首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
During the maturation in vitro of reconstituted collagen fibrils prepared from rat skin, the mechanical and thermal stability of collagen increased and the pepsin-solubility decreased. At the same time a larger fraction of the pepsin-soluble collagen attained a lower molecular thermal stability that resulted in a biphasic thermal transition of the soluble collagen. Type-I collagen, with a similar biphasic thermal transition, was isolated from acid-insoluble rat skin collagen.  相似文献   

3.
4.
The morphology of aggregates of calf-skin tropocollagen, precipitated by continuous injection into neutral phosphate buffers at 35 degrees , has been studied by electron microscopy. Although most of the collagen is precipitated as normal native fibrils, a small proportion forms closed toroidal structures having the usual native band-interband pattern. Theoretical considerations, based on elastic energies in a general microfibril model, predict that the toroids should have a simple super-helical structure, and this is not inconsistent with the observations. From the theoretical energies it was possible to estimate a crude lower limit of 3kcal./mole for the free energy of association of the tropocollagen macromolecules.  相似文献   

5.
The formation of collagen fibrils under physiological conditions of ionic strength, pH and temperature was markedly affected by the presence of small amounts of bovine tendon glycoprotein. The absorbance of the gels at 400 nm was decreased, and they took longer to form. Over the range of concentration tested, the negative specific absorbance, -delta Asp., and the specific retardation, Rsp., both increased with the glycoprotein to collagen ratio. When added during the nucleation phase, glycoprotein was still able to exert its effect almost fully, and so must act to inhibit the later stages of fibril formation. Several pieces of evidence showed that glycoprotein acts via a weak binding to the collagen molecule. Electron microscopy established that fibrils formed in the presence of glycoprotein had a normal cross-striation pattern, but were significantly thinner than fibrils formed in control gets. The results suggest that glycoprotein could act in tissues to help regulate the diameter of collagen fibrils.  相似文献   

6.
The effects of three glycosaminoglycans (chondroitin 6-sulfate, dermatan sulfate, and hyaluronate) and a proteoglycan on the kinetics of fibril formation and on the thermal stability of the in vitro assembled collagen fibrils, under physiological conditions of ionic strength and pH, have been examined. The glycosaminoglycans were found to influence the kinetics of collagen precipitation but not the thermal stability of the in vitro assembled fibrils. The proteoglycan was found to influence the kinetics of collagen precipitation and to reduce the thermal stability of the in vitro assembled fibrils. Comparison of the interaction occurring between chondroitin 6-sulfate and collagen under acidic conditions (0.05M acetic acid) and that occurring under physiological conditions showed that markedly different interaction products were formed under the different conditions.  相似文献   

7.
8.
The intermolecular space of reconstituted collagen fibrils   总被引:6,自引:0,他引:6  
The extent, geometry and heterogeneity of the intermolecular space of hydrated, purified and reconstituted steer skin collagen fibrils has been characterized. The extent of the space has been assessed experimentally by an X-ray diffraction method and a new physical chemical technique, and found to be 1.14 ml per gram collagen. A theoretical model relating the intermolecular space to X-ray diffraction parameters has been presented, and this suggests that the geometry of the intermolecular space arises from a near-hexagonal packing of the collagen molecules. On the basis of an assumed microfibrillar packing model and a geometric construction of the shape of a collagen molecule, the distribution of the space within reconstituted collagen fibrils has been characterized as follows: 0.13 ml of the intermolecular space/g collagen can be attributed to the helical groove of the collagen molecules per se and 1.01 ml/g is interstitial; 0.66 ml/g is present in the form of “pores” (hexagonally-closed packed spaces), whereas 0.48 ml/g is present in the form of “holes” (hexagonal volume defects); 0.73 ml/g of the intermolecular space is associated with a region of the collagen fibrils where holes are localized and 0.41 ml/g is attributable to the regions of the fibril in which pores only are present.  相似文献   

