首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human breast cancer resistance protein (BCRP)/MXR/ABCG2 is a well-recognized ABC half-transporter that is highly expressed at the apical membrane of many normal tissues and cancer cells. BCRP facilitates disposition of endogenous and exogenous harmful xenobiotics to protect cells/tissues from xenobiotic-induced toxicity. Despite the enormous impact of BCRP in the physiological and pathophysiological regulation of the transport of a wide variety of substrates, little is known about the factors that regulate posttranslational expression of BCRP. Here, we identified Derlin-1, a member of a family of proteins that bears homology to yeast Der1p, as a posttranslational regulator of BCRP expression. Overexpression of Derlin-1 suppressed ER to Golgi transport of wild-type (WT) BCRP that is known to be efficiently trafficked to the plasma membrane. On the other hand, protein expression of N596Q variant of BCRP, N-linked glycosylation-deficient mutant that preferentially undergoes ubiquitin-mediated ER-associated degradation (ERAD), was strongly suppressed by the overexpression of Derlin-1, whereas knockdown of Derlin-1 stabilized N596Q protein, suggesting a negative regulatory role of Derlin-1 for N596Q protein expression. Notably, knockdown of Derlin-1 also stabilized the expression of tunicamycin-induced deglycosylated WT BCRP protein, implying the importance of glycosylation state for the recognition of BCRP by Derlin-1. Thus, our data demonstrate that Derlin-1 is a negative regulator for both glycosylated and non-glycosylated BCRP expression and provide a novel posttranslational regulatory mechanism of BCRP by Derlin-1.  相似文献   

2.
The coassembly of homologous subunits to heteromeric complexes serves as an important mechanism in generating ion channel diversity. Here, we have studied heteromerization in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel family. Using a combination of fluorescence confocal microscopy, coimmunoprecipitation, and electrophysiology we found that upon coexpression in HEK293 cells almost all dimeric combinations of HCN channel subunits give rise to the formation of stable channel complexes in the plasma membrane. We also identified HCN1/HCN2 heteromers in mouse brain indicating that heteromeric channels exist in vivo. Surprisingly, HCN2 and HCN3 did not coassemble to heteromeric channels. This finding indicates that heteromerization requires specific structural determinants that are not present in all HCN channel combinations. Using N-glycosidase F we show that native as well as recombinant HCN channels are glycosylated resulting in a 10-20-kDa shift in the molecular weight. Tunicamycin, an inhibitor of N-linked glycosylation, blocked surface membrane expression of HCN2. Similarly, a mutant HCN2 channel in which the putative N-glycosylation site in the loop between S5 and the pore helix was replaced by glutamine (HCN2N380Q) was not inserted into the plasma membrane and did not yield detectable whole-cell currents. These results indicate that N-linked glycosylation is required for cell surface trafficking of HCN channels. Cotransfection of HCN2N380Q with HCN4, but not with HCN3, rescued cell surface expression of HCN2N380Q. Immunoprecipitation revealed that this rescue was due to the formation of a HCN2N380Q/HCN4 heteromeric channel. Taken together our results indicate that subunit heteromerization and glycosylation are important determinants of the formation of native HCN channels.  相似文献   

3.
Interaction between the receptor for advanced glycation end products (RAGE) and its ligands amplifies the proinflammatory response. N-Linked glycosylation of RAGE plays an important role in the regulation of ligand binding. Two potential sites for N-linked glycosylation, at Asn(25) and Asn(81), are implicated, one of which is potentially influenced by a naturally occurring polymorphism that substitutes Gly(82) with Ser. This G82S polymorphic RAGE variant displays increased ligand binding and downstream signaling. We hypothesized that the G82S polymorphism affects RAGE glycosylation and thereby affects ligand binding. WT or various mutant forms of RAGE protein, including N25Q, N81Q, N25Q/G82S, and N25Q/N81Q, were produced by transfecting HEK293 cells. The glycosylation patterns of expressed proteins were compared. Enzymatic deglycosylation showed that WT RAGE and the G82S polymorphic variant are glycosylated to the same extent. Our data also revealed N-linked glycosylation of N25Q and N81Q mutants, suggesting that both Asn(25) and Asn(81) can be utilized for N-linked glycosylation. Using mass spectrometry analysis, we found that Asn(81) may or may not be glycosylated in WT RAGE, whereas in G82S RAGE, Asn(81) is always glycosylated. Furthermore, RAGE binding to S100B ligand is affected by Asn(81) glycosylation, with consequences for NF-κB activation. Therefore, the G82S polymorphism promotes N-linked glycosylation of Asn(81), which has implications for the structure of the ligand binding region of RAGE and might explain the enhanced function associated with the G82S polymorphic RAGE variant.  相似文献   

