首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NUMTs in sequenced eukaryotic genomes   总被引:23,自引:0,他引:23  
Mitochondrial DNA sequences are frequently transferred to the nucleus giving rise to the so-called nuclear mitochondrial DNA (NUMT). Analysis of 13 eukaryotic species with sequenced mitochondrial and nuclear genomes reveals a large interspecific variation of NUMT number and size. Copy number ranges from none or few copies in Anopheles, Caenorhabditis, Plasmodium, Drosophila, and Fugu to more than 500 in human, rice, and Arabidopsis. The average size is between 62 (baker's yeast) and 647 bps (Neurospora), respectively. A correlation between the abundance of NUMTs and the size of the nuclear or the mitochondrial genomes, or of the nuclear gene density, is not evident. Other factors, such as the number and/or stability of mitochondria in the germline, or species-specific mechanisms controlling accumulation/loss of nuclear DNA, might be responsible for the interspecific diversity in NUMT accumulation.  相似文献   

2.
Mining microsatellites in eukaryotic genomes   总被引:5,自引:0,他引:5  
During recent decades, microsatellites have become the most popular source of genetic markers. More recently, the availability of enormous sequence data for a large number of eukaryotic genomes has accelerated research aimed at understanding the origin and functions of microsatellites and searching for new applications. This review presents recent developments of in silico mining of microsatellites to reveal various facets of the distribution and dynamics of microsatellites in eukaryotic genomes. Two aspects of microsatellite search strategies--using a suitable search tool and accessing a relevant microsatellite database--have been explored. Judicious microsatellite mining not only helps in addressing biological questions but also facilitates better exploitation of microsatellites for diverse applications.  相似文献   

3.
The recent explosive growth of molecular genetic databases has yielded increasingly detailed insights into the evolutionary dynamics of eukaryotic genomes. DNA sequences with the self-encoded ability to transpose and replicate are unexpectedly abundant and widespread in eukaryotic genomes. They seem to be sexual parasites. By dispersing themselves among the chromosomes, they increase their transmission rates and can invade outcrossing populations despite reducing host fitness. Once established, molecular parasites may themselves be parasitized by other elements, and through selection for reduced virulence may become beneficial genes. Elements have been isolated at various stages in this progression, from transposons that regulate their own transposition rates, to fundamental components of eukaryotic cytology, such as telomeres.  相似文献   

4.
The understanding the different kinds of sequences that make up a genome, as well as their proportions in genomes (obtained by the sequencing of the complete genome), has considerably changed our idea of evolution at the genomic level. The former view of a slowly evolving genome has given way to the idea of a genome that can undergo many transformations, on a large or small scale, depending on the evolution of the different types of sequences constituting it. Here we summarise the evolution of these sequences and the impact it can have on the genome. We have focused on micro-transformations, and especially on the impact of transposable elements on genomes. To cite this article: E. Bonnivard, D. Higuet, C. R. Biologies 332 (2009).  相似文献   

5.
Embedded in the sequence of each transfer RNA are elements that promote specific interactions with its cognate aminoacyl tRNA-synthetase. Although many such “identity elements” are known, their detection is difficult since they rely on unique structural signatures and the combinatorial action of multiple elements spread throughout the tRNA molecule. Since the anticodon is often a major identity determinant itself, it is possible to switch between certain tRNA functional types by means of anticodon substitutions. This has been shown to have occurred during the evolution of some genomes; however, the scale and relevance of “anticodon shifts” to the evolution of the tRNA multigene family is unclear. Using a synteny-conservation–based method, we detected tRNA anticodon shifts in groups of closely related species: five primates, 12 Drosophila, six nematodes, 11 Saccharomycetes, and 61 Enterobacteriaceae. We found a total of 75 anticodon shifts: 31 involving switches of identity (alloacceptor shifts) and 44 between isoacceptors that code for the same amino acid (isoacceptor shifts). The relative numbers of shifts in each taxa suggest that tRNA gene redundancy is likely the driving factor, with greater constraint on changes of identity. Sites that frequently covary with alloacceptor shifts are located at the extreme ends of the molecule, in common with most known identity determinants. Isoacceptor shifts are associated with changes in the midsections of the tRNA sequence. However, the mutation patterns of anticodon shifts involving the same identities are often dissimilar, suggesting that alternate sets of mutation may achieve the same functional compensation.  相似文献   

6.
7.
Analyses of diverse eukaryotes reveal that genomes are dynamic, sometimes dramatically so. In numerous lineages across the eukaryotic tree of life, DNA content varies within individuals throughout life cycles and among individuals within species. Discovery of examples of genome dynamism is accelerating as genome sequences are completed from diverse eukaryotes. Though much is known about genomes in animals, fungi, and plants, these lineages represent only 3 of the 60-200 lineages of eukaryotes. Here, we discuss diverse genomic strategies in exemplar eukaryotic lineages, including numerous microbial eukaryotes, to reveal dramatic variation that challenges established views of genome evolution. For example, in the life cycle of some members of the "radiolaria," ploidy increases from haploid (N) to approximately 1,000N, whereas intrapopulation variability of the enteric parasite Entamoeba ranges from 4N to 40N. Variation has also been found within our own species, with substantial differences in both gene content and chromosome lengths between individuals. Data on the dynamic nature of genomes shift the perception of the genome from being fixed and characteristic of a species (typological) to plastic due to variation within and between species.  相似文献   

8.

