首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have utilized the vibrating probe technique to examine transport by individual chloride cells in the short-circuited fish opercular epithelium. Variability in the steady, state and in response to rapid perturbations, including fast-acting hormones and ion replacement, was analyzed. Negative short-circuit currents, corresponding to chloride secretion, were associated with the apical crypts of all but five of 386 chloride cells sampled. Average chloride cell short-circuit current and conductance were 2.7±0.1 nA and 87.7±3.8, nS, respectively, or 19 mA cm–2 and 620 mS cm–2 (resistance=1.6 cm2) when normalized to apical crypt surface area. Exposure to 1 m epinephrine rapidly inhibited the tissue short-circuit current by inhibiting the current pumped by all chloride cells, i.e. all chloride cells have adrenergic receptors. The time course of inhibition for each cell mirrored that of the whole tissue. Reversal of epinephrine inhibition of the tissue short-circuit current by glucagon and phosphodiesterase inhibition was by reversal of epinephrine's inhibition of individual chloride cells, and not by turning on cells which were previously inactive or uninhibited, or by stimulating nonchloride cells. A great amount of variability existed among chloride cells in the ability of these agents to reverse epinephrine-inhibited current. Likewise, considerable variability in the response of chloride cell conductance to these perturbations was observed, and in many instances a clear dissociation between current and conductance was noted. In the steady state, variability among cells in a single tissue always defined a linear relationship between chloride cell current and conductance with zero-current conductance intercept at zero. Equivalent circuit modeling indicates that the leak conductance of chloride cells within a single tissue always contributes the same proportion to the total individual chloride cell conductance, such that the ratio between the conductances of the active and leak pathways of chloride cells is constant. The leak pathway is almost certainly dominated by a sodium-selective paracellular pathway. The results suggest that these cells control the permeability of their paracellular pathway. A possible mechanism for this control is discussed.  相似文献   

2.
Summary Cell volume determinations and electrophysiological measurements have been made in an attempt to determine if mitochondria-rich (MR) cells are localized pathways for conductive movements of Cl across frog skin epithelium. Determinations of cell volume with video microscope techniques during transepithelial passage of current showed that most MR cells swell when the tissue is voltage clamped to serosa-positive voltages. Voltage-induced cell swelling was eliminated when Cl was removed from the mucosal bath solution. Using a modified vibrating probe technique, it was possible to electrically localize a conductance specifically to some MR cells in some tissues. These data are evidence supporting the idea that MR cells are pathways for conductive movements of Cl through frog skin epithelium.  相似文献   

3.
In early studies of salt transport across frog and toad skin, it was assumed that chloride movement is extracellular. However, later studies suggested that chloride movement is largely transcellular. Chloride transport across toad skin is greatly diminished in skins of salt-acclimated toads (Bufo viridis) and was correlated with the number of mitochondria-rich (m.r.) cells in the epithelium. The activated chloride conductance could be recovered upon in vitro incubation with theophylline. It was found that the short-circuit current (Isc) and the chloride conductance (Gcl) in toad skin could be separated experimentally by selective use of synthetic oxytocin (Syntocinon) or theophylline, and by substituting impermeable anions for chloride. With the use of the vibrating probe we demonstrated directly that chloride-dependent peak currents are localized only over m.r. cells, under hyperpolarized (V = -100 mV) conditions. It is concluded that the m.r. cells form the principal site for passive chloride movement across amphibian skin. This cellular pathway is regulated through a cyclic AMP-mediated process. It is suggested that the spatial separation of the sodium and chloride channels is essential to maintain the granulosum cells which are engaged in sodium transport hyperpolarized, and thus providing the driving force for the sodium entry into the cells.  相似文献   

4.
The chloride current across the isolated epithelium from saline-acclimated Bufo viridis toads was studied using the extracellular vibrating probe technique. Local peak current densities varying between 5 and 100 microA/cm2 were recorded over subpopulation of mitochondria-rich cells, but never over granulosum cells. These local transepithelial currents had characteristics similar to the activated chloride current observed in the whole skin (Katz, U. and Larsen, E.H. (1984) J. Exp. Biol. 109, 353-371). Replacement of the apical Ringer with chloride-free (nitrate) ringer resulted in reversible reduction in the current at the mitochondria-rich cells. It is concluded that the mitochondria-rich cells are the principal site of passive chloride conductance across the epithelium.  相似文献   

