首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strip of tread compound cut from a truck tire was degraded only slightly when it was used as the sole growth substrate for a strain of Nocardia. On the contrary, its degradation was markedly enhanced by addition of a strip cut from a latex glove which the organism readily utilized as a growth substrate. When a glove strip was added, the biomass concentration in the experimental flask became more than 10-fold higher than the control without a glove strip and the colonization of the tire strip was significantly enhanced.After 8 weeks' cultivation, about 28% of the tire strip was disintegrated into very small black particles (mostly less than 30 m in diameter) and the weight of the remaining unchanged portion of the strip was about 49% of the initial weight.Four kinds of truck tire treads were attacked in differing degrees by the organism under the same conditions. The treads containing more than 70 phr (parts per hundred of rubber) of natural rubber were considerably attacked, while those with a natural rubber content of less than 55 phr were attacked only slightly. The microbial activity against the rubber in the side wall of a truck tire was relatively high, but the inner liner was hardly attacked and the bead rubber not at all.  相似文献   

2.
Degradation of rubber particles from tyre treads, having diameters from 0.8 to 2.3 mm, was achieved using Nocardia sp. 835A-Rc, a mutant strain with strong rubber-degrading ability. The entire surface of the particles was uniformly attacked by the organism either without stirring of the culture medium or at a very low stirring rate of 40 rpm. At a higher rate of stirring, however, a small number of large microbial colonies were formed on the rubber surface and separate deep semi-spherical cavities were observed after the removal of microbial cells by washing. The number of microbial colonies decreased with increasing stirring rate but each one of the colonies became larger at the same time. As the result of these two counteracting effects of stirring on microbial activity, the weight loss of the particles increased when the stirring rate was raised from 0 to 40 rpm but decreased when the rate was increased from 40 to 70 or 150 rpm. At the stirring rate of 40 rpm, the weight losses of the particles with mean diameters of about 0.8, 1.1 and 2.3 mm were 57, 50 and 36%, respectively, after 8 weeks. The rate of microbial degradation increased again when the stirring was raised from 150 to 300 rpm.  相似文献   

3.
【目的】大量聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)塑料作为废弃物被丢弃,严重危害生态健康。针对嗜热PET降解菌缺乏这一情况,本研究旨在获得能够降解PET的嗜热菌,并阐述其降解机制。【方法】采集云南腾冲热泉中的废弃PET瓶,分析其表面生物膜的微生物群落多样性,从中筛选能够以PET为营养源生长的嗜热菌,并基于16S rRNA基因序列加以鉴定;以菌株的定殖能力与生长曲线为指标,优选出降解能力较强的降解菌,并测定其最适pH、温度和NaCl浓度;降解能力较强的降解菌分别作用于PET及PET中间体双(羟乙基)对苯二甲酸酯[bis(hydroxyethyl)terephthalate,BHET]和对苯二甲酸单(2-羟乙基)酯[mono(2-hydroxyethyl)terephthalate,MHET],测定产物生成量与降解率;通过观察PET膜表面微观结构、活菌数、酯酶活性等探究降解菌与PET的互作过程。【结果】废弃PET瓶表面生物膜中的微生物群落多样性低;从生物膜中筛选出5株能够以PET为营养源生长的嗜热菌;其中,菌株JQ3以PET为唯一碳源生长最佳,作为降解能力较强的降解菌,被鉴定为嗜热淀粉芽孢杆菌(Bacillus thermoamylovorans),其最适生长pH为7.0、最适生长温度为50℃、最适生长NaCl浓度为0.5%;菌株JQ3以0.043 mg PET/d的速率降解PET,对苯二甲酸(terephthalic acid,TPA)产量在第7天达到峰值45.2 mmol/L;菌株JQ3对PET中间体降解效率显著,6 h可降解85.9%的BHET,60 h可降解50.1%的MHET。菌株JQ3能够定殖于PET表面并形成生物膜,侵蚀PET并造成开裂和剥落。【结论】B.thermoamylovorans JQ3作为一株嗜热PET降解菌,能够高温(60℃)降解PET及其中间体,为实现PET的有效降解提供了新策略。  相似文献   