4.
Abstract: The contribution of N-linked carbohydrates to the function of the human norepinephrine transporter (NET) was investigated using site-directed mutagenesis to inactivate the two most carboxy-terminal (NQQ mutant) or all three (QQQ mutant) sites for N -glycosylation within the extracellular loop between transmembrane domains 3 and 4. In HeLa cells transiently expressing the NET, two glycosylated forms of the transporter at 90 and 60 kDa are immunoprecipitated by NET antisera. A single 50-kDa species is observed in cells expressing the QQQ mutant, and it likely represents the NET core protein. Analyses of substrate transport kinetics showed rank order V max of 19:9:1 for NET/NQQ/QQQ without a change in the apparent affinity of the wild-type and mutated carriers for either substrates or transport inhibitors. Cell surface biotinylation indicates that all NET, NQQ, and QQQ transporter species are detected at the plasma membrane but that glycosylated forms are selectively enriched. The transport activities exhibited by each of the carriers correlate well with cell surface content. Subcellular localization of transporters using immunofluorescence microscopy shows that reductions in surface expression and transport are associated with a corresponding increase in the intracellular retention of mutated carriers. Thus, N-linked glycosylation does not alter the apparent affinity of NET for either substrates or inhibitors of transport but, instead, appears to influence the abundance of carriers at the cell surface.  相似文献   

5.
Clinical relevance is implicated between the genetic polymorphisms of the ABC (ATP-binding cassette) transporter ABCG2 (ABC subfamily G, member 2) and the individual differences in drug response. We expressed a total of seven non-synonymous SNP (single nucleotide polymorphism) variants in Flp-In-293 cells by using the Flp (flippase) recombinase system. Of these, ABCG2 F208S and S441N variants were found to be expressed at markedly low levels, whereas their mRNA levels were equal to those of the other SNP variants and ABCG2 WT (wild-type). Interestingly, protein expression levels of the ABCG2 F208S and S441N variants increased 6- to 12-fold when Flp-In-293 cells were treated with MG132, a proteasome inhibitor. Immunoprecipitation followed by immunoblot analysis showed that the ABCG2 F208S and S441N variant proteins were endogenously ubiquitinated in Flp-In-293 cells, and treatment with MG132 significantly enhanced the level of these ubiquitinated variants. Immunofluorescence microscopy demonstrated that MG132 greatly affected the ABCG2 F208S and S441N variants in terms of both protein levels and intracellular distribution. Immunoblot analysis revealed that those variants were N-glycosylated; however, their oligosaccharides were immature compared with those present on ABCG2 WT. The ABCG2 F208S and S441N variant proteins do not appear to be processed in the Golgi apparatus, but undergo ubiquitin-mediated protein degradation in proteasomes, whereas ABCG2 WT is sorted to the plasma membrane and then degraded via the lysosomal pathway. The present study provides the first evidence that certain genetic polymorphisms can affect the protein stability of ABCG2. Control of proteasomal degradation of ABCG2 would provide a novel approach in cancer chemotherapy to circumvent multidrug resistance of human cancers.  相似文献   