Background  

Increasing amounts of data from large scale whole genome analysis efforts demands convenient tools for manipulation, visualization and investigation. Whole genome plots offer an intuitive window to the analysis. We describe two applications that enable users to easily plot and explore whole genome data from their own or other researchers' experiments.  相似文献   

9.
10.
Analytical DNA ultracentrifugation revealed that eukaryotic genomes are mosaics of isochores: long DNA segments (>300 kb on average) relatively homogeneous in G+C. Important genome features are dependent on this isochore structure, e.g. genes are found predominantly in the GC-richest isochore classes. However, no reliable method is available to rigorously partition the genome sequence into relatively homogeneous regions of different composition, thereby revealing the isochore structure of chromosomes at the sequence level. Homogeneous regions are currently ascertained by plain statistics on moving windows of arbitrary length, or simply by eye on G+C plots. On the contrary, the entropic segmentation method is able to divide a DNA sequence into relatively homogeneous, statistically significant domains. An early version of this algorithm only produced domains having an average length far below the typical isochore size. Here we show that an improved segmentation method, specifically intended to determine the most statistically significant partition of the sequence at each scale, is able to identify the boundaries between long homogeneous genome regions displaying the typical features of isochores. The algorithm precisely locates classes II and III of the human major histocompatibility complex region, two well-characterized isochores at the sequence level, the boundary between them being the first isochore boundary experimentally characterized at the sequence level. The analysis is then extended to a collection of human large contigs. The relatively homogeneous regions we find show many of the features (G+C range, relative proportion of isochore classes, size distribution, and relationship with gene density) of the isochores identified through DNA centrifugation. Isochore chromosome maps, with many potential applications in genomics, are then drawn for all the completely sequenced eukaryotic genomes available.  相似文献   

11.
12.
13.
14.
Origin and evolution of SINEs in eukaryotic genomes   总被引:1,自引:0,他引:1  
Kramerov DA  Vassetzky NS 《Heredity》2011,107(6):487-495
  相似文献   

15.
The frequency of two-base tracts is surveyed in a wide range of eukaryotic genomes using the special program TRACTS. All three two-base families are surveyed: R.Y (A,G.C,T), K.M (A,C.G,T), and S;W (A.T and G.C). Data for the human β-globin complex, for the tobacco chloroplast, and for 247 nt mammalian promoter regions are presented. All two-base tracts longer than three or four bases are overrepresented to an extent surpassing by far their occurrence in a randomized DNA population in the majority of the genomic regions analyzed; 20–30 long tracts are quite frequent, against the statistical odds. R.Y tracts are found at the largest excess, K.M tract to a slightly lesser extent, while S.W tracts are found at a moderate yet significant excess. The majority of the tracts manifest only a limited extent of tandem repeat structures. The idea that the two base tracts serve as unwinding elements is considered. Preseented at the NATO Advanced Research Workshop onGenome Organization and Evolution, Spetsai, Greece, 16–22 September 1992  相似文献   

16.
17.
18.
Preferential duplication of conserved proteins in eukaryotic genomes   总被引:1,自引:0,他引:1  
A central goal in genome biology is to understand the origin and maintenance of genic diversity. Over evolutionary time, each gene's contribution to the genic content of an organism depends not only on its probability of long-term survival, but also on its propensity to generate duplicates that are themselves capable of long-term survival. In this study we investigate which types of genes are likely to generate functional and persistent duplicates. We demonstrate that genes that have generated duplicates in the C. elegans and S. cerevisiae genomes were 25%–50% more constrained prior to duplication than the genes that failed to leave duplicates. We further show that conserved genes have been consistently prolific in generating duplicates for hundreds of millions of years in these two species. These findings reveal one way in which gene duplication shapes the content of eukaryotic genomes. Our finding that the set of duplicate genes is biased has important implications for genome-scale studies.  相似文献   

19.
Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we explore different sets of minimal absent words in the genomes of 22 organisms (one archaeota, thirteen bacteria and eight eukaryotes). We investigate if the mutational biases that may explain the deficit of the shortest absent words in vertebrates are also pervasive in other absent words, namely in minimal absent words, as well as to other organisms. We find that the compositional biases observed for the shortest absent words in vertebrates are not uniform throughout different sets of minimal absent words. We further investigate the hypothesis of the inheritance of minimal absent words through common ancestry from the similarity in dinucleotide relative abundances of different sets of minimal absent words, and find that this inheritance may be exclusive to vertebrates.  相似文献   

20.
In eukaryotes, C5-cytosine methylation is a common mechanism associated with a variety of functions such as gene regulation or control of genomic stability. Different subfamilies of eukaryotic methyltransferases (MTases) have been identified, mainly in metazoa, plants, and fungi. In this paper, we used hidden Markov models to detect MTases in completed or almost completed eukaryotic genomes, including different species of Protozoa. A phylogenetic analysis of MTases enabled us to define six subfamilies of MTases, including two new subfamilies. The dnmt1 subfamily that includes all the known MTases with a maintenance activity seems to be absent in the Protozoa. The dnmt2 subfamily seems to be the most widespread, being present even in the nonmethylated Dictyostelium discoideum. We also found two dnmt2 members in the bacterial genus Geobacter, suggesting that horizontal transfers of MTases occurred between eukaryotes and prokaryotes. Even if the direction of transfer cannot be determined, this relationship might be useful for understanding the function of this enigmatic subfamily of MTases. Globally, our analysis reveals a great diversity of MTases in eukaryotes, suggesting the existence of different methylation systems. Our results also suggest acquisitions and losses of different MTases in every eukaryotic lineage studied and that some eukaryotes appear to be devoid of methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号