4.
针对秸秆处理不当影响全世界环境污染的问题,筛选多功能秸秆降解菌,旨在得到高效降解秸秆且具有促生作用的微生物菌种。结合纤维素钠-刚果红(CMC-Na)平板筛选,通过16S rRNA基因分析,进行菌株鉴定,得到一株具有纤维素降解效果的菌株XJ-132,经16S rRNA基因鉴定为枯草芽胞杆菌(Bacillus subtilis)。与单独施用秸秆处理相比,加入菌株XJ-132 60 d后,秸秆降解率提高21.0%,且对水稻生长促进作用显著,地上、下部鲜重分别增加17.8%和9.6%。水稻种子喷施菌株XJ-132发酵液,低浓度发酵液对种子萌发具有一定促进作用。结果表明,菌株XJ-132可能通过产吲哚乙酸(IAA)、产铁载体、产氨等多种有益物质,降解秸秆的同时促进水稻生长。筛选具有促生作用的秸秆降解菌能够更好地加速秸秆降解,具有广泛的开发利用前景。  相似文献   

5.
Leaf decomposition of the exotic evergreen Eucalyptus globulus (eucalyptus), and three native deciduous tree species, Alnus glutinosa (alder), Castanea sativa (chestnut) and Quercus faginea (oak), was compared in a second order stream in Central Portugal. Changes in dry weight, nitrogen and polyphenolic compounds and microbial colonization were periodically assessed for three months.Negative exponential curves fit the leaf weight loss with time for all leaf species. Mass loss rate was in the order alder (K = 0.0161) > chestnut (K = 0.0079) > eucalyptus (K = 0.0068) > oak (K = 0.0037). Microbial colonization followed the same pattern as breakdown rates. Evidence of fungal colonization was observed in alder after 3 days in the stream, whereas it took 21 days in oak leaves to have fungal colonization. Fungal diversity was leaf species-dependent and increased with time. In all cases, percent nitrogen per unit leaf weight increased, at least, at the initial stages of decay while soluble polyphenolics (expressed as percentage per unit leaf weight) decreased rapidly in the first month of leaves immersion.Intrinsic factors such as nitrogen and polyphenolic content may explain differences in leaf decomposition. The possible incorporation of eucalyptus litter into secondary production in a reasonable time span is suggested, although community balance and structure might be affected by differences in allochthonous patterns determined by eucalyptus monocultures.  相似文献   

6.
张娟  贺学礼  赵丽莉  许伟  闫姣 《生态学报》2015,35(4):1095-1103
克隆植物,尤其是游击型克隆植物,具有很强的扩展能力,通过克隆扩展可侵入到不同生境斑块。克隆植物入侵可能会影响入侵地土壤营养状况和微生物群落。为了探明克隆植物入侵对DSE(dark septate endophytes)活动和土壤理化性质的影响,于2013年6月在克隆植物羊柴(Hedysarum laeve)和沙鞭(Psammochloa villosa)群落空地沿根状茎延伸方向设置样方,分别于6月、8月和10月在样方内分0—10、10—20、20—30、30—40、40—50 cm土层采集土样和根样,研究了不同采样时间羊柴和沙鞭群落空地DSE和土壤理化性质时空变化。结果表明,从6月到10月,随时间后延,克隆植物逐渐侵入群落空地,沙鞭入侵群落空地数和分株数高于羊柴。羊柴群落空地根系DSE定殖率随采样时间后延,逐渐降低,最大值在6月;沙鞭群落空地根系DSE定殖率随采样时间后延,逐渐升高,最大值在10月。随着克隆植物入侵,入侵地土壤中可利用的营养物质含量显著提高,羊柴入侵提高了入侵群落空地土壤碱解N、有效P和速效K含量,沙鞭入侵提高了入侵群落空地土壤碱解N和有效P含量。相关性分析表明,羊柴群落空地DSE定殖率与土壤p H值和电导率显著正相关,沙鞭群落空地DSE定殖率与土壤p H值极显著负相关,与电导率、碱解N和有效P极显著正相关。克隆植物入侵使得土壤环境更有利于克隆植物自身生长,为荒漠植被恢复提供了前提。  相似文献   