6.
The glutamate transporter GLT-1 from Rattus norvegicus was expressed at high level in BHK cells using the Semliki Forest virus expression system. BHK cells infected with viral particles carrying the GLT-1 gene exhibited 30-fold increased aspartate uptake compared to control cells. The expression level of GLT-1 as determined by binding of labelled substrate to membrane preparations was about 3.5 x 10(6) functional transporters per cell, or 61 pmol GLT-1 per milligram of membrane protein. Purification of the His-tagged protein by Ni2+-NTA affinity chromatography enabled the routine production and purification of milligram quantities of fully functional transporter. Transport activity required reducing conditions and the addition of extra lipid throughout the purification. The apparent molecular mass of the recombinant transporter was 73 kDa or 55 kDa, corresponding to the glycosylated and non-glycosylated form, respectively. Both forms were active upon separation on a lectin column and reconstitution into liposomes. Glycosylated and non-glycosylated GLT-1 were transported to the plasma membrane with equal efficiency. Our results show that N-glycosylation does not affect the trafficking or the transport activity of GLT-1. The low-resolution structure of GLT-1 was determined by electron microscopy and single particle reconstruction.  相似文献   

7.
Mentesana PE  Konopka JB 《Biochemistry》2001,40(32):9685-9694
The alpha-factor mating pheromone receptor (encoded by STE2) activates a G protein signaling pathway that stimulates the conjugation of Saccharomyces cerevisiae yeast cells. The alpha-factor receptor is known to undergo several forms of post-translational modification, including phosphorylation, mono-ubiquitination, and N-linked glycosylation. Since phosphorylation and mono-ubiquitination have been shown previously to play key roles in regulating the signaling activity and membrane trafficking of the alpha-factor receptors, the role of N-linked glycosylation was investigated in this study. The Asn residues in the five consensus sites for N-linked glycosylation present in the extracellular regions of the receptor protein were mutated to prevent carbohydrate attachment at these sites. Mutation of two sites near the receptor N-terminus (N25Q and N32Q) diminished the degree of receptor glycosylation, and the corresponding double mutant was not detectably N-glycosylated. The nonglycosylated receptors displayed normal function and subcellular localization, indicating that glycosylation is not important for wild-type receptor activity. However, mutation of the glycosylation sites resulted in improved plasma membrane localization for the Ste2-3 mutant receptors that are normally retained intracellularly at elevated temperatures. These results suggest that N-glycosylation may be involved in the sorting process for misfolded Ste2 proteins, and may similarly affect certain mutant receptors whose altered trafficking is implicated in human diseases.  相似文献   

8.
Mutations in ABCG5 (G5) or ABCG8 (G8) cause sitosterolemia, an autosomal recessive disease characterized by sterol accumulation and premature atherosclerosis. G5 and G8 are ATP-binding cassette (ABC) half-transporters that must heterodimerize to move to the apical surface of cells. We examined the role of N-linked glycans in the formation of the G5/G8 heterodimer to gain insight into the determinants of folding and trafficking of these proteins. Site-directed mutagenesis revealed that two asparagine residues (Asn(585) and Asn(592)) are glycosylated in G5 and that G8 has a single N-linked glycan attached to Asn(619). N-Linked glycosylation of G8 was required for efficient trafficking of the G5/G8 heterodimer, but mutations that abolished glycosylation of G5 did not prevent trafficking of the heterodimer. Both G5 and G8 are bound by the lectin chaperone, calnexin, suggesting that the calnexin cycle may facilitate folding of the G5/G8 heterodimer. To determine the effects of 13 disease-causing missense mutations in G5 and G8 on formation and trafficking of the G5/G8 heterodimer, mutant forms of the half-transporters were expressed in CHO-K1 cells. All 13 mutations reduced trafficking of the G5/G8 heterodimer from the endoplasmic reticulum to the Golgi complex, and most prevented the formation of stable heterodimers between G5 and G8. We conclude that the majority of the molecular defects in G5 and G8 that cause sitosterolemia impair transport of the sterol transporter to the cell surface.  相似文献   

