首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leydig cells of many species synthesize and secrete opioid peptides, but the Sertoli and possibly the peritubular cells are the only intratesticular cells having opiate receptors. It is known that Sertoli and peritubular cells can modify the secretion of testosterone from Leydig cells. To test the hypothesis that testicular opioid peptides participate in a Leydig-Sertoli-peritubular-Leydig cell feedback loop that can regulate the intratesticular concentration of testosterone, we have developed a method for the in vitro perifusion of rat testicular fragments in which the intratesticular structure and thus the paracrine feedback loop remains intact. Our data show that both immunoreactive (IR)-beta-endorphin and IR-dynorphin were present in the testicular perifusion effluent; gel chromatography of pooled perifusion effluent show that the bulk of the secreted IR-beta-endorphin had the apparent mol. wt. of synthetic rat beta-endorphin whereas most of the secreted IR-dynorphin was composed of smaller than 4000 mol. wt. forms. On the other hand, the bulk of IR-dynorphin present in rat testicular tissue homogenates eluted in two higher mol. wt. peaks. The effect of mu and kappa opioid agonists and naloxone (a universal opioid antagonist) on both basal and gonadotropin-stimulated testosterone secretion from perifused testicular fragments was then examined; no stimulatory or inhibitory effect of the opioid receptor agonists or naloxone was found on basal and gonadotropin-stimulated testosterone secretion. Parallel experiments with Leydig cells in culture gave similar results.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The postnatal development of Leydig cell precursors is postulated to be controlled by Sertoli cell secreted factors, which may have a determinative influence on Leydig cell number and function in sexually mature animals. One such hormone, Mullerian inhibiting substance (MIS), has been shown to inhibit DNA synthesis and steroidogenesis in primary Leydig cells and Leydig cell tumor lines. To further delineate the effects of MIS on Leydig cell proliferation and steroidogenesis, we employed the established ethylene dimethanesulphonate (EDS) model of Leydig cell regeneration. Following EDS ablation of differentiated Leydig cells in young adult rats, recombinant MIS or vehicle was delivered by intratesticular injection for 4 days (Days 11-14 after EDS). On Days 15 and 35 after EDS (1 and 21 days post-MIS injections), endocrine function was assessed and testes were collected for stereology, immunohistochemistry, and assessment of proliferation and steroidogenesis. Although serum testosterone and luteinizing hormone (LH) were no different, intratesticular testosterone was higher on Day 35 in MIS-treated animals. At both time points, intratesticular 5alpha-androstan-3alpha,17beta-diol concentrations were much higher than that of testosterone. MIS-treated animals had fewer mesenchymal precursors on Day 15 and fewer differentiated Leydig cells on Day 35 with decreased numbers of BrdU+ nuclei. Apoptotic interstitial cells were observed only in the MIS-treated testes, not in the vehicle-treated group on Day 15. These data suggest that MIS inhibits regeneration of Leydig cells in EDS-treated rats by enhancing apoptotic cell death as well as by decreasing proliferative capacity.  相似文献   

3.
It is well known that estrogens and estrogen-like endocrine disruptors can suppress steroidogenic gene expression, attenuate androgen production and decrease differentiation of adult Leydig cell lineage. However, there is no information about the possible link between the potency of Leydig cells to produce androgens and their sensitivity to estrogenic stimuli. Thus, the present study explored the relationship between androgen production potential of Leydig cells and their responsiveness to estrogenic compounds. To investigate this relationship we selected mouse genotypes contrasting in sex hormone levels and differing in testosterone/estradiol (T/E2) ratio. We found that two mouse genotypes, CBA/Lac and C57BL/6j have the highest and the lowest serum T/E2 ratio associated with increased serum LH level in C57BL/6j compared to CBA/Lac. Analysis of steroidogenic gene expression demonstrated significant upregulation of Cyp19 gene expression but coordinated suppression of LHR, StAR, 3βHSDI and Cyp17a1 in Leydig cells from C57BL/6j that was associated with attenuated androgen production in basal and hCG-stimulated conditions compared to CBA/Lac mice. These genotype-dependent differences in steroidogenesis were not linked to changes in the expression of estrogen receptors ERα and Gpr30, while ERβ expression was attenuated in Leydig cells from C57BL/6j compared to CBA/Lac. No effects of estrogenic agonists on steroidogenesis in Leydig cells from both genotypes were found. In contrast, xenoestrogen bisphenol A significantly potentiated hCG-activated androgen production by Leydig cells from C57BL/6j and CBA/Lac mice by suppressing conversion of testosterone into corresponding metabolite 5α-androstane-3α,17β-diol. All together our data indicate that developing mouse Leydig cells with different androgen production potential are resistant to estrogenic stimuli, while xenoestrogen BPA facilitates hCG-induced steroidogenesis in mouse Leydig cells via attenuation of testosterone metabolism. This cellular event can cause premature maturation of Leydig cells that may create abnormal intratesticular paracrine milieu and disturb proper development of germ cells.  相似文献   

