首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uroporphyrinogen decarboxylase (HemE) is important due to its location at the first branch-point in tetrapyrrole biosynthesis. We detected a complex formation between full-length polypeptides of HtpG and HemE by biochemical studies in vivo and in vitro. The interaction suppressed the enzyme activity, suggesting a regulatory role of HtpG in tetrapyrrole biosynthesis.  相似文献   

2.
Uroporphyrinogen decarboxylase (HemE) is important due to its location at the first branch-point in tetrapyrrole biosynthesis. We detected a complex formation between full-length polypeptides of HtpG and HemE by biochemical studies in vivo and in vitro. The interaction suppressed the enzyme activity, suggesting a regulatory role of HtpG in tetrapyrrole biosynthesis.  相似文献   

3.
Hsp90, an essential eukaryotic chaperone, depends upon its intrinsic ATPase activity for function. Crystal structures of the bacterial Hsp90 homolog, HtpG, and the yeast Hsp90 reveal large domain rearrangements between the nucleotide-free and the nucleotide-bound forms. We used small-angle X-ray scattering and recently developed molecular modeling methods to characterize the solution structure of HtpG and demonstrate how it differs from known Hsp90 conformations. In addition to this HtpG conformation, we demonstrate that under physiologically relevant conditions, multiple conformations coexist in equilibrium. In solution, nucleotide-free HtpG adopts a more extended conformation than observed in the crystal, and upon the addition of AMPPNP, HtpG is in equilibrium between this open state and a closed state that is in good agreement with the yeast AMPPNP crystal structure. These studies provide a unique view of Hsp90 conformational dynamics and provide a model for the role of nucleotide in effecting conformational change.  相似文献   

4.
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.  相似文献   

5.
N Tanaka  H Nakamoto 《FEBS letters》1999,458(2):117-123
The heat shock protein (Hsp) HtpG is a member of the Hsp90 protein family. We cloned a single-copy gene encoding a homologue of HtpG from the unicellular cyanobacterium Synechococcus sp. PCC 7942. Sequence alignment with HtpGs from other prokaryotes revealed unique features in the cyanobacterial HtpG primary sequence. A monocistronic mRNA of the htpG gene increased transiently in response to heat shock. In order to elucidate the role of HtpG in vivo, we inactivated the htpG gene by targeted mutagenesis. Although the mutation did not affect the photoautotrophic growth at 30 and 42 degrees C, the mutant cells were unable to grow at 45 degrees C. They lost both basal and acquired thermotolerances. These results indicate that HtpG plays an essential role for the thermal stress management in cyanobacteria, the first such an example for either a photosynthetic or a prokaryotic organism.  相似文献   

6.
Chemical arrays were employed to screen ligands for HtpG, the prokaryotic homologue of Hsp (heat-shock protein) 90. We found that colistins and the closely related polymyxin B interact physically with HtpG. They bind to the N-terminal domain of HtpG specifically without affecting its ATPase activity. The interaction caused inhibition of chaperone function of HtpG that suppresses thermal aggregation of substrate proteins. Further studies were performed with one of these cyclic lipopeptide antibiotics, colistin sulfate salt. It inhibited the chaperone function of the N-terminal domain of HtpG. However, it inhibited neither the chaperone function of the middle domain of HtpG nor that of other molecular chaperones such as DnaK, the prokaryotic homologue of Hsp70, and small Hsp. The addition of colistin sulfate salt increased surface hydrophobicity of the N-terminal domain of HtpG and induced oligomerization of HtpG and its N-terminal domain. These structural changes are discussed in relation to the inhibition of the chaperone function.  相似文献   

7.
HtpG, a homologue of HSP90, is essential for thermotolerance in cyanobacteria. It is not known how it plays this important role. We obtained evidence that HtpG interacts with linker polypeptides of phycobilisome in the cyanobacterium Synechococcus elongatus PCC 7942. In an htpG mutant, the 30 kDa rod linker polypeptide was reduced. In vitro studies with purified HtpG and phycobilisome showed that HtpG interacts with the linker polypeptide as well as other linker polypeptides to suppress their thermal aggregation with a stoichiometry of one linker polypeptide/HtpG dimer. We constructed various domain‐truncated derivatives of HtpG to identify putative chaperone sites at which HtpG binds linker polypeptides. The middle domain and the N‐terminal domain, although less efficiently, prevented the aggregation of denatured polypeptides, while the C‐terminal domain did not. Truncation of the C‐terminal domain that is involved in the dimerization of HtpG led to decrease in the anti‐aggregation activity, while fusion of the N‐terminal domain to the middle domain lowered the activity. In vitro studies with HtpG and the isolated 30 kDa rod linker polypeptide provided basically similar results to those with HtpG and phycobilisome. ADP inhibited the anti‐aggregation activity, indicating that a compact ADP conformational state provides weaker aggregation protection compared with the others.  相似文献   

