首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radiation sensitivity of two small-cell lung carcinoma cell lines growing as multicellular spheroids in static culture was determined using clonogenic cell survival and growth delay as endpoints. Growth delay determination suggested that clonogenic cell kill was less than was obtained by direct assay of cell survival. Recovery from potentially lethal damage was assayed in one line (HC12) but was not demonstrable, and clonogenic cell survival decreased with time in treated spheroids with diameters greater than 300 microns which contained a hypoxic cell population. Microscopic examination of the treated spheroids showed the emergence of an abnormal giant-cell population, and the progressive clonogenic cell loss that occurred after treatment was thought to be due to oxygen and nutrient deprivation of the remaining viable cells by this doomed cell population. Correction of the growth delay measurements for changes in cell size and clonogenic cell population allowed correlation of the growth delay and cell survival data.  相似文献   

2.
Beams of near-ultraviolet radiation at several principal emission lines of a mercury arc were isolated with a grating monochromator and directed upon cell suspensions. During subsequent incubation at room temperature in Nutrient Broth, the population was studied by removing samples and obtaining cell numbers and cell size distributions with an electronic cell counter. Division delay without lethality was observed. The shapes of the dose-response curves for induction, the doses of near-ultraviolet radiation required, and the action spectrum for division delay were found to be similar to those for growth delay (in broth) and for photoprotection. These findings indicate that all three effects, division delay, growth delay, and photoprotection, are induced by a common type of critical event. Changes in cell size distribution in the culture during incubation in Nutrient Broth after near-ultraviolet irradiation are very similar for control and irradiated populations, although these changes occur at a much later time in the irradiated population. This indicates that, in Nutrient Broth, the population recovers completely from the inhibition of growth and division, thus justifying use of the term "delay," and suggesting that the damage is nongenetic.  相似文献   

3.
The kinetic effect of silkworm hemolymph on host cell viability during a baculovirus-induced insect cell death process was investigated. Host cell viability after viral infection is important for replication of the baculovirus DNA containing a recombinant gene and expression of the cloned gene. The baculovirus-induced insect cell death process can be divided into a delay phase and a first-order death phase, which are characterized by a delay time (t(d)) and a specific death rate (k(d)), respectively. For 0-10% silkworm hemolymph in the media, higher concentrations resulted in longer delay times and lower specific death rates. By adding 10% silkworm hemolymph, the delay time increased from 72 to 164 h, and the specific death rate was reduced from 13.8 x 10(-)(3) to 6.0 x 10(-)(3) h(-)(1). In addition, host cell viability correlated with DNA fragmentation, which is the biochemical hallmark of apoptosis. This indicates that the silkworm hemolymph inhibits the baculovirus-induced insect cell apoptosis. However, the silkworm hemolymph did not affect the number of hypothetical targets, which represents host cell susceptibility to the baculovirus. The concentration of fetal bovine serum (FBS) in the medium did not affect the delay time, while lower concentrations of silkworm hemolymph resulted in shorter delay times. This means that the substance which increases the longevity of the host cell is not in the FBS but in the silkworm hemolymph.  相似文献   

4.
The effect of ultraviolet light in delaying certain events in the cell division cycle has been examined. The time to fusion of the egg and sperm nucleus is not affected by doses of ultraviolet that cause considerable delay in other parts of the cycle. The principal delay occurs before anaphase. Between anaphase and cleavage there is only slight delay. The "refractory period" during which the radiation does not delay the immediate cycle of cell division, does not seem to represent complete refractoriness of the mitotic cycle to interference during this period.  相似文献   

5.
A nutritional shift-up from glucose minimal medium to LB broth was previously shown to cause a division delay of about 20 min in synchronized cultures of Escherichia coli, and a similar delay was observed after a nutritional pulse (a shift-up followed rapidly by a return to glucose minimal medium). Using synchronized cultures, we show here that the pulse-induced division delay does not require protein synthesis during the period in LB broth, suggesting that a nonprotein signal is generated by the shift-up and transmitted to the cell division machinery. The cell division protein FtsZ, target of the SOS-associated division inhibitor SfiA (or SulA), seems to be involved in the postshift division delay. Mutants in which the FtsZ-SfiA interaction is reduced, either sfiA (loss of SfiA) or ftsZ(SfiB) (modification of FtsZ), have a 50- to 60-min division delay after a shift-up. Furthermore, after a nutritional pulse, the ftsZ(SfiB) mutant had only a 10- to 16-min delay. These results suggest that the FtsZ protein is the target element of the cell division machinery to which the shift-up signal is transmitted.  相似文献   