4.
Pro-opiomelanocortin (POMC)-derived peptides such as beta-endorphin, ACTH, and MSHs were identified in the testis where they were exclusively localized in Leydig cells. Examination of testicular extracts by a variety of physicochemical and immunological techniques indicates that the processing of the POMC in the testis is very similar to that in the brain. By using a cDNA probe, the POMC-like mRNA present in total testis and cultured Leydig cells was 150-200 bases shorter than that in the hypothalamus and pituitary. In addition, POMC mRNA was localized to Leydig cells using in situ hybridization. The expression of the POMC-like gene and the accumulation of POMC-derived peptides in Leydig cell were shown to be under the control of gonadotropin. As the testis contains low concentrations of POMC-derived peptides, we suggested that they may be implicated in local regulatory events within this organ. This postulate was supported by results from in vivo and in vitro experiments suggesting that different portions of the POMC-molecule may have opposite effects on Sertoli cell functions. For example, MSHs increased cAMP accumulation and aromatase activity in these cells, while opioids inhibited Sertoli cell proliferation and androgen binding protein (ABP) secretion. Furthermore, following intratesticular administration of opiate antagonists, testosterone production was reduced, suggesting that Leydig cell function may be also modulated by beta-endorphin and/or other related peptides. Taken together, these studies support the hypothesis of a possible role of POMC-derived peptides in testicular function.  相似文献   

5.
The accumulation by purified immature porcine Leydig and Sertoli cells of cyclic adenosine 3',5'-monophosphate in the presence of 1-methyl-3-isobuthylxathine was studied and their respective testosterone and 17 beta-estradiol production in response to catecholamines was assessed in vitro. These substances increased both basal and FSH-stimulated cyclic adenosine 3',5'-monophosphate accumulation in Sertoli cells. In contrast, catecholamines slightly enhanced basal cyclic adenosine 3',5'-monophosphate production but inhibited its human chorionic gonadotropin-stimulated accumulation by Leydig cells. Catecholamines had no effect on basal and stimulated testosterone release by these cells, while dopamine inhibited 17 beta-estradiol synthesis by Sertoli cells. Using various alpha- and beta-adrenergic agonists and antagonists, beta-receptors, likely of the beta 1-subtype, were shown to be present in both cell lines. Taken together these data suggest the presence of a cyclic adenosine 3',5'-monophosphate-linked adrenergic receptor in porcine Leydig and Sertoli cells, the role of which remains to be determined.  相似文献   

6.
Observations that gonadotropin releasing hormone and its agonists directly inhibit gonadal function by binding to receptors on the Leydig cells had led to search for testicular GnRH-like peptide(s). This communication presents evidence that GnRH-like factors isolated from rat testis by immunoaffinity chromatography and previously characterized by radioimmunoassay and radioreceptor assay possess biologic activity. The partially purified material led to dose dependent inhibition of oLH stimulated testosterone production in a mixed Sertoli-Leydig cell monolayer culture. Pre-incubation of the cells with a potent GnRH antagonist prevented the inhibitory effects of the partially purified material suggesting that inhibition of oLH stimulated testosterone production may be receptor mediated.  相似文献   