9.
The aim of this study was to determine the role of N-linked glycosylation in protein stability, intracellular trafficking, and bile acid transport activity of the bile salt export pump [Bsep (ATP-binding cassette B11)]. Rat Bsep was fused with yellow fluorescent protein, and the following mutants, in which Asn residues of putative glycosylation sites (Asn(109), Asn(116), Asn(122), and Asn(125)) were sequentially replaced with Gln, were constructed by site-directed mutagenesis: single N109Q, double N109Q + N116Q, triple N109Q + N116Q + N122Q, and quadruple N109Q + N116Q + N122Q + N125Q. Immunoblot and glycosidase cleavage analysis demonstrated that each site was glycosylated. Removal of glycans decreased taurocholate transport activity as determined in polarized MDCK II cells. This decrease resulted from rapid decay of the mutant Bsep protein; biochemical half-lives were 3.76, 3.65, 3.24, 1.35, and 0.52 h in wild-type, single-mutant, double-mutant, triple-mutant, and quadruple-mutant cells, respectively. Wild-type and single- and double-mutant proteins were distributed exclusively along the apical membranes, whereas triple- and quadruple-mutant proteins remained intracellular. MG-132 but not bafilomycin A(1) extended the half-life, suggesting a role for the proteasome in Bsep degradation. To determine whether a specific glycosylation site or the number of glycans was critical for protein stability, we studied the protein expression of combinations of N-glycan-deficient mutants and observed that Bsep with one glycan was considerably unstable compared with Bsep harboring two or more glycans. In conclusion, at least two N-linked glycans are required for Bsep protein stability, intracellular trafficking, and function in the apical membrane.  相似文献   

10.
Bhatia A  Schäfer HJ  Hrycyna CA 《Biochemistry》2005,44(32):10893-10904
Human ABCG2, a member of the ATP binding cassette (ABC) transporter superfamily, is overexpressed in numerous multidrug-resistant cells in culture. Localized to the plasma membrane, ABCG2 contains six transmembrane segments and one nucleotide binding domain (NBD) and is thought to function as a dimer or higher order oligomer. Chimeric fusion proteins containing two ABCG2 proteins joined either with or without a flexible linker peptide were expressed at the plasma membrane and maintained drug transport activity. Expression of an ABCG2 variant mutated in a conserved residue in the Walker B motif of the NBD (D210N) resulted in a non-functional protein expressed at the cell surface. Expression of an ABCG2 chimeric dimer containing the D210N mutation in the first ABCG2 resulted in a dominant-negative phenotype, as the protein was expressed at the surface but was not functional. Using a bifunctional photoaffinity nucleotide analogue and a non-membrane-permeable cysteine-specific chemical cross-linking agent, a dimer is the predominant form of oligomerized ABCG2 under our assay conditions. Furthermore, these experiments demonstrated that the dimer interface includes, but may not be limited to, interactions between residues in each monomeric NBD and separate disulfide interactions between the cysteines in the third extracellular loop of each monomer. By changing all three extracellular cysteines to alanine, we showed that although extracellular disulfide bonds may exist between monomers, they are not essential for ABCG2 localization, transport activity, or prazosin-stimulated ATPase activity. Together, these data suggest that ABCG2 functions as a dimer, but do not exclude functional higher order oligomers.  相似文献   

11.
Dystroglycan is a cytoskeleton-linked extracellular matrix receptor expressed in many cell types. Dystroglycan is composed of alpha- and beta-subunits which are encoded by a single mRNA. Using a heterologous mammalian expression system, we provide the first biochemical evidence of the alpha/beta-dystroglycan precursor propeptide prior to enzymatic cleavage. This 160 kDa dystroglycan propeptide is processed into alpha- and beta-dystroglycan (120 kDa and 43 kDa, respectively). We also demonstrate that the precursor propeptide is glycosylated and that blockade of asparagine-linked (N-linked) glycosylation did not prevent the cleavage of the dystroglycan precursor peptide. However, inhibition of N-linked glycosylation results in aberrant trafficking of the alpha- and beta-dystroglycan subunits to the plasma membrane. Thus, dystroglycan is synthesized as a precursor propeptide that is post-translationally cleaved and differentially glycosylated to yield alpha- and beta-dystroglycan.  相似文献   