6.
The G2 DNA damage checkpoint ensures maintenance of cell viability by delaying progression into mitosis in cells which have suffered genomic damage. It is controlled by a number of proteins which are hypothesized to transduce signals through cell cycle regulators to delay activation of p34cdc2. Studies in mammalian cells have correlated induction of inhibitory tyrosine 15 (Y15) phosphorylation on p34cdc2 with the response to DNA damage. However, genetic studies in fission yeast have suggested that the major Y15 kinase, p107wee1, is not required for the cell cycle delay in response to DNA damage, although it is required for survival after irradiation. Thus, the target of the checkpoint, and hence the mechanism of cell cycle delay, remains unknown. We show here that Y15 phosphorylation is maintained in checkpoint-arrested fission yeast cells. Further, wee1 is required for cell cycle arrest induced by up-regulation of an essential component of this checkpoint, chk1. We observed that p107wee1 is hyperphosphorylated in cells delayed by chk1 overexpression or UV irradiation, and that p56chk1 can phosphorylate p107wee1 directly in vitro. These observations suggest that in response to DNA damage p107wee1 is phosphorylated by p56chk1 in vivo, and this results in maintenance of Y15 phosphorylation and hence G2 delay. In the absence of wee1, other Y15 kinases, such as p66mik1, may partially substitute for p107wee1 to induce cell cycle delay, but this wee1-independent delay is insufficient to maintain full viability. This study establishes a link between a G2 DNA damage checkpoint function and a core cell cycle regulator.  相似文献   

7.
Blue Light Regulation of Cell Division in Chlamydomonas reinhardtii   总被引:1,自引:0,他引:1       下载免费PDF全文
Münzner P  Voigt J 《Plant physiology》1992,99(4):1370-1375
A delay in cell division was observed when synchronized cultures of the unicellular green alga Chlamydomonas reinhardtii growing under heterotrophic conditions were exposed to white light during the second half of the growth period. This effect was also observed when photosynthesis was blocked by addition of the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Light pulses of 10 minutes were sufficient to induce a delay in cell division in the presence or absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. A delay in cell division was induced by blue light but not by illumination with red or far-red light. The equal intensity action spectrum revealed two peaks at 400 and 500 nm.  相似文献   

8.
Dolichol functions as a carrier of oligosaccharides to polypeptide chains in the biosynthesis of N-linked glycoproteins. It is here reported that a short (4 hours) transient exposure to tunicamycin, (a specific inhibitor of dolichol dependent glycosylation) causes a cell cycle delay in post-mitotic 3T3-cells. From kinetic point of view the delay following treatment by tunicamycin resembles the delay caused by short exposures to serum deprivation or treatment by cycloheximide, indicating that the expression of N-linked glycoproteins may be involved in the cell cycle regulation. Evidence is that the availability of dolichol may be a limiting factor in this process is also presented.  相似文献   

9.
Dicentric chromosomes are genetically unstable and depress the rate of cell division in Saccharomyces cerevisiae. We have characterized the effects of a conditionally dicentric chromosome on the cell division cycle by using microscopy, flow cytometry, and an assay for histone H1 kinase activity. Activating the dicentric chromosome induced a delay in the cell cycle after DNA replication and before anaphase. The delay occurred in the absence of RAD9, a gene required to arrest cell division in response to DNA damage. The rate of dicentric chromosome loss, however, was elevated in the rad9 mutant. A mutation in BUB2, a gene required for arrest of cell division in response to loss of microtubule function, diminished the delay. Both RAD9 and BUB2 appear to be involved in the cellular response to a dicentric chromosome, since the conditionally dicentric rad9 bub2 double mutant was highly inviable. We conclude that a dicentric chromosome results in chromosome breakage and spindle aberrations prior to nuclear division that normally activate mitotic checkpoints, thereby delaying the onset of anaphase.  相似文献   

10.
Mouse neuroblastoma (N2A) cells react to a heat treatment by inhibition of DNA and protein synthesis and induction of cell cycle progression delay. Mitotic delay of heat-treated G1 cells correlates with reduction of protein synthesis and is due to an extensive delay of entrance into S phase, while the G2 phase of these cells is shortened. Mitotic delay of heat-treated G2 cells is more than in G1 cells and no correlation with protein synthesis reduction is found. In heat-treated G1 phase cells, both protein synthesis and cell cycle progression become thermotolerant to a second incubation at increased temperature. Moreover, the process of DNA synthesis becomes thermotolerant. In contrast, when heat-treated G1 phase cells have progressed into G2 phase and are then incubated at increased temperature, this G2 phase delay is not diminished. Apparently, additional targets for hyperthermia are present in late S and G2 phase cells.  相似文献   

