首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Four wheat-rye lines derived from a cross between hexaploid wheat ND 7532 and Chaupon rye were homogeneous for resistance to biotype L of the Hessian fly,Mayetiola destructor. Because the wheat parent was susceptible and the rye parent was resistant to larval feeding, resistance was derived from rye. Resistance of Chaupon and the wheat-rye lines was expressed as larval antibiosis. First-instar larvae died after feeding on plants. Chromosomal analyses using C- and N-banding techniques were performed on plants of each line to identify genomes and structural changes of chromosomes. Results showed that two of the resistant lines were chromosome addition lines carrying either the complete rye chromosome,2R, or only the long arm of2R. The other two resistant lines were identified as being2BS/ 2RL wheat-rye translocation lines. It was concluded, therefore, that the long arm of rye chromosome2R carries a gene or gene complex that conditions antibiosis to Hessian fly larvae and, in the2BS/2RL translocation lines, this rye chromatin is cytologically stable and can be used directly in wheat breeding programs.Cooperative investigations of the Kansas Agricultural Experiment Station, Departments of Agronomy, Entomology, and Plant Pathology, Wheat Genetics Resource Center, and the U.S. Department of Agriculture, Agricultural Research Service, Kansas State University. Contribution No. 89-507-JPartly supported by the Deutsche Forschungsgemeinschaft  相似文献   

2.
Radiation-induced wheat-rye chromosome translocation lines resistant to Hessian fly, Mayetiola destructor (say), were analyzed by in situ hybridization using total genomic and highly repetitive rye DNA probes pSc119 and pSc74. In situ hybridization analysis revealed the exact locations of the translocation breakpoints and allowed the estimation of the sizes of the transferred rye segments. T6BS·6BL-6RL and T4BS· 4BL-6RL are terminal translocations with either most of the complete long arm of rye chromosome 6R or only the distal 57% of the 6RL arm attached to the long arms of wheat chromosomes 6B and 4B, respectively. The breakpoint in T6BS·6BL-6RL is located at a fraction length (FL) of 0.11 in the long arm of T6BS 6BL-6RL and at FL 0.46 in the long arm of T4BS·4BL-6RL. Ti4AS·4AL-6RL-4AL is an intercalary translocation with the breakpoint located at FL 0.06 in the long arm of wheat chromosome 4A. The inserted 6RL segment, with the Hessian fly resistance gene, has a size of 0.7 m, and is the smallest and, so far, the first radiation-induced intercalary translocation identified in wheat.by R. Apples  相似文献   

3.
Hypersensitive response of wheat to the Hessian fly   总被引:3,自引:0,他引:3  
Hessian flyMayetiola destructor (Say) larvae are able to obtain food from their host plant without inflicting mechanical damage to the plant surface, apparently by secreting substances which elicit release of nutrients from plant cells surrounding the feeding site. Cells of fully susceptible plants retain their normal appearances, while in resistant plants extensive areas of cellular collapse occur. These responses indicate that hypersensitivity is the basis of wheat's resistance to the Hessian fly. The fly's feeding mechanism more closely resembles that of a pathogen than of a phytophagous insect; correspondingly, both the genetic relationship and resistance mechanism of the host plant to the parasite are of the sorts commonly associated with bacterial and fungal pathogens.  相似文献   

4.

Background

One of the reasons hard red winter wheat cultivar ‘Duster’ (PI 644016) is widely grown in the southern Great Plains is that it confers a consistently high level of resistance to biotype GP of Hessian fly (Hf). However, little is known about the genetic mechanism underlying Hf resistance in Duster. This study aimed to unravel complex structures of the Hf region on chromosome 1AS in wheat by using genotyping-by-sequencing (GBS) markers and single nucleotide polymorphism (SNP) markers.

Results

Doubled haploid (DH) lines generated from a cross between two winter wheat cultivars, ‘Duster’ and ‘Billings’ , were used to identify genes in Duster responsible for effective and consistent resistance to Hf. Segregation in reaction of the 282 DH lines to Hf biotype GP fit a one-gene model. The DH population was genotyped using 2,358 markers developed using the GBS approach. A major QTL, explaining 88% of the total phenotypic variation, was mapped to a chromosome region that spanned 178 cM and contained 205 GBS markers plus 1 SSR marker and 1 gene marker, with 0.86 cM per marker in genetic distance. The analyses of GBS marker sequences and further mapping of SSR and gene markers enabled location of the QTL-containing linkage group on the short arm of chromosome 1A. Comparative mapping of the common markers for the gene for QHf.osu-1Ad in Duster and the Hf-resistance gene for QHf.osu-1A74 in cultivar ‘2174’ showed that the two Hf resistance genes are located on the same chromosome arm 1AS, only 11.2 cM apart in genetic distance. The gene at QHf.osu-1Ad in Duster has been delimited within a 2.7 cM region.