9.
10.
11.
12.
Stress-strain experiments on individual collagen fibrils   总被引:1,自引:0,他引:1  
Collagen, a molecule consisting of three braided protein helices, is the primary building block of many biological tissues including bone, tendon, cartilage, and skin. Staggered arrays of collagen molecules form fibrils, which arrange into higher-ordered structures such as fibers and fascicles. Because collagen plays a crucial role in determining the mechanical properties of these tissues, significant theoretical research is directed toward developing models of the stiffness, strength, and toughness of collagen molecules and fibrils. Experimental data to guide the development of these models, however, are sparse and limited to small strain response. Using a microelectromechanical systems platform to test partially hydrated collagen fibrils under uniaxial tension, we obtained quantitative, reproducible mechanical measurements of the stress-strain curve of type I collagen fibrils, with diameters ranging from 150-470 nm. The fibrils showed a small strain (epsilon < 0.09) modulus of 0.86 +/- 0.45 GPa. Fibrils tested to strains as high as 100% demonstrated strain softening (sigma(yield) = 0.22 +/- 0.14 GPa; epsilon(yield) = 0.21 +/- 0.13) and strain hardening, time-dependent recoverable residual strain, dehydration-induced embrittlement, and susceptibility to cyclic fatigue. The results suggest that the stress-strain behavior of collagen fibrils is dictated by global characteristic dimensions as well as internal structure.  相似文献   

13.
Collagen II fibrils are a critical structural component of the extracellular matrix of cartilage providing the tissue with its unique biomechanical properties. The self-assembly of collagen molecules into fibrils is a spontaneous process that depends on site-specific binding between specific domains belonging to interacting molecules. These interactions can be altered by mutations in the COL2A1 gene found in patients with a variety of heritable cartilage disorders known as chondrodysplasias. Employing recombinant procollagen II, we studied the effects of R75C or R789C mutations on fibril formation. We determined that both R75C and R789C mutants were incorporated into collagen assemblies. The effects of the R75C and R789C substitutions on fibril formation differed significantly. The R75C substitution located in the thermolabile region of collagen II had no major effect on the fibril formation process or the morphology of fibrils. In contrast, the R789C substitution located in the thermostable region of collagen II caused profound changes in the morphology of collagen assemblies. These results provide a basis for identifying pathways leading from single amino acid substitutions in collagen II to changes in the structure of individual fibrils and in the organization of collagenous matrices.  相似文献   

14.
Mechanical properties of collagen fibrils   总被引:1,自引:0,他引:1  
The formation of collagen fibers from staggered subfibrils still lacks a universally accepted model. Determining the mechanical properties of single collagen fibrils (diameter 50-200 nm) provides new insights into collagen structure. In this work, the reduced modulus of collagen was measured by nanoindentation using atomic force microscopy. For individual type 1 collagen fibrils from rat tail, the modulus was found to be in the range from 5 GPa to 11.5 GPa (in air and at room temperature). The hypothesis that collagen anisotropy is due to the subfibrils being aligned along the fibril axis is supported by nonuniform surface imprints performed by high load nanoindentation.  相似文献   

15.
The presence of glycosaminoglycans (GAGs) and their contribution to mechanical properties of the cementum-dentin junction (CDJ) were investigated using nanometer scale characterization techniques. Five to two millimeter thick transverse sections from the apical ends of human molars were ultrasectioned at room temperature under wet conditions using a diamond knife and an ultramicrotome. The structure of the CDJ under dry and wet conditions before and after digestion of GAGs and collagen fibrils was studied using an atomic force microscope (AFM). The mechanical properties of the untreated and enzyme treated CDJ under wet conditions were studied using an AFM-based nanoindenter. GAG digestion was performed for 1, 3, and 5 h at 37 degrees C using chondroitinase-ABC. Collagen fibril digestion was performed for 24 and 48 h at 37 degrees C using collagenase. As reported previously, AFM scans of dry untreated CDJ (control) revealed a valley, which transformed into a peak under wet conditions. The height differences relative to cementum and dentin of untreated and treated CDJ were determined by measuring the CDJ profile under dry and wet conditions. The depth of the valley of GAG and collagen-digested CDJ was greater than that of undigested CDJ under dry conditions. The height of the peak of GAG-digested CDJ was significantly higher than that of the undigested CDJ under wet conditions. The collagen-digested CDJ under wet conditions is assumed to form a valley because of the removal of collagen fibrils from the CDJ. However, the depth of the valley was lower compared to the depth under dry conditions. Wet AFM-based nanoindentation showed that the elastic modulus and hardness of control (3.3+/-1.2 and 0.08+/-0.03 GPa) were significantly higher (ANOVA & SNK, P < 0.05) than chondroitinase-ABC treated CDJ (0.9+/-0.4 and 0.02+/-0.004 GPa) and collagenase treated CDJ (1.5+/-0.6 and 0.04+/-0.01 GPa). No significant difference in mechanical properties between chondroitinase-ABC and collagenase treated CDJ was observed. Based on the results it was concluded that the 10-50 microm wide CDJ is a composite that includes, chondroitin-4-sulfate, chondroitin-6-sulfate, and possibly dermatan sulfate, and collagen fibrils. The association of GAGs with the collagen fibrils provides the observed controlled hydration and partially contributes toward the stiffness of the CDJ under wet conditions.  相似文献   