12.
Primary carnitine deficiency is caused by impaired activity of the Na+-dependent OCTN2 carnitine/organic cation transporter. Carnitine is essential for entry of long-chain fatty acids into mitochondria and its deficiency impairs fatty acid oxidation. Most missense mutations identified in patients with primary carnitine deficiency affect putative transmembrane or intracellular domains of the transporter. Exceptions are the substitutions P46S and R83L located in an extracellular loop close to putative glycosylation sites (N57, N64, and N91) of OCTN2. P46S and R83L impaired glycosylation and maturation of OCTN2 transporters to the plasma membrane. We tested whether glycosylation was essential for the maturation of OCTN2 transporters to the plasma membrane. Substitution of each of the three asparagine (N) glycosylation sites with glutamine (Q) decreased carnitine transport. Substitution of two sites at a time caused a further decline in carnitine transport that was fully abolished when all three glycosylation sites were substituted by glutamine (N57Q/N64Q/N91Q). Kinetic analysis of carnitine and sodium-stimulated carnitine transport indicated that all substitutions decreased the Vmax for carnitine transport, but N64Q/N91Q also significantly increased the Km toward carnitine, indicating that these two substitutions affected regions of the transporter important for substrate recognition. Western blot analysis confirmed increased mobility of OCTN2 transporters with progressive substitutions of asparagines 57, 64 and/or 91 with glutamine. Confocal microscopy indicated that glutamine substitutions caused progressive retention of OCTN2 transporters in the cytoplasm, up to full retention (such as that observed with R83L) when all three glycosylation sites were substituted. Tunicamycin prevented OCTN2 glycosylation, but it did not impair maturation to the plasma membrane. These results indicate that OCTN2 is physiologically glycosylated and that the P46S and R83L substitutions impair this process. Glycosylation does not affect maturation of OCTN2 transporters to the plasma membrane, but the 3 asparagines that are normally glycosylated are located in a region important for substrate recognition and turnover rate.  相似文献   

13.
The present study addressed the role of N-linked glycosylation of the human dopamine transporter (DAT) in its function with the help of mutants, in which canonical N-glycosylation sites have been removed (N181Q, N181Q,N188Q, and N181Q,N188Q,N205Q), expressed in human embryonic kidney-293 cells. Removal of canonical sites produced lower molecular weight species as did enzymatic deglycosylation or blockade of glycosylation, and all three canonical sites were found to carry sugars. Prevention of N-glycosylation reduced both surface and intracellular DAT. Although partially or non-glycosylated DAT was somewhat less represented at the surface, no evidence was found for preferential exclusion of such material from the plasma membrane, indicating that glycosylation is not essential for DAT expression. Non-glycosylated DAT was less stable at the surface as revealed by apparently enhanced endocytosis, consonant with weaker DAT immunofluorescence at the cell surface and stronger presence in cytosol in confocal analysis of the double and triple mutant. Non-glycosylated DAT did not transport dopamine as efficiently as wild-type DAT as judged from the sharp reduction in uptake V(max), and prevention of N-glycosylation enhanced the potency of cocaine-like drugs in inhibiting dopamine uptake into intact cells without changing their affinity for DAT when measured in membrane preparations prepared from these cells. Thus, non-glycosylated DAT at the cell surface displays appreciably reduced catalytic activity and altered inhibitor sensitivity compared with wild type.  相似文献   

14.
We have previously demonstrated that glucose deprivation alters the glycosylation of the GLUT1 glucose transporter in 3T3-L1 adipocytes. Many aberrantly glycosylated proteins are retained in the endoplasmic reticulum by interaction with chaperones. Herein, we use three independent procedures to show that GLUT1 is targeted to the plasma membrane, despite alterations in glycosylation. While earlier experiments revealed that plasma membrane targeting of aglyco GLUT 1 transporter was significantly reduced, our data show for the first time that altered glycosylation provides sufficient information to drive appropriate trafficking.  相似文献   