8.
The heat shock protein HtpG, which is a homolog of HSP90, is essential for basal and acquired thermotolerances in cyanobacteria. Recently we demonstrated that HtpG was involved in the acclimation to low temperatures in cyanobacteria. In this study, we elucidated a role of HtpG in the cyanobacterium Synechococcus sp. PCC 7942, in the acclimation to oxidative stress that was caused by high irradiance and/or methyl viologen. The inactivation of the htpG gene resulted in a decrease in the survival rate and an increase in the photoinhibition of photosystem II when cells in a liquid medium were incubated under high light conditions. The htpG mutant was highly sensitive to methyl viologen when it was grown on an agar plate. High irradiance and/or methyl viologen greatly increased the expression of the htpG gene as well as the groEL gene in the wild-type strain. Taken together, our results suggest that HtpG may play a role by itself or with other molecular chaperones in the acclimation to oxidative stress. Received: 1 April 2002 / Accepted: 4 May 2002  相似文献   

9.
Differences in expression of the Escherichia coli stress protein HtpG were found following exposure of exponentially growing cells to heat or chemical shock when cells were grown under different environmental conditions. With an htpG::lacZ reporter system, htpG expression increased in cells grown in a complex medium (Luria-Bertani [LB] broth) following a temperature shock at 45 degrees C. In contrast, no HtpG overexpression was detected in cells grown in a glucose minimal medium, despite a decrease in the growth rate. Similarly, in pyruvate-grown cells there was no heat shock induction of HtpG expression, eliminating the possibility that repression of HtpG in glucose-grown E. coli was due to catabolite repression. When 5 mM phenol was used as a chemical stress agent for cells growing in LB broth, expression of HtpG increased. However, when LB-grown cells were subjected to stress with 10 mM phenol and when both 5 and 10 mM phenol were added to glucose-grown cultures, repression of htpG expression was observed. 2-Chlorophenol stress resulted in overexpression of HtpG when cells were grown in complex medium but repression of HtpG synthesis when cells were grown in glucose. No induction of htpG expression was seen with 2, 4-dichlorophenol in cells grown with either complex medium or glucose. The results suggest that, when a large pool of amino acids and proteins is available, as in complex medium, a much stronger stress response is observed. In contrast, when cells are grown in a simple glucose mineral medium, htpG expression either is unaffected or is even repressed by imposition of a stress condition. The results demonstrate the importance of considering differences in growth environment in order to better understand the nature of the response to an imposed stress condition.  相似文献   

10.
Although eukaryotic Hsp90 has been studied extensively, the function of its bacterial homologue HtpG remains elusive. Here we report that 50S ribosomal protein L2 was found as an associated protein with His-tagged HtpG from Escherichia coli cultured in minimum medium at 45 °C. L2 specifically activated ATPase activity of HtpG, but other denatured proteins did not. The analysis using domain derivatives of HtpG and L2 showed that C-terminal domain of L2 and the middle to C-terminal domain of HtpG are important for interaction. At physiological salt concentration, L2 was denatured state and was recognized by HtpG as well as other chaperones, DnaK/DnaJ/GrpE and GroEL/GroES. The ATPase of HtpG at increasing concentration of L2 indicated that an L2 molecule bound to a dimer HtpG with apparent KD of 0.3 μM at 100 mM KCl and 3.3 μM at 200 mM KCl.  相似文献   

11.
《Gene》1996,179(2):199-204
In a search for clones from a λgtl 1 expression library of Actinobacillus actinomycetemcomitans (Aa) genomic DNA that expressed epitopes from a 70-kDa iron-repressible membrane protein, we inadvertently identified clones that encoded a member of the 90-kDa heat-shock protein (HSP 90) family. The gene appears to encode a homologue of HtpG, as the nucleotide sequence has ∼70% identity with the Escherichia coli (Ec) and Vibrio fischeri htpG. Growth of an Aa htpG insertion mutant at 42°C was reduced to 50% of the parent strain, similar to an Ec htpG deletion mutant. These data suggest that Aa HtpG performs a function similar to Ec HtpG.  相似文献   