5.
The mechanisms of anion transport in the rabbit distal colon were investigated in vitro under short-circuit conditions by examining the effects of transport inhibitors (the stilbene derivatives SITS and DIDS) under a variety of conditions. These agents consistently inhibited Jm-sCl: SITS (10(-3) M) reduced both unidirectional chloride fluxes to the same degree and did not alter JnetCl. In contrast, 10(-4) M DIDS had no effect on Js-mCl and had a significant chloride antiabsorptive effect. DIDS had no effect on either tissue cyclic AMP levels or on basal flux of potassium. The effects of SITS and the cyclic AMP-related secretagogue theophylline on Isc were independent. Additionally, there was no significant alteration of intracellular potential difference or apical membrane fractional resistance elicited by SITS during microelectrode impalement of colonic surface epithelial cells. These results suggest a complex mechanism of anion transport in the distal colon, with a component of electrogenic anion absorption inhibited by the stilbenes. The subsequent changes in current, conductance, and chloride fluxes are dependent upon additional, independent anion transport processes. These pharmacologic agents exhibit an antiabsorptive effect, rather than a stimulation of electrogenic chloride secretion.  相似文献   

6.
Lithium transport across the urinary bladder of Bufo marinus has been studied by means of the short-circuit current technique, as well as unidirectional ion flux measurements. Exposure to lithium of the epithelial (mucosal) surface of this preparation led to a slow, progressive decrease of ion transport, with increasing discrepancy between short-circuit current and lithium influx; in fact there was still an appreciable lithium influx across bladder exposed to amiloride even though short-circuit current was suppressed. Ohmic conductance and sodium efflux barely increased under these circumstances. Upon replacement of lithium by sodium on the epithelial side, the preparations recovered slowly indeed, and residual lithium could be detected in bladder tissue for more than 2 hr while the rate of sodium extrusion at the basal-lateral cell border was slowed down. Recovery from exposure to lithium was accelerated by vasopressin and amphotericin, both of which facilitate sodium entry at the apical border of the epithelium. Thus the lasting deleterious influence of lithium on sodium transport might result from the fact that this ion, once trapped in the cytoplasm, closes the sodium channels.  相似文献   

7.
The pathway for the voltage-activated chloride current across isolated toad skin was analyzed using a scanning 2D-vibrating voltage probe technique, which permits discrimination of local current peaks if their origins are more than 50 μm apart. The epithelium was separated from the corial connective tissue after enzymatic digestion with collagenase. Cl current was activated by voltage clamping the transepithelial potential to 60–100 mV, serosa positive. Activated inward current was between 85 and 450 μA/cm2. In more than 25 tissue areas of 150 × 100 μm from 10 animals, which were automatically scanned with the vibrating probe, between 0 and 4 peaks of elevated local current (up to 800 μA/cm2) could be identified in individual fields. The density of current peaks, which were generally located at sites of mitochondria-rich (MR) cells, was less than 10% of the density of microscopically identified MR cells. The total current across individual sites of elevated conductance was 3.9 ± 0.6 nA. Considering the density of peaks, they account for 17 ± 2.5% of the applied transepithelial clamping current. The time course of current activation over previously identified conductive sites was in most cases unrelated to that of the total transepithelial current. Moreover, initially active sites could spontaneously inactivate. The results indicate that detection of elevated current above some MR cells is not sufficient to verify these cells as the pathway for transepithelial voltage-activated Cl current. Since the major fraction of activated current is apparently not associated with a route through MR cells, channel-like structures in the tight junctions of the paracellular pathway must be considered as an alternative possibility. Current peaks over MR cells could be due to high density of such sites in tight junctions between MR and surrounding principal cells. Improvement of the spatial resolution of the vibrating probe is required to verify this view. Received: 29 May 1997/Revised: 29 September 1997  相似文献   