11.
The extent of mitotic delay and chromosome aberration induction by X-rays and bleomycin has been compared in normal human foetal fibroblasts at doses giving approximately equal levels of cell killing, assayed as colony-forming ability. Bleomycin induced much less G2 delay and chromosome damage than X-rays. We conclude that the major mechanism of cell killing by bleomycin does not involve chromosome damage but the cells pass through a number of division cycles before dying and a common DNA lesion is involved in G2 delay and chromosome damage.  相似文献   

12.
The effect of adriamycin on cell cycle phase progression of CHO cells synchronized into the various phases of the cell cycle by elutriation was investigated by high resolution pulse cytophotometry. Cells treated in all phases of the cell cycle showed delay in their subsequent progression. In addition to the wellknown block of cells in the G2-phase, a delay in passage of cells from G1 to S and a decreased rate of transit through the S-phase were observed. A broadening of the DNA distributions of the treated cells was observed after cell division indicating induction of chromosomal abnormalities.  相似文献   

13.
Cells treated with low doses of linoleic acid hydroperoxide (LoaOOH) exhibit a cell-cycle delay that may provide a mechanism to overcome oxidative stress. Strains sensitive to LoaOOH from the genome-wide deletion collection were screened to identify deletants in which the cell-cycle delay phenotype was reduced. Forty-seven deletants were identified that were unable to mount the normal delay response, implicating the product of the deleted gene in the oxidant-mediated cell-cycle delay of the wild-type. Of these genes, SWI6 was of particular interest due to its role in cell-cycle progression through Start. The swi6 deletant strain was delayed on entry into the cell cycle in the absence of an oxidant, and oxidant addition caused no further delay. Transforming the swi6 deletant with SWI6 on a plasmid restored the G1 arrest in response to LoaOOH, indicating that Swi6p is involved in oxidant sensing leading to cell division delay. Micro-array studies identified genes whose expression in response to LoaOOH depended on SWI6. The screening identified 77 genes that were upregulated in the wild-type strain and concurrently downregulated in the swi6 deletant treated with LoaOOH. These data show that functions such as heat shock response, and glucose transport are involved in the response.  相似文献   

14.
Mutations in the GDAP1 gene are responsible of the Charcot-Marie-Tooth CMT4A, ARCMT2K, and CMT2K variants. GDAP1 is a mitochondrial outer membrane protein that has been related to the fission pathway of the mitochondrial network dynamics. As mitochondrial dynamics is a conserved process, we reasoned that expressing GDAP1 in Saccharomyces cerevisiae strains defective for genes involved in mitochondrial fission or fusion could increase our knowledge of GDAP1 function. We discovered a consistent relation between Fis1p and the cell cycle because fis1Δ cells showed G(2)/M delay during cell cycle progression. The fis1Δ phenotype, which includes cell cycle delay, was fully rescued by GDAP1. By contrast, clinical missense mutations rescued the fis1Δ phenotype except for the cell cycle delay. In addition, both Fis1p and human GDAP1 interacted with β-tubulins Tub2p and TUBB, respectively. A defect in the fis1 gene may induce abnormal location of mitochondria during budding mitosis, causing the cell cycle delay at G(2)/M due to its anomalous interaction with microtubules from the mitotic spindle. In the case of neurons harboring defects in GDAP1, the interaction between mitochondria and the microtubule cytoskeleton would be altered, which might affect mitochondrial axonal transport and movement within the cell and may explain the pathophysiology of the GDAP1-related Charcot-Marie-Tooth disease.  相似文献   

15.
The p57(Kip2) cyclin-dependent kinase inhibitor (CDKi) has been implicated in embryogenesis, stem-cell senescence and pathologies, but little is known of its role in cell cycle control. Here, we show that p57(Kip2) is targeted by the p38 stress-activated protein kinase (SAPK). Phosphorylation of p57(Kip2) at T143 by p38 enhances its association with and inhibition of Cdk2, which results in cell-cycle delay upon stress. Genetic inactivation of the SAPK or the CDKi abolishes cell-cycle delay upon osmostress and results in decreased cell viability. Oxidative stress and ionomycin also induce p38-mediated phosphorylation of p57 and cells lacking p38 or p57 display reduced viability to these stresses. Therefore, cell survival to various stresses depends on p57 phosphorylation by p38 that inhibits CDK activity. Together, these findings provide a novel molecular mechanism by which cells can delay cell cycle progression to maximize cell survival upon stress.  相似文献   