7.
The population of poly-β-hydroxybutyrate-degrading microorganisms and the biodegradation of PHB in local landfill soils were examined in vitro and in vivo. Forty-two PHB-degraders consisting of 12 bacteria, 25 actinomycetes and 5 moulds were isolated. The total PHB-degraders averaged 4.7 × 107 and 20 × 104 colony forming units (cfu)/g for San Mateo wet and dry soils, respectively, and 2.3 × 107 and 8.5 × 104 cfu/g for Carmona wet and dry samples, respectively. The PHB-degraders formed 0–59% of the total microbial population in San Mateo and 8–42% in Carmona. Complete (100%) degradation of PHB powder was observed for Chryseomonas-27 and Aspergillus-39 on day 5 in shake flask culture and for Streptomyces-4 on day 7. Burial test in landfill soils showed a 90–91% weight loss of PHB film strips within four weeks; the weight loss of polypropylene film strips was up to 0.12% only. Scanning electron micrographs of degraded films revealed the attachment of microbial cells and fungal mycelium and spores on the surfaces. Holes and cavities were also noted due to the microbial degradation processes.  相似文献   

8.
The influence of anthracene, a low molecular weight polycyclic aromatic hydrocarbon (PAH), on chicory root colonization by Glomus intraradices and the effect of the root colonization on PAH degradation were investigated in vitro. The fungus presented a reduced development of extraradical mycelium and a decrease in sporulation, root colonization, and spore germination when exposed to anthracene. Mycorrhization improved the growth of the roots in the medium supplemented containing 140 mg l−1 anthracene, suggesting a positive contribution of G. intraradices to the PAH tolerance of roots. Anthracene disappearance from the culture medium was quantified; results suggested that nonmycorrhizal chicory roots growing in vitro were able to contribute to anthracene dissipation, and in addition, that mycorrhization significantly enhanced anthracene dissipation. These monoxenic experiments demonstrated a positive contribution of the symbiotic association to anthracene dissipation in the absence of other microorganisms. In addition to anthracene dissipation, intracellular accumulation of anthracene was detected in lipid bodies of plant cells and fungal hyphae, indicating intracellular storage capacity of the pollutant by the roots and the mycorrhizal fungus.  相似文献   

9.
The degradation of dichloromethane by the pure strainHyphomicrobium GJ21 and by an enrichment culture, isolated from a continuously operating biological trickling filter system, as well as the corresponding growth rates of these organisms were investigated in several batch experiments. By fitting the experimental data to generally accepted theoretical expressions for microbial growth, the maximum growth rates were determined. The effect of NaCl was investigated at salt concentrations varying from 0 to 1000 mM. Furthermore the dichloromethane degradation was investigated separately in experiments in which a high initial biomass concentration was applied. The results show that microbial growth is strongly inhibited by increased NaCl concentrations (50% reduction of max at 200–250 mM NaCl), while a certain degree of adaptation has taken place within an operational system eliminating dichloromethane. A critical NaCl concentration for growth of 600 mM was found for the microbial culture isolated from an operational trickling filter, while a value of 375 mM was found for the pure cultureHyphomicrobium GJ21. The substrate degradation appears to be much less susceptible to inhibition by NaCl. Even at 800 mM NaCl relatively high substrate degradation rates are still observed, although this process is again dependent on the NaCl concentration. Here the substrate elimination is due to the maintenance requirements of the microorganisms. The inhibition of the dichloromethane elimination was also investigated in a laboratory scale trickling filter. The results of these experiments confirmed those obtained in the batch experiments. At NaCl concentrations exceeding 600 mM a considerable elimination of dichloromethane was still observed for during several months of operation. These observations indicate that the inhibition of microbial growth offers a significant control parameter against excessive biomass growth in biological trickling filters for waste gas treatment.  相似文献   