Conclusion

Two distinct resistance genes exist on the short arm of chromosome 1A as found in the two hard red winter cultivars, 2174 and Duster. Whereas the Hf resistance gene in 2174 is likely allelic to one or more of the previously mapped resistance genes (H9, H10, H11, H16, or H17) in wheat, the gene in Duster is novel and confers a more consistent phenotype than 2174 in response to biotype GP infestation in controlled-environment assays.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1297-7) contains supplementary material, which is available to authorized users.  相似文献   

5.
The Hessian fly [Mayetiola destructor (Say)] is a major pest of wheat (Triticum aestivum L.) and genetic resistance has been used effectively over the past 30 years to protect wheat against serious damage by the fly. To-date, 25 Hessian fly resistance genes, designated H1 to H25, have been identified in wheat. With near-isogenic wheat lines differing for the presence of an individual Hessian fly resistance gene, in conjunction with random amplified polymorphic DNA (RAPD) analysis and denaturing gradient-gel electrophoresis (DGGE), we have identified a DNA marker associated with the H9 resistance gene. The H9 gene confers resistance against biotype L of the Hessian fly, the most virulent biotype. The RAPD marker cosegregates with resistance in a segregating F2 population, remains associated with H9 resistance in a number of different T. aestivum and T. durum L. genetic backgrounds, and is readily detected by either DGGE or DNA gel-blot hybridization.Purdue University, Agric. Exp. Stn. Journal paper No. 14440  相似文献   

6.
Identification of RAPD markers for 11 Hessian fly resistance genes in wheat   总被引:7,自引:0,他引:7  
 The pyramiding of genes that confer race- or biotype-specific resistance has become increasingly attractive as a breeding strategy now that DNA-based marker-assisted selection is feasible. Our objective here was to identify DNA markers closely linked to genes in wheat (Triticum aestivum L.) that condition resistance to Hessian fly [Mayetiola destructor (Say)]. We used a set of near-isogenic wheat lines, each carrying a resistance gene at 1 of 11 loci (H3, H5, H6, H9, H10, H11, H12, H13, H14, H16 or H17) and developed by backcrossing to the Hessian fly-susceptible wheat cultivar ‘Newton’. Using genomic DNA of these 11 lines and ‘Newton’, we have identified 18 randomly amplified polymorphic DNA (RAPD) markers linked to the 11 resistance genes. Seven of these markers were identified by denaturing gradient gel electrophoresis and the others by agarose gel electrophoresis. We confirmed linkage to the Hessian fly resistance loci by cosegregation analysis in F2 populations of 50–120 plants for each different gene. Several of the DNA markers were used to determine the presence/absence of specific Hessian fly resistance genes in resistant wheat lines that have 1 or possibly multiple genes for resistance. The use of RAPD markers presents a valuable strategy for selection of single and combined Hessian fly resistance genes in wheat improvement. Received: 20 March 1996 / Accepted: 6 September 1996  相似文献   

7.
8.
H13 is inherited as a major dominant resistance gene in wheat. It was previously mapped to chromosome 6DL and expresses a high level of antibiosis against Hessian fly (Hf) [Mayetiola destructor (Say)] larvae. The objective of this study was to identify tightly linked molecular markers for marker-assisted selection in wheat breeding and as a starting point toward the map-based cloning of H13. Fifty-two chromosome 6D-specific microsatellite (simple sequence repeat) markers were tested for linkage to H13 using near-isogenic lines Molly (PI 562619) and Newton-207, and a segregating population consisting of 192 F2:3 families derived from the cross PI 372129 (Dn4) × Molly (H13). Marker Xcfd132 co-segregated with H13, and several other markers were tightly linked to H13 in the distal region of wheat chromosome 6DS. Deletion analysis assigned H13 to a small region closely proximal to the breakpoint of del6DS-6 (FL 0.99). Further evaluation and comparison of the H13-linked markers revealed that the same chromosome region may also contain H23 in KS89WGRC03, an unnamed H gene (HWGRC4) in KS89WGRC04, the wheat curl mite resistance gene Cmc4, and a defense response gene Ppo for polyphenol oxidase. Thus, these genes comprise a cluster of arthropod resistance genes. Marker analysis also revealed that a very small intercalary chromosomal segment carrying H13 was transferred from the H13 donor parent to the wheat line Molly.Mention of commercial or proprietary product does not constitute an endorsement by the USDA.  相似文献   