8.
Nerve Stimulation and Electrical Properties of Frog Skin   总被引:2,自引:0,他引:2       下载免费PDF全文
The suitability of frog skin glands as a model for the study of secretory mechanisms in exocrine glands was explored. Periodic voltage clamp was used to determine continually the short-circuit current, chord conductance, and electromotive force of frog skin during neural and pharmacological activation of the skin glands. Both the chord conductance and the short-circuit current increased with glandular activation; the temporal dissociation of these increases suggests that there are at least two separate components to the secretory response. The sensitivity of the secretory electrical changes to changes in the ionic composition of the bathing solutions supports the notion of electrogenic chloride active transport as being basic to the activity of the exocrine glands.  相似文献   

9.
The molecular mechanisms controlling fluid secretion within the oviduct have yet to be determined. As in other epithelia, both secretory and absorptive pathways are likely to work in tandem to drive appropriate ionic movement to support fluid movement across the oviduct epithelium. This study explored the role of potassium channels in basolateral extracellular ATP (ATP(e))-stimulated ion transport in bovine oviduct epithelium using the Ussing chamber short-circuit current (I(SC)) technique. Basal I(SC) in bovine oviduct epithelium comprises both chloride secretion and sodium absorption and was inhibited by treatment with basolateral K(+) channel inhibitors tetrapentlyammonium chloride (TPeA) or BaCl(2). Similarly, ATP-stimulated chloride secretion was significantly attenuated by pretreatment with BaCl(2,) tetraethylammonium (TEA), tolbutamide, and TPeA. Basolateral K(+) current, isolated using nystatin-perforation technique, was rapidly activated by ATP(e), and pretreatment of monolayers with thapsigargin or TPeA abolished this ATP-stimulated K(+) current. To further investigate the type of K(+) channel involved in the ATP response in the bovine oviduct, a number of specific Ca(2+)-activated K(+) channel inhibitors were tested on the ATP-induced ΔI(SC) in intact monolayers. Charbydotoxin, (high conductance and intermediate conductance inhibitor), or paxilline, (high conductance inhibitor) did not significantly alter the ATP(e) response. However, pretreatment with the small conductance inhibitor apamin resulted in a 60% reduction in the response to ATP(e). The presence of small conductance family member KCNN3 was confirmed by RT-PCR and immunohistochemistry. Measurements of intracellular calcium using Fura-2 spectrofluorescence imaging revealed the ability of ATP(e) to increase intracellular calcium in a phospholipase C-inositol 1,4,5-trisphosphate pathway-sensitive manner. In conclusion, these results provide strong evidence that purinergic activation of a calcium-dependent, apamin-sensitive potassium conductance is essential to promote chloride secretion and thus fluid formation in the oviduct.  相似文献   

10.
Summary Canine tracheal epithelium secretes Cl from the submucosal to the mucosal surface via an electrogenic transport process that appears to apply to a wide variety of secretory epithelia. Cl exit across the apical membrane is thought to be a passive, electrically conductive process. To examine the cellular mechanism of Cl secretion we studied the effect of anthracene-9-carboxylic acid (9-AC), an agent known to inhibit the Cl conductance of muscle membrane. When added to the mucosal solution, 9-AC rapidly and reversibly decreases short-circuit current and transepithelial conductance, reflecting a reduction in electrogenic Cl secretion. The inhibition is concentration-dependent and 9-AC does not appear to compete with Cl for the transport process. The decrease in current and conductance results from a decrease in the net and both unidirectional transepithelial Cl fluxes without substantial alterations of Na fluxes. Furthermore, 9-AC specifically inhibits a Cl conductance: tissues bathed in Cl-free solutions showed no response to 9-AC. Likewise, when the rate of secretion and Cl conductance were minimized with indomethacin, addition of 9-AC did not alter transepithelial conductance. In contrast, neither removal of Na from the media nor blockade of the apical Na conductance with amiloride prevented a 9-AC-induced decrease in transepithelial conductance. We also found that the effect of 9-AC is independent of transepithelial transport: 9-AC decreases transepithelial conductance despite inhibition of Cl secretion with ouabain or furosemide. Intracellular electrophysiologic techniques were used to localize the effect of 9-AC to a reduction of the electrical conductance of the apical cell membrane: 9-AC hyperpolarizes the electrical potential difference across the apical membrane and decreases its relative conductance. 9-AC also prevents the characteristic changes in the cellular electrical potential profile, transepithelial conductance, and the ratio of membrane conductances produced by a reduction in mucosal bathing solution Cl concentration. These results indicate that 9-AC inhibits Cl secretion in tracheal epithelium by blocking an electrically conductive Cl exit step in the apical cell membrane. Thus, they support a cellular model of Cl secretion in which Cl leaves the cell across a Cl permeable apical membrane driven by its electrochemical gradient.  相似文献   