10.
The combination of a modified Robbins device (MRD) attached to the effluent line of a continuous cultivation vessel was assessed by the adhesion of planktonic bacteria maintained at a controlled growth rate. This combination of a chemostat and an MRD provides a large number of sample surfaces for monitoring both the formation and control of biofilms over extended periods of time. This apparatus was used to monitor the colonization of two soil isolates,Pseudomonas fluorescens (EX101) andPseudomonas putida (EX102) onto silastic rubber surfaces. At a similar rel, both bacteria attached to the silastic, howeverP. fluorescens formed confluent, dense biofilms in less than 24 h, whereasP. putida adhered as single cells or microcolonies after the same period. The metabolic activity, measured by INT-formazan formation, was similar for both organisms with a peak at 6 h of colonization and a subsequent decrease after 24 h. Long term colonization studies ofP. fluorescens produced a population of greater than 9.5 log cfu cm–2 at 28 days demonstrating the advantages of the chemostat-MRD association. This technique proved to be successful for studying bacterial adhesion and biofilm formation in tubular devices by bacterial populations at controlled and low growth rates.  相似文献   

11.
【背景】已有研究表明,微生物在宿主肠道中的定殖受宿主、肠道环境、微生物物种特性和菌株来源等多个因素的影响。一般认为,来源于同类宿主的微生物菌株,在该类宿主肠道中具有定殖优势,但缺乏在物种和菌株水平上研究微生物自身特性在宿主肠道中定殖的研究报道。【目的】将不同来源(同类宿主肠道、非同类宿主肠道和非肠道环境)、具有不同生物学特性的3株香坊肠球菌(Enterococcus xiangfangensis)和4株罗伊氏乳杆菌(Lactobacillusreuteri)对无菌猪肠道进行定殖,在物种和菌株2个水平上探究物种特性和菌株来源对宿主肠道定殖的偏好性,揭示影响微生物定殖效率的关键因素。【方法】在本项研究中,将从藏猪(Tibetan pigs)、小鼠(ob/ob mice)、食蟹猴(Macaca fascicularis)和发酵食品中分离得到的多株香坊肠球菌和罗伊氏乳杆菌,制成混合菌剂对无菌巴马香猪(Bama miniature pig)进行为期4周的饲喂,并通过实时荧光定量PCR方法检测这7株菌在无菌猪肠道中的定殖情况。【结果】在物种水平上,香坊肠球菌和罗伊氏乳杆菌在无菌猪体内具有相近的定殖...  相似文献   

12.
Burke  David J.  Hamerlynck  Erik P.  Hahn  Dittmar 《Plant and Soil》2002,239(1):141-154
The effect of arbuscular mycorrhizae (AM) on soil microbial populations and on growth performance of the high salt marsh plant Spartina patens was investigated in a AM suppression study on field-collected soil cores with S. patens. The application of benomyl resulted in a significant reduction of AM colonization on roots of S. patens, but did not completely suppress AM. Non-treated cores had significantly greater colonization (26 ± 6%) than either benomyl- (12 ± 7%) or benomyl-phosphorus-treated (7 ± 3%) cores at a depth of 2.5 cm. Colonization differences between cores declined with depth (5.0 and 7.5 cm), however, so that at 7.5 cm there was no difference between treatments. This decline was attributed to a reduction in oxygen availability with depth as evidenced by decreasing redox potential. Basic environmental conditions generally resembled those found at the field site. There were no environmental differences between treatments at the depths examined. Cell numbers and specific biomass of DAPI-stained organisms as well as members of the Domain Bacteria were significantly higher when AM colonization was suppressed, while those of the Domains Eucarya and Archaea were not significantly influenced. The increase in both microbial and bacterial population size and biomass in the presence of lower levels of AM colonization is most likely due to increases in carbon exudation to soil and rhizosphere populations that accompany AM suppression. PCR-RFLP analysis of nifH amplicons in bulk soil and rhizosphere at varying depths through the soil cores showed differences in banding patterns between rhizosphere and soil material in the presence of AM. The lack of such strong differences in the benomyl-treated cores suggests that AM colonization more strongly affects the nitrogen-fixing population than do physicochemical conditions (e.g. redox potential) alone. Plant growth performance assessed by analyzing root and leaf biomass, as well as excitation transfer efficiency of open photosynthesis system II (PS II) reaction centers (Fv/Fm) was not significantly influenced by AM. Significant differences were found between treatments for C/N ratios and nitrogen content in leaf tissue, indicating that suppression of AM increased plant nitrogen acquisition.  相似文献   