16.
The time-dependent increase in stability, as measured in terms of the rate of dissolution, of collagen fibrils formed in vitro from pepsin-treated collagen was significantly affected only by temperature, and not by either ionic strength or pH. This is in contrast with collagen fibril formation, a process which is greatly affected by ionic strength and pH. Within the range of temperature 29-37 degrees C, lower temperature caused slower fibril formation and faster fibril stabilization. These results suggest that the intermolecular interactions involved in stabilizing collagen fibrils are entirely different from those involved in fibril formation. Based on kinetic analysis of the dissolution and stabilization of the fibrils, it is proposed that collagen molecules first form unstable fibrils which become gradually stabilized on prolonged incubation, without necessarily introducing covalent cross-links.  相似文献   

17.
The collagen fibrils in the rectal gland capsule of the coelacanth Latimeria chalumnae are c . 127 nm in diameter and resemble those fibrils that play an active mechanical role in trout skin. The fibrils having periodicity of about 54 nm and seven intrabands per period suggest that the collagen molecules in Latimeria are shorter, a feature they presumably share with lower tetrapods.  相似文献   

18.
Structure and function of bone collagen fibrils   总被引:4,自引:0,他引:4  
The intermolecular volume of fully hydrated collagen fibrils from a number of mineralized and non-mineralized tissues of adult rats has been determined both by an exclusion technique and by a method which involves the monitoring of specific X-ray diffraction parameters. The intermolecular volume of either bone or dentinal fibrils is approximately twice that of either tail or achilles tendon, and the most frequent intermolecular distance in bone or dentine fibrils is approximately 3 Å larger than of the tendons.A number of fibrillar structures are most compatible with the intermolecular volume of rat tail tendon. These include hexagonal molecular packing and orthogonal arrays of microfibrils comprising seven parallel molecular strands. The intermolecular volume of bone or dentinal collagen fibrils, on the other hand, appears to arise from structures having a disordered or pseudo-hexagonal molecular packing, in which the most frequent intermolecular distance is about 19 Å.The space associated with collagen fibrils in adult bone is such that 70 to 80% of the mineral is located within the intermolecular space of the fibrils—approximately equal amounts of mineral being in spaces having lateral dimensions of 25 to 75 Å and 6 to 12 Å, respectively. Particles located in the latter kind of intermolecular space probably constitute, to a large extent, the non-crystalline mineral phase of adult bone.The stereo-chemical constraints on the transport of mineral ions into and within collagen fibrils of bone and tendon support the postulate that bone collagen is an in vivo catalyst for mineral deposition and further suggests that its catalytic activity may be partially regulated through its molecular packing.  相似文献   

19.
New data have been collected on the crystalline structure of collagen fibrils in tendon. The unit cell in decrimped tendon has been determined by measurements of the Bragg reflections in the X-ray diffraction pattern. The results are consistent with a triclinic cell with b = 75.5 A?, β = 93 °, a = bsinβ, a = 90 °, c = n × 668 A?, where n is probably 4 and γ = 90 °. A selection rule observed for prominent reflections is explicable either in terms of a specific orientation of the microfibrils on the lattice, or by a helical distortion of the microfibril axis. The cell parameter β can be varied by changing the ionic envirionment.  相似文献   

20.
Understanding the viscoelastic behavior of collagenous tissues with complex hierarchical structures requires knowledge of the properties at each structural level. Whole tissues have been studied extensively, but less is known about the mechanical behavior at the submicron, fibrillar level. Using a microelectromechanical systems platform, in vitro coupled creep and stress relaxation tests were performed on collagen fibrils isolated from the sea cucumber dermis. Stress-strain-time data indicate that isolated fibrils exhibit viscoelastic behavior that could be fitted using the Maxwell-Weichert model. The fibrils showed an elastic modulus of 123 ± 46 MPa. The time-dependent behavior was well fit using the two-time-constant Maxwell-Weichert model with a fast time response of 7 ± 2 s and a slow time response of 102 ± 5 s. The fibrillar relaxation time was smaller than literature values for tissue-level relaxation time, suggesting that tissue relaxation is dominated by noncollagenous components (e.g., proteoglycans). Each specimen was tested three times, and the only statistically significant difference found was that the elastic modulus is larger in the first test than in the subsequent two tests, indicating that viscous properties of collagen fibrils are not sensitive to the history of previous tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号