovanadate, a selective inhibitor of tyrosine-specific phosphatases, as well as the protein kinase C inhibitor G?6976 reduced the inhibitory effect of hydrogen peroxide on IR tyrosine phosphorylation. To investigate whether H(2)O(2) is involved in hyperglycemia- and/or TNFalpha-induced insulin resistance, we preincubated the cells with the H(2)O(2) scavenger catalase prior to incubation with 25 mM glucose, 25 mM 2-deoxyglucose, 5.7 nM TNFalpha, or 500 microM H(2)O(2), respectively, and subsequent insulin stimulation. Whereas catalase treatment completely abolished the inhibitory effect of H(2)O(2) and TNFalpha on insulin receptor autophosphorylation, it did not reverse the inhibitory effect of hyperglycemia. In conclusion, these results demonstrate that hydrogen peroxide at low concentrations is a potent inhibitor of insulin signaling and may be involved in the development of insulin resistance in response to TNFalpha.  相似文献   

18.
Vanadate, an inhibitor of phosphotyrosyl phosphatases that exerts insulin-like effects in intact cells, stimulated both maturation and glucose uptake in isolated Xenopus laevis oocytes. Vanadate enhanced the effects of insulin/IGF-I and progesterone on maturation in a dose-dependent manner, with an effective concentration of 750 microM and a maximum at 2 mM, whereas, in the absence of hormone, activation of maturation was seen at 10 mM vanadate. Further, vanadate at 2 mM increased glucose uptake, but this effect was not additive to that of the hormone. In cell-free systems, vanadate caused a 12-fold stimulation of autophosphorylation of the oocyte IGF-I receptor in the absence, but not in the presence, of IGF-I and inhibited largely, but not totally, receptor dephosphorylation induced by an extract of oocytes rich in phosphotyrosyl phosphatase activities. These effects were dose dependent, with effective concentrations of 50-100 microM and maxima at 2 mM. Moreover, using an acellular assay to study the effect of vanadate on the activation of maturation promoting factor (MPF), we found that vanadate at 2 mM stimulated the activation of the MPF H1 kinase. This suggests that vanadate did not prevent dephosphorylation of p34cdc2 on tyrosine residues. Vanadate thus exerted insulin-like effects in oocytes, including stimulation of maturation. These effects might result from a direct or indirect action of vanadate on the IGF-I receptor kinase and on MPF activity.  相似文献   

19.
To determine the role of protein phosphorylation in neutrophil activation, electropermeabilized cells were treated with vanadate, a phosphatase inhibitor. Micromolar concentrations of vanadate elicited a NADPH-dependent burst of oxygen utilization in permeabilized, but not in intact cells, indicating an intracellular site of action. Stimulation of oxygen consumption by vanadate was reversible, concentration dependent and required the presence of ATP and Mg2+. Generation of a respiratory burst by vanadate was associated with accumulation of phosphorylated proteins. Such accumulation was due, at least in part, to inhibition of phosphoprotein phosphatase activity, as indicated by pulse-chase experiments. No evidence for stimulation of protein kinases by vanadate was found. Phosphoamino acid analysis revealed that a large fraction of the vanadate-induced phosphorylation occurred on tyrosine residues. The pronounced accumulation of tyrosine-phosphorylated proteins was confirmed by immunoblotting with anti-phosphotyrosine antibodies. The data suggest that neutrophils possess one or more constitutively active tyrosine kinases and that phosphoprotein accumulation is normally prevented by vigorous concomitant phosphatase activity. Inhibition of the latter by vanadate leads to phosphoprotein accumulation and is accompanied by stimulation of oxygen consumption.  相似文献   

20.
Insulin signaling is regulated by tyrosine phosphorylation of the signaling molecules, such as the insulin receptor and insulin receptor substrates (IRSs). Therefore, the balance between protein-tyrosine kinases and protein-tyrosine phosphatase activities is thought to be important in the modulation of insulin signaling in insulin-resistant states. We thus employed the adenovirus-mediated gene transfer technique, and we analyzed the effect of overexpression of a wild-type protein-tyrosine phosphatase-1B (PTP1B) on insulin signaling in both L6 myocytes and Fao cells. In both cells, PTP1B overexpression blocked insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1 by more than 70% and resulted in a significant inhibition of the association between IRS-1 and the p85 subunit of phosphatidylinositol 3-kinase and Akt phosphorylation as well as mitogen-activated protein kinase phosphorylation. Moreover, insulin-stimulated glycogen synthesis was also inhibited by PTP1B overexpression in both cells. These effects were specific for insulin signaling, because platelet-derived growth factor (PDGF)-stimulated PDGF receptor tyrosine phosphorylation and Akt phosphorylation were not inhibited by PTP1B overexpression. The present findings demonstrate that PTP1B negatively regulates insulin signaling in L6 and Fao cells, suggesting that PTP1B plays an important role in insulin resistance in muscle and liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号