9.
Eighteen polymorphic microsatellite loci and 11 single‐nucleotide polymorphisms were genotyped in 1 095 individual Hessian fly specimens representing 23 populations from North America, southern Europe, and southwest Asia. The genotypes were used to assess genetic diversity and interrelationship of Hessian fly populations. While phylogenetic analysis indicates that the American populations most similar to Eurasian populations come from the east coast of the United States, genetic distance is least between (Alabama and California) and (Kazakhstan and Spain). Allelic diversity and frequency vary across North America, but they are not correlated with distance from the historically documented point of introduction in New York City or with temperature or precipitation. Instead, the greatest allelic diversity mostly occurs in areas with Mediterranean climates. The microsatellite data indicate a general deficiency for heterozygotes in Hessian fly. The North American population structure is consistent with multiple introductions, isolation by distance, and human‐abetted dispersal by bulk transport of puparia in infested straw or on harvesting equipment.  相似文献   

10.
Summary In five genetically different inbred lines of rye and in the seven Chinese Spring/Imperial wheatrye addition lines, chiasma distribution in rye chromosomes was studied with respect to the amount and position of constitutive heterochromatin (Giemsa C-bands). In all inbred lines, rye chromosomes with one primary terminal band were more frequently found as univalents than those with primary bands on both telomeres. These chromosomes were most probably 5R and/or 6R. In the addition lines a highly significant reduction in the number of arms bound by chiasmata was found for rye chromosomes 5R and 6R. Because of the similar chiasma distribution in the inbred lines and in the rye chromosomes of the addition lines, no effect of the wheat genome on the number of chiasmata in the rye chromosomes can be ascertained. However, a relationship between chiasma frequency and chromosome arm length seems to exist, since under reduced chiasma conditions the two shortest arms of the rye complement, those of chromosomes 5R and 6R, frequently fail to form a chiasma. No effect of the large blocks of constitutive heterochromatin in the telomeres of the rye chromosomes on the position of chiasmata within a bivalent could be established.This study was financially supported by the Deutsche Forschungsgemeinschaft  相似文献   

11.
Hessian fly, Mayetiola destructor (Say), and Sunn pest, Eurygaster integriceps (Puton), are the two most damaging insect pests of wheat in North Africa, West and Central Asia. Host plant resistance is the most environmental friendly, cost-effective and practical means of controlling insect pests. Twenty synthetic hexaploid wheat lines selected as resistant to Syrian Sunn pest in 2010 were screened for resistance to Moroccan Hessian fly biotype in 2016. The Hessian fly screening was carried out in standard greenhouse flats using a randomized complete block design with three replications, with susceptible and resistant checks in every test flat. The results showed that three synthetic hexaploid wheat lines exhibited resistance to both Moroccan Hessian fly biotype and Syrian Sunn pest. This is the first record of combined resistance to these two pests in wheat. Mapping populations using these sources of resistance are being developed using double haploid techniques for subsequent genetic characterization and identification of linked molecular markers for marker assisted selection.  相似文献   

12.
Jang CS  Kim JY  Haam JW  Lee MS  Kim DS  Li YW  Seo YW 《Plant cell reports》2003,22(2):150-158
Of the 16 known biotypes of the Hessian fly [Mayetiola destructor (Say)], biotype L is recognized as being the most virulent. We have previously reported the development of near-isogenic lines (NILs) (BC3F3:4) by backcross introgression (Coker797*4/Hamlet) that differed by the presence or absence of the H21 gene on 2RL chromatin. Florescence in situ hybridization analysis revealed introgressed 2RLs in NILs possessing the H21 gene, but no signal was detected in NILs lacking 2RL. As part of an approach to elucidate molecular interactions between plants and the Hessian fly, a cDNA library from NILs with H21 infested by larvae of biotype L of the Hessian fly was constructed for expressed sequence tag (EST) analysis. Of 1,056 sequenced reactions attempted, 919 ESTs produced some lengths of readable sequences. Based on their putative identification, 730 ESTs that showed significant similarity with amino acid sequences registered in the gene bank were divided into 13 functional categories. Defense- and stress-related genes represented about 16.1%, including protease inhibition, oxidative burst, lignin synthesis, and phenylpropanoid metabolism. EST clones obtained from the cDNA library may provide a clue to the molecular interactions between plant and larva of the Hessian fly larval infestation.Abbreviations ESTs Expressed sequence tags - FISH Florescence in situ hybridization - NILs Near-isogenic linesCommunicated by P. PuigdoménechAll of the EST sequence data reported will appear in the dbEST and GenBank database (accession numbers CB307016 to CB307934)  相似文献   

