首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The replication initiator protein, π, plays an essential role in the initiation of plasmid R6K replication. Both monomers and dimers of π bind to iterons in the γ origin of plasmid R6K, yet monomers facilitate open complex formation, while dimers, the predominant form in the cell, do not. Consequently, π monomers activate replication, while π dimers inhibit replication. Recently, it was shown that the monomeric form of π binds multiple tandem iterons in a strongly cooperative fashion, which might explain how monomers outcompete dimers for replication initiation when plasmid copy number and π supply are low. Here, we examine cooperative binding of π dimers and explore the role that these interactions may have in the inactivation of γ origin. To examine π dimer/iteron interactions in the absence of competing π monomer/iteron interactions using wild-type π, constructs were made with key base changes to each iteron that eliminate π monomer binding yet have no impact on π dimer binding. Our results indicate that, in the absence of π monomers, π dimers bind with greater cooperativity to alternate iterons than to adjacent iterons, thus preferentially leaving intervening iterons unbound and the origin unsaturated. We discuss new insights into plasmid replication control by π dimers.  相似文献   

2.
One recurring theme in plasmid duplication is the recognition of the origin of replication (ori) by specific Rep proteins that bind to DNA sequences called iterons. For plasmid R6K, this process involves a complex interplay between monomers and dimers of the Rep protein, pi, with seven tandem iterons of gamma ori. Remarkably, both pi monomers and pi dimers can bind to iterons, a new paradigm in replication control. Dimers, the predominant form in the cell, inhibit replication, while monomers facilitate open complex formation and activate the ori. Here, we investigate a mechanism by which pi monomers out-compete pi dimers for iteron binding, and in so doing activate the ori. With an in vivo plasmid incompatibility assay, we find that pi monomers bind cooperatively to two adjacent iterons. Cooperative binding is eliminated by insertion of a half-helical turn between two iterons but is diminished only slightly by insertion of a full helical turn between two iterons. These studies show also that pi bound to a consensus site promotes occupancy of an adjacent mutated site, another hallmark of cooperative interactions. pi monomer/iteron interactions were quantified using a monomer-biased pi variant in vitro with the same collection of two-iteron constructs. The cooperativity coefficients mirror the plasmid incompatibility results for each construct tested. pi dimer/iteron interactions were quantified with a dimer-biased mutant in vitro and it was found that pi dimers bind with negligible cooperativity to two tandem iterons.  相似文献   

3.
Seventy integral membrane proteins from the Mycobacterium tuberculosis genome have been cloned and expressed in Escherichia coli. A combination of T7 promoter-based vectors with hexa-His affinity tags and BL21 E. coli strains with additional tRNA genes to supplement sparsely used E. coli codons have been most successful. The expressed proteins have a wide range of molecular weights and number of transmembrane helices. Expression of these proteins has been observed in the membrane and insoluble fraction of E. coli cell lysates and, in some cases, in the soluble fraction. The highest expression levels in the membrane fraction were restricted to a narrow range of molecular weights and relatively few transmembrane helices. In contrast, overexpression in insoluble aggregates was distributed over a broad range of molecular weights and number of transmembrane helices.  相似文献   

4.
In this work we are proposing Homology modeled structures of Mycobacterium leprae 18kDa heat shock protein and its mutant. The more closely related structure of the small heat shock protein (sHSP) belonging to the eukaryotic species from wheat sHSP16.9 and 16.3kDa ACR1 protein from Mycobacterium tuberculosis were used as template structures. Each model contains an N-terminal domain, alpha-crystalline domain and a C-terminal tail. The models showed that a single point mutation from serine to proline at 52nd position causes structural changes. The structural changes are observed in N-terminal region and alpha-crystalline domains. Serine in 52nd position is observed in β4 strand and Proline in 52nd position is observed in loop. The number of residues contributing α helix at N-terminal region varies in both models. In 18S more number of residues is present in α helix when compared to 18P. The loop regions between β3 and β4 strands of both models vary in number of residues present in it. Number of residues contributing β4 strand in both models vary. β6 strand is absent in both models. Major functional peptide region of alpha crystalline domains of both models varies. These differences observed in secondary structures support their distinct functional roles. It also emphasizes that a point mutation can cause structural variation.  相似文献   

5.
The arginine repressor (ArgR) from Mycobacterium tuberculosis (Mtb) is a gene product encoded by the open reading frame Rv1657. It regulates the l-arginine concentration in cells by interacting with ARG boxes in the promoter regions of the arginine biosynthesis and catabolism operons. Here we present a 2.5-Å structure of MtbArgR in complex with a 16-bp DNA operator in the absence of arginine. A biological trimer of the protein-DNA complex is formed via the crystallographic 3-fold symmetry axis. The N-terminal domain of MtbArgR has a winged helix-turn-helix motif that binds to the major groove of the DNA. This structure shows that, in the absence of arginine, the ArgR trimer can bind three ARG box half-sites. It also reveals the structure of the whole MtbArgR molecule itself containing both N-terminal and C-terminal domains.  相似文献   