12.
Differences in expression of the Escherichia coli stress protein HtpG were found following exposure of exponentially growing cells to heat or chemical shock when cells were grown under different environmental conditions. With an htpG::lacZ reporter system, htpG expression increased in cells grown in a complex medium (Luria-Bertani [LB] broth) following a temperature shock at 45°C. In contrast, no HtpG overexpression was detected in cells grown in a glucose minimal medium, despite a decrease in the growth rate. Similarly, in pyruvate-grown cells there was no heat shock induction of HtpG expression, eliminating the possibility that repression of HtpG in glucose-grown E. coli was due to catabolite repression. When 5 mM phenol was used as a chemical stress agent for cells growing in LB broth, expression of HtpG increased. However, when LB-grown cells were subjected to stress with 10 mM phenol and when both 5 and 10 mM phenol were added to glucose-grown cultures, repression of htpG expression was observed. 2-Chlorophenol stress resulted in overexpression of HtpG when cells were grown in complex medium but repression of HtpG synthesis when cells were grown in glucose. No induction of htpG expression was seen with 2,4-dichlorophenol in cells grown with either complex medium or glucose. The results suggest that, when a large pool of amino acids and proteins is available, as in complex medium, a much stronger stress response is observed. In contrast, when cells are grown in a simple glucose mineral medium, htpG expression either is unaffected or is even repressed by imposition of a stress condition. The results demonstrate the importance of considering differences in growth environment in order to better understand the nature of the response to an imposed stress condition.  相似文献   

13.
Shiau AK  Harris SF  Southworth DR  Agard DA 《Cell》2006,127(2):329-340
In eukaryotes, the ubiquitous and abundant members of the 90 kilodalton heat-shock protein (hsp90) chaperone family facilitate the folding and conformational changes of a broad array of proteins important in cell signaling, proliferation, and survival. Here we describe the effects of nucleotides on the structure of full-length HtpG, the Escherichia coli hsp90 ortholog. By electron microscopy, the nucleotide-free, AMPPNP bound, and ADP bound states of HtpG adopt completely distinct conformations. Structural characterization of nucleotide-free and ADP bound HtpG was extended to higher resolution by X-ray crystallography. In the absence of nucleotide, HtpG exhibits an "open" conformation in which the three domains of each monomer present hydrophobic elements into the large cleft formed by the dimer. By contrast, ADP binding drives dramatic conformational changes that allow these hydrophobic elements to converge and shield each other from solvent, suggesting a mechanism by which nucleotides could control client protein binding and release.  相似文献   

14.
Periodontitis is a chronic infectious disease, Porphyromonas gingivalis being the most implicated pathogen. In the present study, we investigated the role of P. gingivalis HtpG (PgHtpG), a bacterial ortholog of mammalian Hsp90, in the growth of P. gingivalis and also assessed the immunological cross-reactivity of the members of the Hsp90 family. Antiserum against rat liver Hsp90 potently reacted with yeast Hsp90, called Hsc82, and also weakly with human Hsp90 (hHsp90) and human mitochondrial paralog Trap1, but did not react with PgHtpG, Escherichia coli HtpG, or human endoplasmic reticulum paralog Grp94. Moreover, among 19 monoclonal antibodies raised against hHsp90, nine cross-reacted with yeast Hsc82, and one with human Grp94, but none bound to PgHtpG or E. coli HtpG. Among them, three mAbs that strongly reacted with yeast Hsc82 recognized Asn(291)-Ile(304), a conserved region of the family protein. The polyclonal antibody raised against a peptide, Met(315)-Glu(328), of human Grp94, which corresponded to the conserved region of hHsp90, cross-reacted with hHsp90, but not with other Hsp90-family members. Thus, although mammalian Hsp90 shares some immunological reactivity with yeast Hsc82, human Grp94, and human Trap1, it is considerably distinct from its bacterial ortholog, HtpG. Disruption of the P. gingivalis htpG gene neither affected bacterial survival nor altered the sensitivity of P. gingivalis to various forms of stress.  相似文献   

15.
In the present study, we investigated the domain structure and domain-domain interactions of HtpG, an Escherichia coli homologue of eukaryotic HSP90. Limited proteolysis of recombinant HtpG, revealed three major tryptic sites, i.e. Arg7-Gly8, Arg336-Glu337 and Lys552-Leu553, of which the latter two were located at the positions equivalent to the major cleavage sites of human HSP90alpha. A similar pattern was obtained by papain treatment under nondenaturing conditions but not under denaturing conditions. Thus, HtpG consists of three domains, i.e. Domain A, Met1-Arg336; domain B, Glu337-Lys552; and domain C, Leu553-Ser624, as does HSP90. The domains of HtpG were expressed and their interactions were estimated on polyacrylamide gel electrophoresis under nondenaturing conditions. As a result, two kinds of domain-domain interactions were revealed: domain B interaction with domain A of the same polypeptide and domain C of one partner with domain B of the other in the dimer. Domain B could be structurally and functionally divided into two subdomains, the N-terminal two-thirds (subdomain BI) that interacted with domain A and the C-terminal one-third (subdomain BII) that interacted with domain C. The C-terminal two-thirds of domain A, i.e. Asp116-Arg336, were sufficient for the binding to domain B. We finally propose the domain organization of an HtpG dimer.  相似文献   