11.
Previous work has shown that the basolateral membrane of turtle colon epithelium contains a quinidine-sensitive potassium conductance which can be activated by osmotic cell swelling. In this work and in the present study, potassium flow across the basolateral membrane was measured as a short-circuit current across intact pieces of epithelial tissue in which amphotericin B was used to permeabilize the apical membrane. Quinidine-sensitive currents were generated when the mucosal bath contained chloride, a permeant anion. Replacement of chloride by sulfate or addition of sucrose to the bathing solutions abolished 75-90% of the current and caused the quinidine-inhibitable fraction of the current to go from over 90% to around 6%--suggesting that decreases in cell volume had brought about inactivation of the quinidine-sensitive conductance. When metabolic inhibitors were present, inactivation of the conductance by these maneuvers was prevented. Activation of the conductance by replacement of mucosal SO4 by Cl, however, was not affected.  相似文献   

12.
We studied the effects of calcitonin gene-related peptide (CGRP) on ciliary beat frequency (CBF) and electrical properties of canine tracheal epithelium by a photoelectric method and Ussing's short-circuit technique, respectively. CGRP dose dependently increased CBF, an effect that was accompanied by elevation of intracellular cyclic AMP but not affected by blockade of either Ca2+-influx or arachidonic acid metabolism. In contrast, CGRP elicited only a small and transient increase in short-circuit current without significant alterations in transepithelial potential difference or tissue conductance. These results suggest that CGRP may play a role in regulating airway mucociliary transport function.  相似文献   

13.
In this study the relative ionic permeabilities of the cell membranes of Necturus gallbladder epithelium have been determined by means of simultaneous measurement of transmural and transmucosal membrane potential differences (PD) and by ionic substitution experiments with sodium, potassium and chloride ions. It is shown that the mucosal membrane is permeable to sodium and to potassium ions. The baso-lateral membrane PD is only sensitive to potassium ions. In both membranes chloride conductance is negligible or absent. The ratio of the resistances of the mucosal and baso-lateral membranes, RM/RS, increases upon reducing the sodium concentration in the mucosal solution. The same ratio decreases when sodium is replaced by potassium which implies a greater potassium than sodium conductance in the mucosal membrane. The relative permeability of the shunt for potassium, sodium and chloride ions is: PK/PNa/PCl=1.81:1.00:0.32. From the results obtained in this study a value for the PK/PNa ratio of the mucosal membrane could be evaluated. This ratio is 2.7. From the same data the magnitude of the electromotive forces generated across the cell membranes could be calculated. The EMF's are -15mV across the mucosal membrane and -81mV across the baso-lateral one. Due to the presence of the low resistance shunt the transmucosal membrane PD is -53.2mV (cell inside negative) and the transmural PD is +2.6mV (serosal side positive). The change in potential profile brought about by the low resistance shunt favors passive entry of Na ions into the cell across the mucosal membrane. Calculations show that this passive Na influx is maximally 64% of the net Na flux estimated from fluid transport measurements. The C-1 conductive of the baso-lateral membrane is too small to allow electrogenic coupling of C1 with Na transport across this membrane. Experiments with rabbit gallbladder epithelium indicate that the membrane properties in this tissue are qualitatively similar to those of Necturus gallbladder epithelium.  相似文献   