6.
Mycobacterium bovis is the causative agent of bovine tuberculosis (TB), a disease that affects approximately 5% of Argentinean cattle. Among the molecular methods for genotyping, the most convenient are spoligotyping and variable number of tandem repeats (VNTR). A total of 378 samples from bovines with visible lesions consistent with TB were collected at slaughterhouses in three provinces, yielding 265 M. bovis spoligotyped isolates, which were distributed into 35 spoligotypes. In addition, 197 isolates were also typed by the VNTR method and 54 combined VNTR types were detected. There were 24 clusters and 27 orphan types. When both typing methods were combined, 98 spoligotypes and VNTR types were observed with 27 clusters and 71 orphan types. By performing a meta-analysis with previous spoligotyping results, we identified regional and temporal trends in the population structure of M. bovis. For SB0140, the most predominant spoligotype in Argentina, the prevalence percentage remained high during different periods, varying from 25.5-57.8% (1994-2011). By contrast, the second and third most prevalent spoligotypes exhibited important fluctuations. This study shows that there has been an expansion in ancestral lineages as demonstrated by spoligotyping. However, exact tandem repeat typing suggests dynamic changes in the clonal population of this microorganism.  相似文献   

7.

Background

In conditions of nitrogen limitation, Saccharomyces cerevisiae strains differ in their fermentation capacities, due to differences in their nitrogen requirements. The mechanisms ensuring the maintenance of glycolytic flux in these conditions are unknown. We investigated the genetic basis of these differences, by studying quantitative trait loci (QTL) in a population of 133 individuals from the F2 segregant population generated from a cross between two strains with different nitrogen requirements for efficient fermentation.

Results

By comparing two bulks of segregants with low and high nitrogen requirements, we detected four regions making a quantitative contribution to these traits. We identified four polymorphic genes, in three of these four regions, for which involvement in the phenotype was validated by hemizygote comparison. The functions of the four validated genes, GCN1, MDS3, ARG81 and BIO3, relate to key roles in nitrogen metabolism and signaling, helping to maintain fermentation performance.

Conclusions

This study reveals that differences in nitrogen requirement between yeast strains results from a complex allelic combination. The identification of three genes involved in sensing and signaling nitrogen and specially one from the TOR pathway as affecting nitrogen requirements suggests a role for this pathway in regulating the fermentation rate in starvation through unknown mechanisms linking nitrogen signaling to glycolytic flux.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-495) contains supplementary material, which is available to authorized users.  相似文献   

8.
The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study.  相似文献   

9.
The respiratory defects associated with mutations in human mitochondrial tRNA genes can be mimicked in yeast, which is the only organism easily amenable to mitochondrial transformation. This approach has shown that overexpression of several nuclear genes coding for factors involved in mitochondrial protein synthesis can alleviate the respiratory defects both in yeast and in human cells.  相似文献   

10.

Background

Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). Studies in the yeast Saccharomyces cerevisiae have provided valuable insights into the mechanisms of cellular dysfunction associated with the expression of faulty PD genes.

Methods

We developed a yeast model for full-length LRRK2 studies. We expressed wild-type (wt) LRRK2 and mutations and evaluated their role during oxidative stress conditions. The involvement of mitochondria was assessed by using rho-zero mutants and by evaluating reactive oxygen species (ROS) production and mitochondrial membrane potential by flow cytometry. The involvement of endocytosis was also studied by testing several endocytic mutants and by following the vacuolar delivery of the probe FM4-64.

Results

Expression of LRRK2 in yeast was associated to increased hydrogen peroxide resistance. This phenotype, which was dependent on mitochondrial function, was not observed for PD-mutants G2019S and R1441C or in the absence of the kinase activity and the WD40 repeat domain. Expression of the pathogenic mutants stimulated ROS production and increased mitochondrial membrane potential. For the PD-mutants, but not for wild-type LRRK2, endocytic defects were also observed. Additionally, several endocytic proteins were required for LRRK2-mediated protection against hydrogen peroxide.

Conclusions

Our results indicate that LRRK2 confers cellular protection during oxidative stress depending on mitochondrial function and endocytosis.