13.
To examine the effects of microbial populations and external phosphorus supply of two Philippine soils on mycorrhizal formation, Eucalyptus urophylla seedlings were inoculated with two Pisolithus isolates and grown in fumigated, reinfested and unfumigated soil fertilized with four rates of phosphorus. The Pisolithus isolates used were collected from under eucalypts in Australia and in the Philippines. Soils were infertile acid silty loams collected from field sites in Pangasinan, Luzon and Surigao, Mindanao.Significant interaction was observed between inoculation, soil fumigation and phosphorus supply on mycorrhizal formation by the Australian isolate in Surigao soil but not in Pangasinan soil. Soil fumigation enhanced mycorrhizal formation by the Australian isolate but did not affect root colonization by the Philippine isolate. Root colonization by the Australian isolate was highest in the reinfested soil while for the Philippine isolate it was highest in the unfumigated soil. The Australian isolate was more effective than the Philippine isolate in promoting growth and P uptake of E. urophylla seedlings in both soils. Total dry weight and P uptake of E. urophylla seedlings inoculated with the Australian isolate were maximum in fumigated and in the reinfested Pangasinan and Surigao soils supplied with 8 mg P kg-1 soil. In the unfumigated soil, growth of seedlings inoculated with the Australian isolate was significantly reduced. Seedlings inoculated with the Philippine isolate had the largest dry weights and P contents in unfumigated Pangasinan and Surigao soils supplied with 8 mg P kg-1 soil.These results indicate that the performance of the Australian Pisolithus isolate was markedly affected by biological factors in unfumigated soil. Thus, its potential use in the Philippines needs to be thoroughly tested in a variety of unfumigated soils before its widespread use in any inoculation programme.  相似文献   

14.
In this study, a modified version of the gas production technique was used to determine protein fermentation characteristics in rumen fluid of 19 feedstuffs. Performing the incubations in a N-free environment, and with an excess of rapidly fermentable carbohydrates, made N the limiting factor to microbial growth, and so gas production profiles reflected the availability of N from the feed samples. Results showed that fermentation of protein in rumen fluid can be determined with this modified gas production technique, and that there were distinct differences in protein fermentation between the feed samples. Availability of protein for fermentation was highest in wheat, potato pieces and lupin, and lowest in Rumiraap, a formaldehyde treated rapeseed meal, palm kernel expeller and brewery grains. The protein degradation characteristics of the 19 feed ingredients were also determined with the in situ nylon bag technique. With the obtained results, the amount of rumen escape protein (REP) was calculated for each feedstuff. The results showed that the rate of degradation ranged from 0.010/h for Rumiraap to 0.151/h for wheat. The amount of REP ranged from 197 g/kg CP for lupin to 840 g/kg CP for Rumiraap. Comparing the gas production results with the results obtained with the nylon bag technique showed that there was a good relationship between the gas production after 12–25 h of incubation and the calculated amount of REP (r2 = 0.83–0.85). The results show that the adapted gas production technique, being depleted of N and using an excess of rapidly fermentable carbohydrates, is suitable to recognize differences in N availability between feed samples and can be used as an alternative to the nylon bag technique and other in vitro techniques.  相似文献   