14.
15.
Detection of motion and position by the vestibular labyrinth depends on the accumulation of potassium within a central compartment of the inner ear as a source of energy to drive the transduction process. Much circumstantial evidence points to the vestibular dark cell (VDC) epithelium as being responsible for concentrating K+ within the lumen. We have used the vibrating probe technique to directly observe voltage and ion gradients produced by this tissue to put this assumption on a solid experimental footing. Relative current density (Isc,probe) over the apical membrane of VDC epithelium was measured with the vibrating voltage-sensitive probe, and this technique was validated by performing maneuvers known to either stimulate or inhibit the transepithelial equivalent short circuit current. Basolateral bumetanide (5 x 10(-5) M) and ouabain (1 x 10(-3) M) caused a decrease in Isc,probe by 55 +/- 6% and 39 +/- 3%, respectively while raising the basolateral K+ concentration from 4 to 25 mM caused an increase by 35 +/- 8%. A K+ gradient directed toward the apical membrane was detected with the vibrating K(+)-selective electrode, demonstrating that, indeed, the VDC epithelium secretes K+ under control conditions. This secretion was inhibited by bumetanide (by 94 +/- 7%) and ouabain (by 52 +/- 8%). The results substantiate the supposition that dark cells produce a K+ flux and qualitatively support the correlation between this flux and the transepithelial current.  相似文献   

16.
The regulatory behavior, inhibitor sensitivity, and properties of the whole cell chloride conductance observed in cells expressing the cDNA coding for a chloride conductance mediator isoform of the CLCA gene family, pCLCA1, have been studied. Common C-kinase consensus phosphorylation sites between pCLCA1 and the closely related human isoform hCLCA1 are consistent with a role for calcium in channel activation. Both channels are activated rapidly on exposure to the calcium ionophore ionomycin. Direct involvement of calcium in the activation of pCLCA1 was supported by the finding that treatment with the intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM reduced the rate of chloride efflux from NIH/3T3 cells expressing the pCLCA1 channel. No combination of A-kinase activators used was effective in activating chloride efflux via this channel despite the presence of a unique strong A-kinase consensus site in pCLCA1. Notable differences of pCLCA1 from the reported properties of CLCA family members include the failure of phorbol 12-myristate 13-acetate to activate chloride efflux in cells expressing pCLCA1 and a lack of inhibition of chloride efflux from these cells after treatment with DIDS or dithiothreitol. However, selected inhibitors of anionic conductance inhibited pCLCA1-dependent anion efflux. The electrogenic nature of the ionomycin-dependent efflux of chloride from cells expressing pCLCA1 was confirmed by detection of outwardly rectifying chloride current and inhibition of this current by chloride conductance inhibitors in a whole cell patch-clamp study.  相似文献   

17.
Damage to the respiratory epithelium is one of the most critical steps to many life-threatening diseases, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. The mechanisms underlying repair of the damaged epithelium have not yet been fully elucidated. Here we provide experimental evidence suggesting a novel mechanism for wound repair: endogenous electric currents. It is known that the airway epithelium maintains a voltage difference referred to as the transepithelial potential. Using a noninvasive vibrating probe, we demonstrate that wounds in the epithelium of trachea from rhesus monkeys generate significant outward electric currents. A small slit wound produced an outward current (1.59 μA/cm(2)), which could be enhanced (nearly doubled) by the ion transport stimulator aminophylline. In addition, inhibiting cystic fibrosis transmembrane conductance regulator (CFTR) with CFTR(Inh)-172 significantly reduced wound currents (0.17 μA/cm(2)), implicating an important role of ion transporters in wound induced electric potentials. Time-lapse video microscopy showed that applied electric fields (EFs) induced robust directional migration of primary tracheobronchial epithelial cells from rhesus monkeys, towards the cathode, with a threshold of <23 mV/mm. Reversal of the field polarity induced cell migration towards the new cathode. We further demonstrate that application of an EF promoted wound healing in a monolayer wound healing assay. Our results suggest that endogenous electric currents at sites of tracheal epithelial injury may direct cell migration, which could benefit restitution of damaged airway mucosa. Manipulation of ion transport may lead to novel therapeutic approaches to repair damaged respiratory epithelium.  相似文献   