13.
Summary Rye carries a gene(s) on the long arm of chromosome 5 which confers the ability to tolerate soils too copper-deficient for wheat. Because many South Australian soils are low in copper, copper deficiency in wheat is common. To overcome this problem, wheats were bred having the rye chromosome arm (5RL) attached to a wheat chromosome. The presence of the rye 5RL chromosome segment in four different wheat cultivars increased grain yield on copper-deficient soils by more than 100% on average. Effects in vegetative yields were also significant at stem extension. Copper concentrations were on average little higher in plant tissues of 5R lines than in the controls but copper uptake was greater, in proportion to yield. Possible mechanisms of the copper efficiency factor are discussed.  相似文献   

14.
For plant resistance that is induced rather than constitutive, the precise timing of a sequence of events must be considered (i.e., initial detection of the insect by the plant's surveillance systems, up-regulation of signaling and defense pathways, achievement of effective levels of defense, and finally down-regulation of signaling and defense). Here, we provide a timeline for the interaction between resistant wheat ( Triticum aestivum L.) (Poaceae) and the Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). To create this timeline, we measured the daily growth of the third, fourth, and fifth leaves of susceptible and resistant plants. Because each leaf had a different spatial relationship to the site of larval attack (i.e., the sheath epidermal cells of the third leaf) and a different pattern of growth relative to the 3–5 days that larvae attacked resistant plants, we learned different things from each leaf. The third leaf shows how quickly responses of susceptible and resistant plants diverge (i.e., 36–60 h after initial larval attack). The fourth leaf shows that, for both susceptible and resistant plants, negative effects of larval attack extend beyond the third leaf. These negative effects are more severe for susceptible plants, but even in resistant plants continue for several days after larvae have died. The fifth leaf is interesting because it shows how rapidly the resistant plant recovers from larval attack. Thus, 204–348 h after initial attack, a time when the fourth leaf of resistant plants is showing reduced growth and the fifth leaf of susceptible plants is showing zero growth, the fifth leaf of resistant plants shows a small increase in growth. Grasses with resistance gene-mediated resistance may have a two-fold strategy, using resistance mechanisms to stop Hessian fly larvae from further attack and tolerance mechanisms to protect resources for future plant growth.  相似文献   

15.
The Russian wheat aphid is a significant pest problem in wheat and barley in North America. Genetic resistance in wheat is the most effective and economical means to control the damage caused by the aphid. Dn7 is a rye gene located on chromosome 1RS that confers resistance to the Russian wheat aphid. The gene was previously transferred from rye into a wheat background via a 1RS/1BL translocation. This study was conducted to genetically map Dn7 and to characterize the type of resistance the gene confers. The resistant line '94M370' was crossed with a susceptible wheat cultivar that also contains a pair of 1RS/1BL translocation chromosomes. The F2 progeny from this cross segregated for resistance in a ratio of 3 resistant: 1 susceptible, indicating a single dominant gene. One-hundred and eleven RFLP markers previously mapped on wheat chromosomes 1A, 1B and 1D, barley chromosome 1H and rye chromosome 1R, were used to screen the parents for polymorphism. A genetic map containing six markers linked to Dn7, encompassing 28.2 cM, was constructed. The markers flanking Dn7 were Xbcd1434 and XksuD14, which mapped 1.4 cM and 7.4 cM from Dn7, respectively. Dn7 confers antixenosis, and provides a higher level of resistance than that provided by Dn4. The applications of Dn7 and the linked markers in wheat breeding are discussed.Communicated by J. Dvorak  相似文献   