7.
CKLFSF is a protein family that serves as a functional bridge between chemokines and members of the transmembrane 4 superfamily (TM4SF). In the course of evolution, CKLFSF2 has evolved as two isoforms, namely CKLFSF2A and CKLFSF2B, in mice. CKLFSF2A, also known as CMTM2A and ARR19, is expressed in the testis and is important for testicular steroidogenesis. CKLFSF2B is also known to be highly expressed in the testis. In the prepubertal stage, CKLFSF2B is expressed only in Leydig cells, but it is highly expressed in haploid germ cells and Leydig cells in adult testis. CKLFSF2B is naturally processed inside the cell at its C-terminus to yield smaller proteins compared to its theoretical size of ≈25?kDa. The Cklfsf2b gene is regulated by GATA-1 and CREB protein, binding to their respective binding elements present in the 2-kb upstream promoter sequence. In addition, the overexpression of CKLFSF2B inhibited the activity of the Nur77 promoter, which consequently represses the promoter activity of Nur77-target steroidogenic genes such as P450c17, 3β-HSD, and StAR in MA-10 Leydig cells. Adenovirus-mediated overexpression of CKLFSF2B in primary Leydig cells isolated from adult mice shows a repression of steroidogenic gene expression and consequently testosterone production. Moreover, intratesticular injection of CKLFSF2B-expressing adenovirus in adult mice clearly had a repressive effect compared to the control injected with only GFP-expressing adenovirus. Altogether, these findings suggest that CKLFSF2B might be involved in the development and function of Leydig cells and regulate testicular testosterone production by fine-tuning the expression of steroidogenic genes.  相似文献   

8.
Assessment of in vitro effects of metyrapone on Leydig cell steroidogenesis   总被引:1,自引:0,他引:1  
Metyrapone, a specific inhibitor of 11beta-hydroxylase inhibits glucocorticoid production and it is used in the diagnosis/treatment of hypercortisolism and also to test the functional integrity of hypothalamo-pituitary-adrenal axis. To assess the impact of glucocorticoid deficiency, this drug is preferred over adrenalectomy, which eliminates all the hormonal secretions of the adrenal cortex and medulla. However, whether metyrapone has any direct effect on the extra-adrenocortical cellular or tissue functions remains to be resolved. Our previous study showed a depressed testicular Leydig cell testosterone production in rats treated with metyrapone. Therefore, the present study was designed to examine the possible direct effect of metyrapone on testicular Leydig cell steroidogenesis in vitro. Leydig cell viability and the reactive oxygen species (ROS) concentration were not altered by any of the concentration of metyrapone tested. The efficacy of Leydig cell testosterone production under basal as well as LH-stimulated condition was not altered by metyrapone treatment. Further, Leydig cellular (14)C-glucose oxidation, the activity and mRNA levels of cytochrome side chain cleavage (P(450)scc), 3beta- and 17beta-hydroxysteroid dehydrogenase (3beta-HSD and 17beta-HSD) were not altered in metyrapone-treated cells. Therefore, it is concluded from the present study that metyrapone has no direct effect on Leydig cell testosterone production and, therefore, changes recorded in the in vivo studies are exclusively due to corticosterone deficiency.  相似文献   

9.
The results of our recent studies on purified rat Leydig cells indicate that there are no major qualitative differences in the stimulating effects of LH and LHRH agonists on steroidogenesis via mechanisms that are dependent on calcium. This was demonstrated by using inhibitors of calmodulin and the lipoxygenase pathways of arachidonic acid metabolism. Using the fluorescent indicator quin-2, it was shown that LH and LHRH agonist increase intracellular calcium levels; LH was more potent than LHRH agonist (max increase in concentrations obtained were 500 nM and 60 nM respectively). This difference was probably the result of a direct effect of cyclic AMP (whose production is stimulated by LH but not by LHRH) because cyclic AMP analogues were as potent as LH in increasing calcium levels. These studies indicate a major role for calcium in the control of steroidogenesis in testis Leydig cells.  相似文献   

10.
One single injection of ethylene dimethane sulfonate (EDS) to mature rats causes specific degeneration of testicular Leydig cells which is complete after 3 days. At this time no steroidogenic activities can be detected, indicating that Leydig cells are the source of steroids. The mechanism of this cytotoxic effect of EDS has been investigated with isolated cells. Extensive protein alkylation has been shown to occur in Leydig cells, Sertoli cells and hepatocytes. Steroid production by Leydig cells is always inhibited by EDS, but cytotoxic effects of EDS could only be demonstrated in Leydig cells from mature rats or tumour tissue and not in Leydig cells from immature rats. A new population of Leydig cells develops during the next 2-5 weeks after EDS treatment. In hypophysectomized rats this repopulation only occurs when hCG is given daily. FSH has no effects. The proliferative activity in the interstitial tissue increases within 2 days after administration of hCG or EDS and there are indications that LH and locally produced factors are involved in the proliferation of Leydig cells or Leydig cell precursor cells. Inhibition of cAMP production with inhibitors of adenylate cyclase results in an enhancement of the LH-stimulated steroid production similar to that observed with an LHRH agonist and phospholipase C (PLC). Since the effects of LHRH and PLC on protein phosphorylation and steroid production are similar and different from LH or active phorbol esters, it is proposed that LHRH and PLC may stimulate steroid production via liberation of calcium from a specific intracellular pool. Sterol carrier protein2 (SCP2) which is specifically localized in Leydig cells and regulated by LH probably plays a role in the delivery of cholesterol to the mitochondria although the mechanism of this carrier function is not clear. The results indicate that regulation of Leydig cell development and the steroidogenic activities by gonadotrophins and locally produced factors occur via different transducing systems and regulatory pathways.  相似文献   