18.
Defective cystic fibrosis (CF) transmembrane conductance regulator (CFTR)-mediated Cl(-) transport across the apical membrane of airway epithelial cells is implicated in the pathophysiology of CF lungs. A strategy to compensate for this loss is to augment Cl(-) transport through alternative pathways. We report here that partial correction of this defect could be attained through the incorporation of artificial anion channels into the CF cells. Introduction of GL-172, a synthetic analog of squalamine, into CFT1 cells increased cell membrane halide permeability. Furthermore, when a Cl(-) gradient was generated across polarized monolayers of primary human airway or Fischer rat thyroid cells in an Ussing chamber, addition of GL-172 caused an increase in the equivalent short-circuit current. The magnitude of this change in short-circuit current was ~30% of that attained when CFTR was maximally stimulated with cAMP agonists. Patch-clamp studies showed that addition of GL-172 to CFT1 cells also increased whole cell Cl(-) currents. These currents displayed a linear current-voltage relationship and no time dependence. Additionally, administration of GL-172 to the nasal epithelium of transgenic CF mice induced a hyperpolarization response to perfusion with a low-Cl(-) solution, indicating restoration of Cl(-) secretion. Together, these results demonstrate that in CF airway epithelial cells, administration of GL-172 is capable of partially correcting the defective Cl(-) secretion.  相似文献   

19.
In mammalian intestine, a number of secretagogues have been shown to work through either cyclic nucleotide or calcium mediated pathways to elicit ion secretion. Because excessive intestinal electrolyte and fluid secretion is central to the pathogenesis of a variety of diarrheal disorders, understanding of these processes is essential to the development of future clinical treatments. In the current study, the effects of serotonin (5HT), histamine, and carbachol on intestinal ion transport were examined in in vitro preparations of rabbit ileum. All three agonists induced a rapid and transient increase short-circuit current (delta Isc) across ileal mucosa. Inhibition of the delta Isc response of all three agents in chloride-free solution or in the presence of bumetanide confirmed that chloride is the main electrolyte involved in electrogenic ion secretion. Pretreatment of tissue with tetrodotoxin or atropine did not effect secretagogue-mediated electrolyte secretion. While tachyphylaxis of delta Isc response was shown to develop after repeated exposure of a secretagogue to tissue, delta Isc responses after sequential addition of different agonists indicate that cross-tachyphylaxis between agents did not occur. Serotonin, histamine, and carbachol have previously been reported to mediate electrolyte secretion through calcium-dependent pathways. To access the role of extracellular calcium in regulating ion secretion, the effect of verapamil on each agent was tested; verapamil decreased 5HT-induced delta Isc by 65.2% and histamine response by 33.5%, but had no effect on carbachol-elicited chloride secretion. An additive secretory effect was found upon simultaneous exposure of 5HT and carbachol to the system; no other combination of agents produced a significant additive effect. Findings from this study support previous work which has suggested that multiple calcium pathways may be involved in mediating chloride secretion in mammalian intestine.  相似文献   

20.
Summary Ion transport processes in the ileum of the lizard,Gallotia (=Lacerta) galloti was examined in vitro by measuring Na22 and Cl36 fluxes across short-circuited preparations.In Ringer-bicarbonate solution there was both a net sodium flux ( ) and a net chloride flux ( ) from mucosa to serosa. The inequality between and short-circuit current (I sc) suggests that part of the net sodium transport is the result of an electrically neutral transport mechanism or that another electrogenic mechanism opposite in sign is contributing to the short-circuit current.In the absence of sodium, the short-circuit current and net chloride flux were abolished. In the absence of chloride, the net sodium was reduced but not abolished and the short-circuit current was unchanged.From an analysis of the effects of the inhibitors furosemide, amiloride, disulfonic stilbene (DIDS) and acetazolamide, a plausible model was developed to explain the characteristics of these transports. It is proposed that the entry of sodium into the cell across the luminal membrane occurs by two pathways. Part occurs by the antiport Na+H+ and part by an electrogenic pathway. The entry of chloride is by the antiport ClHCO 3 .Symbols and abbreviations DIDS 4,4 diisothiocyanatostilbene-2,2-disulfonic acid - G t tissue conductance - I sc short circuit current - m mucosal - PD potential difference - s serosal  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号