16.
The molecular chaperone function of HSP90 is activated under heat-stress conditions. In the present study, we investigated the role of the interactions in the heat-induced activation of HSP90 molecular chaperone. The preceding paper demonstrated two domain-domain interactions of HtpG, an Escherichia coli homologue of mammalian HSP90, i.e. an intra-molecular interaction between the N-terminal and middle domains and an intermolecular one between the middle and C-terminal domains. A bacterial two-hybrid system revealed that the two interactions also existed in human HSP90alpha. Partners of the interaction between the N-terminal and middle domains of human HSP90alpha could, but those between the middle and C-terminal domains could not, be replaced by the domains of HtpG. Thus, the interface between the N-terminal and middle domains is essentially unvaried from bacterial to human members of the HSP90-family proteins. The citrate synthase-binding activity of HtpG at an elevated temperature was solely localized in the N-terminal domain, but HSP90alpha possessed two sites in the N-terminal and other domains. The citrate-synthase-binding activity of the N-terminal domain was suppressed by the association of the middle domain. The complex between the N-terminal and middle domains is labile at elevated temperatures, but the other is stable even at 70 degrees C. Taken together, we propose the liberation of the N-terminal client-binding domain from the middle suppressor domain is involved in the temperature-dependent activation mechanism of HSP90 molecular chaperone.  相似文献   

17.
Xanthomonas albilineans, the causal agent of leaf scald disease of sugarcane, produces a highly potent polyketide-peptide antibiotic and phytotoxin called albicidin. Previous studies established the involvement of a large cluster of genes in the biosynthesis of this toxin. We report here the sub-cloning and sequencing of an additional gene outside of the main cluster and essential for albicidin biosynthesis. This gene encodes a 634-amino-acid protein that shows high identity with the Escherichia coli heat shock protein HtpG. Complementation studies of X. albilineans Tox- mutants confirmed the requirement of htpG for albicidin biosynthesis and revealed functional interchangeability between E. coli and X. albilineans htpG genes. HtpG was co-localised with albicidin in the cellular membrane, i.e., the cellular fraction where the toxin is most probably biosynthesised. Here we show the requirement of an HtpG protein for the biosynthesis of a polyketide-peptide antibiotic.  相似文献   

18.
The heat shock protein HtpG is homologous to members of the Hsp90 protein family of eukaryotes and is essential for basal and acquired thermotolerances in cyanobacteria. In this study we have examined the role of HtpG in the cyanobacterium, Synechococcus sp. PCC 7942, in the acclimation to low temperatures. The inactivation of the htpG gene resulted in severe inhibition of cell growth and of the photosynthetic activity when the htpG mutant was shifted to 16°C from 30°C. Wild-type cells were able to resume growth without a lag period when shifted to 30°C after 5 days at 16°C, while the mutant displayed a detectable lag. The HtpG protein was induced in the wild-type cells at 16°C. Electrophoresis in the absence of sodium dodecyl sulfate (SDS) showed that a novel, high-molecular-weight complex containing GroEL and DnaK accumulated at 16°C, but the accumulation was strongly inhibited in the htpG mutant. Our results demonstrate that the HtpG protein contributes significantly to the ability of cyanobacteria to acclimate to low temperatures. Received: 16 July 2001/Accepted: 15 August 2001  相似文献   

19.
As a preliminary to the understanding of the function of the highly conserved Escherichia coli heat shock protein HtpG, the protein was purified and partially characterized. The htpG gene was subcloned into the inducible expression vector, pT7-6. Upon induction, the HtpG protein accumulated to approximately 30% of the total protein in the cell. A purification scheme was devised which involved column chromatography on DEAE-cellulose, hydroxylapatite, and Sephacryl S-200. The amino acid composition of the purified protein corresponded closely with the predicted amino acid composition derived from the DNA sequence, and the sequence of the 8 amino-terminal residues matched the predicted sequence exactly. The molecular weight of the denatured protein is 65,500 and the native molecular weight is 144,620, as calculated by using both the Stokes radius and the sedimentation coefficient. As the molecular weight predicted from the DNA sequence is 71,429, this indicates the HtpG protein is a dimer. The HtpG protein was found to be a phosphoprotein. Thus, HtpG is structurally similar to its eukaryotic homologue, hsp83, which is also a phosphoprotein and a dimer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号