15.
A family of high-affinity transporters controls the extracellular concentration of glutamate in the brain, ensuring appropriate excitatory signaling and preventing excitotoxicity. There is evidence that one of the neuronal glutamate transporters, EAAC1, is rapidly recycled on and off the plasma membrane with a half-life of no more than 5-7 min in both C6 glioma cells and cortical neurons. Syntaxin 1A has been implicated in the trafficking of several neurotransmitter transporters and in the regulation of EAAC1, but it has not been determined if this SNARE protein is required for EAAC1 trafficking. Expression of two different sets of SNARE proteins was examined in C6 glioma with Western blotting. These cells did not express syntaxin 1A, vesicle-associated membrane protein-1 (VAMP1), or synaptosomal-associated protein of 25 kDa (SNAP-25), but did express a family of SNARE proteins that has been implicated in glucose transporter trafficking, including syntaxin 4, vesicle-associated membrane protein-2 (VAMP2), and synaptosomal-associated protein of 23 kDa (SNAP-23). cDNAs encoding variants of SNAP-23 were co-transfected with Myc-tagged EAAC1 to determine if SNAP-23 function was required for maintenance of EAAC1 surface expression. Expression of a dominant-negative variant of SNAP-23 that lacks a domain required for SNARE complex assembly decreased the fraction of EAAC1 found on the cell surface and decreased total EAAC1 expression, while two control constructs had no effect. The dominant-negative variant of SNAP-23 also slowed the rate of EAAC1 delivery to the plasma membrane. These data strongly suggest that syntaxin 1A is not required for EAAC1 trafficking and provide evidence that SNAP-23 is required for constitutive recycling of EAAC1.  相似文献   

16.
The vasopressin-regulated urea transporter (UT)-A1 is a transmembrane protein with two glycosylated forms of 97 and 117 kDa; both are derived from a single 88-kDa core protein. However, the precise molecular sites and the function for UT-A1 N-glycosylation are not known. In this study, we compared Madin-Darby canine kidney cells stably expressing wild-type (WT) UT-A1 to Madin-Darby canine kidney cell lines stably expressing mutant UT-A1 lacking one (A1m1, A1m2) or both glycosylation sites (m1m2). Site-directed mutagenesis revealed that UT-A1 has two glycosylation sites at Asn-279 and -742. Urea flux is stimulated by 10 nM vasopressin (AVP) or 10 microM forskolin (FSK) in WT cells. In contrast, m1m2 cells have a delayed and significantly reduced maximal urea flux. A 15-min treatment with AVP and FSK significantly increased UT-A1 cell surface expression in WT but not in m1m2 cells, as measured by biotinylation. We confirmed this finding using immunostaining. Membrane fractionation of the plasma membrane, Golgi, and endoplasmic reticulum revealed that AVP or FSK treatment increases UT-A1 abundance in both Golgi and plasma membrane compartments in WT but not in m1m2 cells. Pulse-chase experiments showed that UT-A1 half-life is reduced in m1m2 cells compared with WT cells. Our results suggest that mutation of the N-linked glycosylation sites reduces urea flux by reducing UT-A1 half-life and decreasing its accumulation in the apical plasma membrane. In vivo, inner medullary collecting duct cells may regulate urea uptake by altering UT-A1 glycosylation in response to AVP stimulation.  相似文献   

17.
SLC19A2 is a membrane thiamine transporter expressed in a variety of human tissues, including the gastrointestinal tract. Little is currently known about the structure/function relationship of SLC19A2. We examined the effect of introducing mutations in SLC19A2 identical to those found in thiamine-responsive megaloblastic anemia syndrome (TRMA), on functional activity and membrane expression of the transporter. We also examined the effect of mutating the only conserved anionic residue (E138) in the transmembrane (TM) domains of the SLC19A2 and that of the putative glycosylation sites (N63, N314). Northern blot analysis showed SLC19A2 mRNA was expressed at the same level in HeLa cells transfected with wild-type or mutated SLC19A2. Introducing the clinically relevant mutations (D93H, S143F, G172D) or mutation at the conserved anionic residue (E138A) of SLC19A2 led to a significant (P < 0.01) inhibition of thiamine uptake. Mutations of the two potential N-linked glycosylation sites (N63Q, N314Q) of SLC19A2 did not affect functional activity; they did, however, lead to a noticeable reduction in apparent molecular weight of protein. Western blot analysis showed all proteins (except D93H) were expressed in the membrane (not the cytoplasmic) fraction of HeLa cells. These results provide direct confirmation that clinically relevant mutations in SLC19A2 observed in TRMA cause malfunctioning of the transporter and/or a defect in its translation/stability. Results also show conserved TM anionic residue of the SLC19A2 protein is critical for its function. Furthermore, native SLC19A2 is glycosylated, but this is not important for its function.  相似文献   