16.
The effect of inhibition of 3-Hydroxy-3-methylglutaryl Coenzyme A reductase (HMG CoA reductase) on cell cycle progression in proliferating 3T3 cells was studied. It was found that short transient exposures to the HMG CoA reductase inhibitor 25-hydroxycholesterol temporarily blocked the cell cycle traverse in the postmitotic half of G1 (G1pm), whereas cells in the subsequent cell cycle phases were unaffected. The kinetics of the cell cycle delay, induced by 25-hydroxycholesterol, resembled the kinetics of the delay induced by serum depletion, which also inhibited the activity of HMG CoA reductase. In contrast to the case of serum depletion, platelet derived growth factor (PDGF), which efficiently prevented the decrease of HMG CoA reductase in serum-free medium, was not capable of preventing the growth inhibitory effect following treatment by 25-hydroxycholesterol. However, cholesterol and two isoprenoids, dolichol and coenzyme Q, were effective in this respect. In addition, dolichol counteracted the cell cycle delay following short periods of serum starvation.  相似文献   

17.
Flow cytometry was used to study cell cycle recovery in X-irradiated Chinese hamster cells after action of novobiocin, an inhibitor of topoisomerase II. A prolonged treatment with 1 mM novobiocin (20-30 h) of intact cells results in the G2 + M delay. Novobiocin treatment of 5 Gy-irradiated cells results in a slight delay in cell exit from G1 into S phase and in a much longer G2-delay if compared with X-irradiated cells. These data allow to suggest an involvement of topoisomerase II in cell response to ionizing radiation.  相似文献   

18.
Inhibition of mitosis by antimitotic drugs is thought to occur by destruction of microtubules, causing cells to arrest through the action of one or more mitotic checkpoints. We have patterned experiments in the yeast Saccharomyces cerevisiae after recent studies in mammalian cells that demonstrate the effectiveness of antimitotic drugs at concentrations that maintain spindle structure. We show that low concentrations of nocodazole delay cell division under the control of the previously identified mitotic checkpoint genes BUB1, BUB3, MAD1, and MAD2 and independently of BUB2. The same genes mediate the cell cycle delay induced in ctf13 mutants, limited for an essential kinetochore component. Our data suggest that a low concentration of nocodazole induces a cell cycle delay through checkpoint control that is sensitive to impaired kinetochore function. The BUB2 gene may be part of a separate checkpoint that responds to abnormal spindle structure.  相似文献   

19.
A defined, serum-free cell culture medium supplemented with nonsteroidal anabolic hormones, insulin, thyroxin, and growth hormone was found to accelerate wound healing by stimulating vascularized granulation tissue formation, epithelialization, and angiogenesis. The aim of this work was to study the effect of cell culture medium on the survival rate of cephalically based random dorsal skin flaps in an animal model. A total of 77 Sprague-Dawley rats were randomized into five treatment groups: pharmacologic delay with cell culture medium, flap enhancement with cell culture medium, surgical delay, biological delay with saline, and control. Statistically significant differences in distal flap necrosis were found among all groups (p<0.003). The rats treated with cell culture medium before flap elevation showed a significant increase in flap viability: a survival rate of 83 percent, compared with the control group, which demonstrated a survival rate of only 58 percent (p<0.0001). The surgical delay and the groups treated with cell culture medium yielded similar results with no significant difference between them. This study indicates that preoperative injection of cell culture medium may play a role in decreasing skin flap necrosis.  相似文献   

20.
The duration of the cell cycle in synchronous cultures of HeLa S3 cells that were either irradiated with 3.5 Gy of 220-kV X rays in mid-S phase or treated in early G1 or mid-S phase for several hours with 1 or 3 microM aphidicolin, or were subjected to both treatments, was measured by time-lapse cinemicrography. When compared with the generation time of untreated cells, the delay in cell progression with the combined treatment was found to be less than the sum of the delays with the individual treatments, but longer than the imposed delay caused by treatment with aphidicolin alone. Because recovery from potentially lethal radiation damage proceeds in the presence of aphidicolin, this finding suggests that a portion of the radiation-induced delay in cell progression may be associated with processes other than those that directly affect cell viability. It was also observed that the incidence of both spontaneous and radiation-induced sister-cell fusion is decreased in cultures incubated in the presence of aphidicolin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号