11.
The possible role of enkephalin in the local control of testicular function was studied in neonatal rats. 5- and 10-day old hemicastrated rats were treated intratesticularly with an enkephalin analog [D-Met2-Pro5]enkephalinamide. In 5-day-old rats local injection of different doses (0.1-0.3 micrograms/testis) of the peptide suppressed basal testosterone secretion in vitro in a dose-dependent manner 2 h posttreatment. Intratesticular administration of naloxone prior to enkephalin treatment prevented the decrease in basal testosterone production induced by the opioid agonist. In 10-day-old animals intratesticular injection of 1.0 and 3.0 micrograms/testis of enkephalinamide reduced serum testosterone concentration and basal testosterone secretion in vitro. Systemic injection of the peptide produced no change in steroidogenesis. These results suggest that enkephalins might be among the intratesticular factors regulating Leydig cell functions.  相似文献   

12.
Effects of pure human follicle-stimulating hormone (hFSH) and ovine luteinizing hormone (oLH) on testicular function were investigated in long-term hypophysectomized or photoinhibited Djungarian hamsters. hFSH (5 IU) or oLH (5 micrograms) or a combination of FSH and LH (5 IU and 5 micrograms, respectively) were injected s.c. twice daily for 7 days to hypophysectomized and photoinhibited hamsters. Other photoinhibited hamsters were treated for 14 and 21 days with FSH and LH (3 IU and 3 micrograms, respectively) in a similar way. LH alone had little, if any, effect on testicular weights; FSH, when injected alone or in combination with LH (FSH/LH), caused a significant increase in testes weights at each time point. On the other hand, LH or FSH/LH, but not FSH alone, caused a significant increase in the accessory organ weights. FSH had no effect on intratesticular testosterone (T) or on 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity but enhanced the in vitro response of interstitial cells to hCG. LH and FSH/LH had pronounced effects on intratesticular T, 3 beta-HSD activity, and in vitro response of interstitial cells to human chorionic gonadotropin. Treatment with FSH or FSH/LH caused regrowth of the testis and restoration of tubular lumen and tubular diameter and restored complete spermatogenesis. However, LH had little effect on spermatogenesis in spite of increased intratesticular and peripheral T levels. These results indicate that although LH can cause a full redifferentiation of Leydig cells in photoinhibited hamsters, it has only minor effects on tubular function. On the other hand, FSH alone induces full restoration of tubular function in these animals and has no direct effect on Leydig cell steroidogenesis, but may enhance the Leydig cell responsiveness to LH.  相似文献   

13.
The various mechanisms regulating testicular and ovarian androgen secretion are reviewed. Testicular androgen secretion is controlled by luteinizing hormone (LH) and follicle stimulating hormone (FSH), which influence the Leydig cell response to the LH. The contribution of prolactin, growth hormone and thyroid hormones to the Leydig cell function is discussed. The ovarian androgen secretion is regulated in a very similar fashion as the Leydig cell of testis. Prolactin, however, has an inhibitory effect on androgen secretion in the ovary. The intratesticular action of androgens is linked to spermatogenesis. Sertoli cells, by producing the androgen-binding protein, contribute to the intratubular androgen concentration. Inhibin production of the Sertoli cell is stimulated by androgens. In the ovary, androgens produced by the theca interna are used as precursors for the aromatization of estradiol, which stimulates together with FSH the mitosis of granulosa cells. The feedback control of androgen secretion is complicated, as the direct feedback mechanisms are joined by indirect feedback regulations like the peptide inhibin, which can be stimulated by androgens. Intragonadal mechanisms regulating androgen production are the cybernins for testicles and ovaries. In the testicle, estrogens from the Sertoli cells regulate the Leydig cell testosterone biosynthesis. In the ovary, nonaromatizable androgens are potent inhibitors of the aromatization activity in the granulosa cell. A peptide with a FSH receptor binding inhibiting activity is found in male and female gonads. Finally, LH-RH-like peptides have been found in the testicle, which are capable of inhibiting steroidogenesis. These gonadocrinins are similarly produced in granulosa cells of the ovary.  相似文献   