15.
The role played by a bacterial community composed ofPseudomonas putida, strain 21;Pseudomonas stutzeri, strain 18; andPseudomonas sp., strain 5, and by physical and chemical factors in the degradation of CN and SCN was studied. It was shown that the degradation of CN is determined both by the action of bacteria and by abiotic physical and chemical factors (pH, O2, temperature, the medium agitation rate, etc.). The contribution of chemical degradation was found to increase drastically at pH below 9.0; when air was blown through the medium (irrespective of the pH value); under active agitation of the medium; and when the medium surface interfacing air was increased. Even at elevated pH values (9.0-9.2), suboptimal for bacterial growth, the microbial degradation could account for at most 20–25 mg/1 of CN, regardless of its initial concentration. When CN and SCN were concurrently present in the medium, the former compound was the first to be degraded by microorganisms. The rate of bacterial degradation of SCN under continuous cultivation in a chain of reactors was found to depend on its concentration, the medium flow rate, agitation rate, and the pattern of carbon source supply and could exceed 1 g/(l day). CN and SCN are utilized by bacteria solely as nitrogen sources. The mechanism of CN and SCN degradation by the microbial community is discussed. Deceased.  相似文献   

16.
Trimethyl-1,2-dihydroxypropyl-ammonium (TM) originates from the hydrolysis of the parent esterquat surfactant, which is widely used as softener in fabric care. Based on test procedures mimicking complex biological systems, TM is supposed to degrade completely when reaching the environment. However, no organisms able to degrade TM were isolated nor has the degradation pathway been elucidated so far. We isolated a Gram-negative rod able to grow with TM as sole source of carbon, energy and nitrogen. The strain reached a maximum specific growth rate of 0.4 h–1 when growing with TM as the sole source of carbon, energy and nitrogen. TM was degraded to completion and surplus nitrogen was excreted as ammonium into the growth medium. A high percentage of the carbon in TM (68% in continuous culture and 60% in batch culture) was combusted to CO2 resulting in a low yield of 0.54 mg cell dry weight per mg carbon during continuous cultivation and 0.73 mg cell dry weight per mg carbon in batch cultures. Choline, a natural structurally related compound, served as a growth substrate, whereas a couple of similar other quaternary aminoalcohols also used in softeners did not. The isolated bacterium was identified by 16S-rDNA sequencing as a strain of Pseudomonas putida with a difference of only one base pair to P. putida DSM 291T. Despite their high identity, the reference strain P. putida DSM 291T was not able to grow with TM and the two strains differed even in shape when growing on the same medium. This is the first microbial isolate able to degrade a quaternary ammonium softener head group to completion. Previously described strains growing on quaternary ammonium surfactants (decyltrimethylammonium, hexadecyltrimethylammonium and didecyldimethylammonium) either excreted metabolites or a consortium of bacteria was required for complete degradation.  相似文献   

17.
The survival, development and mycorrhizal efficiency of a selected strain of Laccaria bicolor along with naturally occurring ectomycorrhizal fungi in a young plantation of Douglas fir was examined. Symbionts were identified and their respective colonization abilities were determined. Eight species of symbiotic fungi, which may have originated in adjacent coniferous forests, were observed on the root systems. Mycorrhizal diversity differed between inoculated (5 taxa) and control (8 taxa) seedlings. Ectomycorrhizal fungi which occurred naturally in the nursery on control seedlings (Thelephora terrestris and Suillus sp.) did not survive after outplanting. Both inoculated and naturally occurring Laccaria species, as well as Cenococcum geophilum, survived on the old roots and colonized the newly formed roots, limiting the colonization by other naturally occurring fungi. Other fungi, such as Paxillus involutus, Scleroderma citrinum and Hebeloma sp. preferentially colonized the old roots near the seedling's collar. Russulaceae were found mainly in the middle section of the root system. Mycorrhizal colonization by Laccaria species on inoculated seedlings (54%) was significantly greater than on controls (13%) which were consequently dominated by the native fungi. Significant differences (up to 239%) were found in the growth of inoculated seedlings, especially in root and shoot weight, which developed mainly during the second year after outplanting. Seedling growth varied with the species of mycorrhizae and with the degree of root colonization. Competitiveness and effectiveness of the introduced strain on improving growth performances of seedlings are discussed.  相似文献   