General significance

Both the loss of capacity of LRRK2 pathogenic mutants to protect against oxidative stress and their enhancement of dysfunction may be important for the development of PD during the aging process.  相似文献   

11.
12.
13.
Bacterial artificial chromosome (BAC) vectors enable stable cloning of large DNA fragments from single genomes or microbial assemblages. A novel shuttle BAC vector was constructed that permits replication of BAC clones in diverse Gram-negative species. The "Gram-negative shuttle BAC" vector (pGNS-BAC) uses the F replicon for stable single-copy replication in E. coli and the broad-host-range RK2 mini-replicon for high-copy replication in diverse Gram-negative bacteria. As with other BAC vectors containing the oriV origin, this vector is capable of an arabinose-inducible increase in plasmid copy number. Resistance to both gentamicin and chloramphenicol is encoded on pGNS-BAC, permitting selection for the plasmid in diverse bacterial species. The oriT from an IncP plasmid was cloned into pGNS-BAC to enable conjugal transfer, thereby allowing both electroporation and conjugation of pGNS-BAC DNA into bacterial hosts. A soil metagenomic library was constructed in pGNS-BAC-1 (the first version of the vector, lacking gentamicin resistance and oriT), and recombinant clones were demonstrated to replicate in diverse Gram-negative hosts, including Escherichia coli, Pseudomonas spp., Salmonella enterica, Serratia marcescens, Vibrio vulnificus and Enterobacter nimipressuralis. This shuttle BAC vector can be utilized to clone genomic DNA from diverse sources, and then transfer it into diverse Gram-negative bacterial species to facilitate heterologous expression of recombinant pathways.  相似文献   

14.
15.
N-Myristoyltransferase (NMT) catalyses the attachment of the 14-carbon saturated fatty acid, myristate, to the amino-terminal glycine residue of a subset of eukaryotic proteins that function in multiple cellular processes, including vesicular protein trafficking and signal transduction. In these pathways, N-myristoylation facilitates association of substrate proteins with membranes or the hydrophobic domains of other partner peptides. NMT function is essential for viability in all cell types tested to date, demonstrating that this enzyme has potential as a target for drug development. Here, we provide genetic evidence that NMT is likely to be essential for viability in insect stages of the pathogenic protozoan parasite, Leishmania donovani, causative agent of the tropical infectious disease, visceral leishmaniasis. The open reading frame of L. donovaniNMT has been amplified and used to overproduce active recombinant enzyme in Escherichia coli, as demonstrated by gel mobility shift assays of ligand binding and peptide-myristoylation activity in scintillation proximity assays. The purified protein has been crystallized in complex with the non-hydrolysable substrate analogue S-(2-oxo)pentadecyl-CoA, and its structure was solved by molecular replacement at 1.4 Å resolution. The structure has as its defining feature a 14-stranded twisted β-sheet on which helices are packed so as to form an extended and curved substrate-binding groove running across two protein lobes. The fatty acyl-CoA is largely buried in the N-terminal lobe, its binding leading to the loosening of a flap, which in unliganded NMT structures, occludes the protein substrate binding site in the carboxy-terminal lobe. These studies validate L. donovani NMT as a potential target for development of new therapeutic agents against visceral leishmaniasis.  相似文献   

16.
17.
The availability of a stage-specific Babesia bovis expression profile can facilitate the identification of candidate vaccine antigens. In addition, highly expressed genes during a particular developmental stage may suggest their relevance during that stage. In this study, we generated and validated a custom B. bovis high density oligonucleotide microarray that can be used to examine gene expression levels. An expression profile of in vitro cultured intraerythrocytic stage genes that could be distinguished from contaminating host message was established, and the expression levels of over 1000 genes were ranked. Ranking order was validated using quantitative real time PCR on a twelve randomly selected open reading frames whose expression levels range from the highest to the acceptable lowest. Expression of annotated ORFs was consistent with results from a recently published B. bovis expression sequence tag study. Therefore, we conclude that the microarray is suitable for analyzing B. bovis gene expression, and present the complete B. bovis infected erythrocyte expression profile.  相似文献   

18.
The proteins encoded by psaA and psaB form a heterodimer, an essential compound of photosystem; while the protein encoded by psbC binds with chlorophyll a in photosystem II, serving as antennae in photosystem. Here we report that a heterocyclic brominated flame retardant, tris(2,3-dibromopropyl) isocyanurate (TBC), inhibited the expression of psaA and psbC, then leads to the decrease of Nannochloropsis sp.'s growth biomass. TBC exposure inhibited the expression of psaA and psbC at 10, 100 ng/mL slightly and 1000 ng/mL significantly. In addition, TBC was found to slow down the growth of Nannochloropsis sp. at concentrations ranging from 10 to 1000 ng/mL. These results indicated that TBC influenced both photosynthesis and growth performance of Nannochloropsis sp.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号