14.
Germ cell apoptosis, which occurs normally during spermatogenesis, increases after testosterone withdrawal from the testis. The molecular mechanism by which this occurs remains uncertain. The Fas system has been implicated as a possible key regulator of apoptosis in various cells: binding of Fas ligand (FasL), a type II transmembrane protein, to Fas, a type I transmembrane receptor protein, triggers apoptosis in cells expressing Fas. Recently, Fas has been localized to germ cells, and FasL to Sertoli cells, within the rat testis. We hypothesized that Fas protein content would rise in response to reduced levels of testosterone as part of a suicide pathway that would result in germ cell apoptosis. To test this hypothesis, ethane 1,2-dimethanesulfonate (EDS), a Leydig cell toxicant, was used to kill Leydig cells and thus reduce intratesticular testosterone levels in Sprague Dawley rats. Apoptosis was examined in situ and biochemically, and Fas protein content in the testis was monitored by Western blot analysis. We show that EDS injection results in the following sequence of events: apoptotic death of Leydig cells by a mechanism that does not involve Fas; reduced testosterone; increased testicular Fas content; and germ cell apoptosis. These results suggest that Fas may play a role in the apoptotic death of germ cells that results from reduced intratesticular testosterone levels, and that testosterone may play a role in germ cell survival via its suppression of Fas.  相似文献   

15.
Effective interactions among the various compartments of the testis are necessary to sustain efficiency of the spermatogenic process. To study the intercellular communication between the Sertoli and Leydig cells in the complete absence of FSH receptor signaling, we have examined several indices of Leydig cell function in FSH receptor knockout (FORKO) mice. The serum testosterone levels were reduced in the 3- to 4-mo-old adult FORKO males compared to wild-type mice despite no significant alteration in circulating LH levels. Treatment with ovine LH resulted in a dose-dependent increase in serum testosterone levels in all three genotypes (+/+, +/-, and -/-). However, the response in FORKO males was significantly reduced. Similarly, the total intratesticular testosterone per testis was also lower, but the intratesticular testosterone per milligram of testis was significantly elevated in the FORKO males. Western blot analysis revealed an apparent higher expression of the enzyme 3beta-hydroxysteroid dehydrogenase (3beta-HSD) as well as LH-receptor density in the testis of FORKO males. Immunohistochemistry also showed an increase in the intensity of 3beta-HSD staining in the testicular sections of FORKO males. Although LH receptor binding increased per unit weight in FORKO mice, the total LH binding remained the same in all genotypes. Taken together, the results of the present study suggest that, in the absence of FSH receptor signaling, the testicular milieu is altered to affect Leydig cell response to LH such that circulating testosterone is reduced in the adult mutant. Studies are currently under way to understand the mechanisms underlying this phenomenon.  相似文献   

16.
Evidence suggests that exogenous GnRH and agonist analogues have short-term stimulatory effects on rat Leydig cell function - when administered intratesticularly. Since rat Leydig cells possess GnRH receptors and their endogenous ligand has not yet been identified the physiological importance of the observations for testis function is unknown. To address this issue we have determined the consequences of blockade of testis GnRH receptors on Leydig cell function under both normogonadotrophic and hypogonadotrophic stimulation of the testis in vivo. A GnRH antagonist (ANT) was used to achieve receptor blockade but during continuous systemic infusion ANT occupied pituitary GnRH receptors and markedly reduced serum LH, FSH, testosterone, and intratesticular testosterone in adult and 30 d old immature male rats. These results were similar to those obtained by administration of a GnRH antiserum which did not bind to testis GnRH receptors. Thus, blockade of testis GnRH receptors during hypogonadotrophism did not produce additional inhibition of steroidogenesis by Leydig cells. However, direct continuous infusion of ANT into one testis produced greater than 90% occupancy of GnRH receptors while reducing GnRH receptors by only 50% in the contralateral testis. Unilateral intratesticular infusion did not reduce serum LH, FSH, Prolactin or testosterone levels despite 75% occupancy of pituitary GnRH receptors. Thus, both ANT infused and saline infused testes were exposed to the same gonadotrophic stimulants but in the former GnRH-R were essentially non-existent. Compared to the control testis, the ANT infused testis showed a 20-30% reduction in LH, FSH, lactogen receptors and 30-40% fall in testosterone content. Identical results were obtained in adult and 30 d-old male rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Peritubular Leydig cells located in interstitial areas surrounded by tubules at nearly the same stage of spermatogenesis were analysed. Low-power electron micrographs were used for measurement of cell profile area and higher magnification views provided volume density of SER, Golgi stacks, mitochondria, and lipids. In the adult monkey, no cyclic changes were found in Leydig cells in their size or in the volume density of their organelles. In the adult rat (63 days of age), a comparison limited to stage VII-VIII and stage XI-XII peritubular Leydig cells demonstrated a significantly higher SER content (P less than 0.01) in the former, but no other differences. The study of subadult rats (45 days of age) showed that the full development of spermatogenesis was required to detect significant changes in Leydig cell SER content. The present results provide morphological evidence for an intratesticular control of the Leydig cells of the rat but not for those of the monkey.  相似文献   