16.
Summary The present study describes a cytological stable alien chromosome translocation in tetraploid durum wheat. By crossing the hexaploid 1BL/1RS wheat-rye translocation line Veery to the tetraploid durum wheat cultivar Cando it was possible to select a 28 chromosomic strain homozygous for the 1BL/1RS translocation. The disease resistance potential of the short arm of rye chromosome 1R, which has been widely introduced in many hexaploid bread wheat cultivars could be now also used for the improvement of durum wheat.  相似文献   

17.
A group of related genes has been isolated and characterized from the gut of Hessian fly larvae [Mayetiola destructor (Say)]. Members in this group appear to encode proteins with secretary signal peptides at the N-terminals. The mature putative proteins are small, acidic proteins with calculated molecular masses of 14.5 to 15.3 kDa, and isoelectric points from 4.56 to 4.88. Northern blot analysis revealed that these genes are expressed predominantly in the gut of Hessian fly larvae and pupae. Two related genes, GIOK1 and GIOK2, were isolated as tandem repeats. Both genes contain three exons and two introns. The intron/exon boundaries were conserved in terms of amino acid encoding, suggesting that they arose by gene duplication. The fact that the frequency of this group of clones in a gut cDNA library higher than that of total cDNA clones encoding digestive enzymes suggested that this group of proteins may perform an important function in the gut physiology of this insect. However, the exact functions of these proteins are as yet known since no sequence similarity could be identified between these proteins and any known sequences in public databases using standard methods.  相似文献   

18.
A gene (temporarily designated Hdic) conferring resistance to the Hessian fly (Hf) [Mayetiola destructor (Say)] was previously identified from an accession of German cultivated emmer wheat [Triticum turgidum ssp. dicoccum (Schrank ex Schübler) Thell] PI 94641, and was transferred to the Hf-resistant wheat germplasm KS99WGRC42. The inheritance of Hdic resistance exhibited incomplete penetrance because phenotypes of some heterozygous progenies are fully resistant and the others are fully susceptible. Five simple sequence repeat (SSR) markers (Xgwm136,Xcfa2153, Xpsp2999,Xgwm33, and Xbarc263) were linked to the Hdic gene on the short arm of wheat chromosome 1A in the same region as the H9, H10, and H11 loci. Flanking markers Xgwm33 and Xcfa2153 were mapped at distances 0.6 cM proximal and 1.4 cM distal, respectively. Marker analysis revealed that a very small intercalary chromosomal segment containing Hdic was transferred from emmer wheat to KS99WGRC42. This is the first emmer-derived Hf-resistance gene that has been mapped and characterized. The Hdic gene confers a high level of antibiosis to biotypes GP and L, as well as to strains vH9 and vH13 of the Hf, which is different from the biotype reaction patterns of the known Hf-resistance genes on chromosome 1A (H5 and H11 susceptible to biotype L, H9 and H10 susceptible to strain vH9). These results suggested that Hdic is either a new gene or a novel allele of a known H gene on chromosome 1A. The broad spectrum of resistance conferred by the Hdic gene makes it valuable for developing Hf resistant wheat cultivars. Mention of commercial or proprietary product does not constitute an endorsement by USDA.  相似文献   

19.
Insect pests can reduce wheat yield by direct feeding and transmission of plant viruses. Here we report results from laboratory and field phenotyping studies on a wide range of wheat, including landraces from the Watkins collection deriving from before the green revolution, more modern cultivars from the Gediflux collection (north‐western Europe) and modern UK Elite varieties, for resistance to the bird cherry‐oat aphid, Rhopalosiphum padi (Homoptera: Aphididae) and the English grain aphid, Sitobion avenae (Homoptera: Aphididae). A total of 338 lines were screened for R. padi and 340 lines for S. avenae. Field trials were also conducted on 122 Watkins lines to identify wheat bulb fly, Delia coarctata, preference on these landraces. Considerable variation was shown in insect performance among and within different wheat collections, with reduced susceptibility in a number of varieties, but phenotyping did not identify strong resistance to aphids or wheat bulb fly. Field trials showed within collection differences in aphid performance, with fewer aphids populating lines from the Watkins collection. This differs from development data in laboratory bioassays and suggests that there is a pre‐alighting cue deterring aphid settlement and demonstrates differences in aphid preference and performance on older plants in the field compared with seedlings in the laboratory, highlighting the need for phenotyping for aphid resistance at different plant growth stages. No association was identified between performance of the different insect species on individual varieties, potentially suggesting different nutritional requirements or resistance mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号