18.
Propionic acid and its sodium salt have long been used as additives in poultry feed to reduce microbial populations, including Salmonella spp. Propionic acids in poultry feed may have a potential role in inhibiting growth of Salmonella in the chicken intestine. In this study, we determined growth response of a Salmonella typhimurium poultry isolate to propionic acid and sodium propionate under aerobic and anaerobic conditions. Growth rate consistently decreased with the addition of greater concentrations of either propionic acid or sodium propionate. The extent of growth inhibition was much greater with propionic acid than the sodium form. Media pH decreased only with addition of propionic acid. Growth inhibition was more effective under anaerobic growth conditions with either propionic acid or sodium propionate. When determined at the same pH level, growth rate was significantly lowered by addition of 25 mM of either propionate or sodium propionate alone, and also by the decrease in pH levels (P<0.05). These results showed that growth inhibition of S. typhimurium by propionic acid or sodium propionate is greatly enhanced by pH decrease, and to lesser extent by anaerobiosis. We also found that sodium propionate was more inhibitory for growth of S. typhimurium than propionic acid when compared at the same pH levels.  相似文献   

19.
The effect of pretreatment of several cis-1,4-polyisoprene containing rubbers on their biodegradability was examined. Tests were carried out with six recently isolated and characterized rubber degrading bacteria belonging to the genera Gordonia (strains Kb2, Kd2 and VH2), Mycobacterium, Micromonospora and Pseudomonas. All strains were able to use natural rubber (NR) as well as NR latex gloves as sole carbon source. Extraction of NR latex gloves by organic solvents resulted in an enhancement of growth for three of the selected strains. On the other hand, growth of Gordonia sp. (strain Kb2 and Kd2), Mycobacterium fortuitum NF4 and Micromonospora aurantiaca W2b on synthetic cis-1,4-polyisoprene did only occur after removal of the antioxidants, that are usually added during manufacture to prevent aging of the materials. Detailed degradation studies performed with Gordonia sp. Kb2 revealed an enhanced mineralization of pretreated NR latex gloves and mineralization of purified natural rubber (NR), indicating the actual mineralization of cis-1,4-polyisoprene rubber constituent even after removal of non-rubber constituent that may act as co-metabolic substrate and support microbial growth. Further analysis by scanning electron microscopy (SEM) clearly demonstrated the enhanced colonization efficiency of these bacteria towards pretreated NR latex gloves. Colonization was additionally visualized by staining of overgrown NR latex gloves with Schiff's reagent, and the purple color produced in the area of degradation was an evidence for the accumulation of aldehydes containing oligomers. Further enhancement of latex gloves degradation could be achieved after successive replacement of mineral salts medium during cultivation. Thereby, a rapid disintegration of untreated NR latex gloves material was accomplished by Gordonia sp. strain VH2.  相似文献   

20.
Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. was studied for its effect on their root colonization and plant growth of cucumber. Two isolates of Phoma sp. (GS8-2 and GS8-3) were tested with G. mosseae. The percent root length colonized by G. mosseae was not adversely affected by the presence of Phoma isolates. In contrast, the root colonization of both isolates GS8-2 and GS8-3 in 4-week-old plants was significantly reduced (80.7% and 84.3%, respectively) by added G. mosseae. Inoculating plants with each Phoma isolate significantly increased the shoot dry weight. However, dual inoculation of each Phoma isolate with G. mosseae had no significant effect on growth enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号