19.
Leydig cells are the primary source of androgens in the mammalian testis. It is established that the luteinizing hormone (LH) produced by the anterior pituitary is required to maintain the structure and function of the Leydig cells in the postnatal testis. Until recent years, a role by the thyroid hormones on Leydig cells was not documented. It is evident now that thyroid hormones perform many functions in Leydig cells. For the process of postnatal Leydig cell differentiation, thyroid hormones are crucial. Thyroid hormones acutely stimulate Leydig cell steroidogenesis. Thyroid hormones cause proliferation of the cytoplasmic organelle peroxisome and stimulate the production of steroidogenic acute regulatory protein (StAR) and StAR mRNA in Leydig cells; both peroxisomes and StAR are linked with the transport of cholesterol, the obligatory intermediate in steroid hormone biosynthesis, into mitochondria. The presence of thyroid hormone receptors in Leydig cells and other cell types of the Leydig lineage is an issue that needs to be fully addressed in future studies. As thyroid hormones regulate many functions of Sertoli cells and the Sertoli cells regulate certain functions of Leydig cells, effects of thyroid hormones on Leydig cells mediated via the Sertoli cells are also reviewed in this paper. Additionally, out of all cell types in the testis, the thyrotropin releasing hormone (TRH), TRH mRNA and TRH receptor are present exclusively in Leydig cells. However, whether Leydig cells have a regulatory role on the hypothalamo-pituitary-thyroid axis is currently unknown.  相似文献   

20.
The effects of single or combined daily treatment with an LHRH agonist and low or high doses of LH upon the testes of adult hypophysectomized rats were studied for up to 2 weeks in which changes in testicular histology, particularly the interstitial tissue, were examined by morphometry and related to functional assessment of the Leydig cells in vivo and in vitro. Compared to saline-treated controls, LHRH agonist treatment did not alter testis volume or the composition of the seminiferous epithelium or any of the interstitial tissue components although serum testosterone and in-vitro testosterone production by isolated Leydig cells were significantly reduced. With 2 micrograms LH for treatment, testis volume was increased, spermatogenesis was qualitatively normal, total Leydig cell volume was increased, serum testosterone values were initially elevated but subsequently declined and in-vitro testosterone production was enhanced. Testis volume with 20 micrograms LH treatment was unchanged compared to saline treatment, the seminiferous epithelium exhibited severe disruption but total Leydig cell volume was greatly increased due to interstitial cell hyperplasia. This group showed elevated serum testosterone concentrations and major increases in testosterone production in vitro. Treatment with LHRH agonist with either dose of LH resulted in reduced testis volume, moderate to very severe focal spermatogenic disruption and increased total Leydig cell volume although serum testosterone values and in-vitro testosterone production were markedly reduced compared to control rats. It is concluded that, in the absence of the pituitary, LHRH agonist fails to disrupt spermatogenesis and the previously described antitesticular action of LHRH agonists in intact rats is therefore dependent upon the presence of LH, which alone or in combination with LHRH agonist, may focally disrupt spermatogenesis in hypophysectomized rats whereas the Leydig cells undergo hyperplasia. The findings show that impairment of spermatogenesis is accompanied by alterations of the interstitial tissue and suggest that communication between these two compartments is involved in the regulation of testicular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号