18.
The ATP-binding cassette transporter ABCG2 plays a prominent role in cardiovascular and cancer pathophysiology, is involved in the pathogenesis of gout, and affects pharmacokinetics of numerous drugs. Telmisartan, a widely used AT1 receptor antagonist, inhibits the transport capacity of ABCG2 and may cause drug–drug interactions, especially in individuals carrying polymorphism that facilitate the telmisartan–ABCG2 interaction. Thus, the aim of this study was to identify ABCG2 polymorphisms and somatic mutations with relevance for the telmisartan–ABCG2 interaction. For this purpose, a cellular system for the conditional expression of ABCG2 was established. ABCG2 variants were generated via site-directed mutagenesis. Interaction of telmisartan with these ABCG2 variants was investigated in HEK293-Tet-On cells using the pheophorbide A efflux assay. Moreover, expression of ABCG2 variants was studied in these cells. Importantly, protein levels of the Q141K and F489L variant were significantly reduced, a phenomenon that was partly reversed by pharmacological proteasome inhibition. Moreover, basal pheophorbide A efflux capacity of S248P, F431L, and F489L variants was significantly impaired. Interestingly, inhibition of ABCG2-mediated pheophorbide A transport by telmisartan was almost abolished in cells expressing the R482G variant, whereas it was largely increased in cells expressing the F489L variant. We conclude that the arginine residue at position 482 of the ABCG2 molecule is of major importance for the interaction of telmisartan with this ABC transporter. Furthermore, individuals carrying the F489L polymorphism may be at increased risk of developing adverse drug reactions in multi-drug regimens involving ABCG2 substrates and telmisartan.  相似文献   

19.
The Na+-dependent transporters, hSVCT1 and hSVCT2, were assessed in COS-1 cells for their membrane topology. Antibodies to N- and C-termini of hSVCT1 and C-terminus of hSVCT2 identified positive immunofluorescence only after permeabilisation, suggesting these regions are intracellular. PNGase F treatment confirmed that WT hSVCT1 (∼ 70-100 kDa) is glycosylated and site-directed mutagenesis of the three putative N-glycosylation sites, Asn138, Asn144, Asn230, demonstrated that mutants N138Q and N144Q were glycosylated (∼ 68-90 kDa) with only 31-65% of WT l-ascorbic acid (AA) uptake while the glycosylation profile of N230Q remained unaltered (∼ 98% of WT activity). However, the N138Q/N144Q double mutant displayed barely detectable membrane expression at ∼ 65 kDa, no apparent glycosylation and minimal AA uptake (< 10%) with no discernible improvement in expression or activity when cultured at 28 °C or 37 °C. Marker protein immunocytochemistry with N138Q/N144Q identified intracellular aggregates with hSVCT1 localised at the nuclear membrane but absent at the plasma membrane thus implicating its role as a possible intracellular transporter and suggesting N-glycosylation is required for hSVCT1 membrane targeting. Also, Lys242 on the same putative hydrophilic loop as Asn230 after biotinylation was inaccessible from the extracellular side when analysed by MALDI-TOF MS. A new hSVCT1 secondary structure model supporting these findings is proposed.  相似文献   

20.
We have investigated the functional impact of a naturally occurring mutation of the human glutamate transporter GLT1 (EAAT2), which had been detected in a patient with sporadic amyotrophic lateral sclerosis. The mutation involves a substitution of the putative N-linked glycosylation site asparagine 206 by a serine residue (N206S) and results in reduced glycosylation of the transporter and decreased uptake activity. Electrophysiological analysis of N206S revealed a pronounced reduction in transport rate compared with wild-type, but there was no alteration in the apparent affinities for glutamate and sodium. In addition, no change in the sensitivity for the specific transport inhibitor dihydrokainate was observed. However, the decreased rate of transport was associated with a reduction of the N206S transporter in the plasma membrane. Under ionic conditions, which favor the reverse operation mode of the transporter, N206S exhibited an increased reverse transport capacity. Furthermore, if coexpressed in the same cell, N206S manifested a dominant negative effect on the wild-type GLT1 activity, whereas it did not affect wild-type EAAC1. These findings provide evidence for a role of the N-linked glycosylation in both cellular trafficking and transport function. The resulting alteration in glutamate clearance capacity likely contributes to excitotoxicity that participates in motor neuron degeneration in amyotrophic lateral sclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号