首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signals generated by the IFNgamma receptor to initiate mRNA translation and generation of protein products that mediate IFNgamma responses are largely unknown. In the present study, we provide evidence for the existence of an IFNgamma-dependent signaling cascade activated downstream of the phosphatidylinositol (PI) 3'-kinase, involving the mammalian target of rapamycin (mTOR) and the p70 S6 kinase. Our data demonstrate that p70 S6K is rapidly phosphorylated and activated during engagement of the IFNgamma receptor in sensitive cell lines. Such activation of p70 S6 kinase is blocked by pharmacological inhibitors of the PI 3' kinase and mTOR, and is abrogated in double-knockout mouse embryonic fibroblasts for the alpha and beta isoforms of the p85 regulatory subunit of the PI 3'-kinase. The IFNgamma-activated p70 S6 kinase subsequently phosphorylates the 40S S6 ribosomal protein on serines 235/236, to regulate IFNgamma-dependent mRNA translation. In addition to phosphorylation of 40S ribosomal protein, IFNgamma also induces phosphorylation of the 4E-BP1 repressor of mRNA translation on threonines 37/46, threonine 70, and serine 65, sites whose phosphorylation is required for the inactivation of 4E-BP1 and its dissociation from the eukaryotic initiation factor-4E (eIF4E) complex. Thus, engagement of the PI 3'-kinase and mTOR by the IFNgamma receptor results in the generation of two distinct signals that play roles in the initiation of mRNA translation, suggesting an important role for this pathway in IFNgamma signaling.  相似文献   

2.
Over 1 billion years ago, the animal kingdom diverged from the fungi. Nevertheless, a high sequence homology of 62% exists between human ribosomal protein S6 and S6A of Saccharomyces cerevisiae. To investigate whether this similarity in primary structure is mirrored in corresponding functional protein domains, the nuclear and nucleolar targeting signals were delineated in yeast S6A and compared to the known human S6 signals. The complete sequence of S6A and cDNA fragments was fused to the 5'-end of the LacZ gene, the constructs were transiently expressed in COS cells, and the subcellular localization of the fusion proteins was detected by indirect immunofluorescence. One bipartite and two monopartite nuclear localization signals as well as two nucleolar binding domains were identified in yeast S6A, which are located at homologous regions in human S6 protein. Remarkably, the number, nature, and position of these targeting signals have been conserved, albeit their amino acid sequences have presumably undergone a process of co-evolution with their corresponding rRNAs.  相似文献   

3.
The ribosomal protein (r-protein) S20 is a primary binding protein. As such, it interacts directly and independently with the 5′ domain as well as the 3′ minor domain of 16S ribosomal RNA (rRNA) in minimal particles and the fully assembled 30S subunit. The interactions observed between r-protein S20 and the 5′ domain of 16S rRNA are quite extensive, while those between r-protein S20 and the 3′ minor domain are significantly more limited. In this study, directed hydroxyl radical probing mediated by Fe(II)-derivatized S20 proteins was used to monitor the folding of 16S rRNA during r-protein association and 30S subunit assembly. An analysis of the cleavage patterns in the minimal complexes [16S rRNA and Fe(II)-S20] and the fully assembled 30S subunit containing the same Fe(II)-derivatized proteins shows intriguing similarities and differences. These results suggest that the two domains, 5′ and 3′ minor, are organized relative to S20 at different stages of assembly. The 5′ domain acquires, in a less complex ribonucleoprotein particle than the 3′ minor domain, the same architecture as observed in mature subunits. These results are similar to what would be predicted of subunit assembly by the 5′-to-3′ direction assembly model.  相似文献   

4.
We investigate the effect of structural gatekeepers on the folding of the ribosomal protein S6. Folding thermodynamics and early refolding kinetics are studied for this system utilizing computer simulations of a minimalist protein model. When gatekeepers are eliminated, the thermodynamic signature of a folding intermediate emerges, and a marked decrease in folding efficiency is observed. We explain the prerequisites that determine the "strength" of a given gatekeeper. The investigated gatekeepers are found to have distinct functions, and to guide the folding and time-dependent packing of non-overlapping secondary structure elements in the protein. Gatekeepers avoid kinetic traps during folding by favoring the formation of "productive topologies" on the way to the native state. The trends in folding rates in the presence/absence of gatekeepers observed for our minimalist model of S6 are in very good agreement with experimental data on this protein.  相似文献   

5.
Context: Several assays of monitoring immune cell function have been developed to enhance therapeutic drug monitoring.

Objective: An in vitro-validated whole-blood assay of phosphorylated ribosomal protein S6 (pS6RP) was evaluated for confounders to monitor the mTOR-inhibitor everolimus (ERL).

Materials and methods: Whole blood samples from 87 heart transplant recipients were analyzed for pS6RP-expression in CD3-positive T-cells by phospho-flow analysis.

Results: ERL blood concentration, laboratory parameters, co-medications, demographic and clinical data were reviewed.

Conclusion: Evaluating the pS6RP-assay revealed that pS6RP is influenced by cyclosporine A (CsA) blood concentration, duration of ERL treatment, co-medication with thiazide diuretics and different metabolic parameters.  相似文献   


6.
Prokaryotic ribosomal protein genes are typically grouped within highly conserved operons. In many cases, one or more of the encoded proteins not only bind to a specific site in the ribosomal RNA, but also to a motif localized within their own mRNA, and thereby regulate expression of the operon. In this study, we computationally predicted an RNA motif present in many bacterial phyla within the 5′ untranslated region of operons encoding ribosomal proteins S6 and S18. We demonstrated that the S6:S18 complex binds to this motif, which we hereafter refer to as the S6:S18 complex-binding motif (S6S18CBM). This motif is a conserved CCG sequence presented in a bulge flanked by a stem and a hairpin structure. A similar structure containing a CCG trinucleotide forms the S6:S18 complex binding site in 16S ribosomal RNA. We have constructed a 3D structural model of a S6:S18 complex with S6S18CBM, which suggests that the CCG trinucleotide in a specific structural context may be specifically recognized by the S18 protein. This prediction was supported by site-directed mutagenesis of both RNA and protein components. These results provide a molecular basis for understanding protein-RNA recognition and suggest that the S6S18CBM is involved in an auto-regulatory mechanism.  相似文献   

7.
The folding kinetics and thermodynamics of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) have been studied as a function of pH. CTL9 is an alpha-beta protein that contains a single beta-sheet with an unusual mixed parallel, anti-parallel topology. The folding is fully reversible and two-state over the entire pH range. Stopped-flow fluorescence and CD experiments yield the same folding rate, and the chevron plots have the characteristic V-shape expected for two-state folding. The values of DeltaG*(H2O) and the m value calculated from the kinetic experiments are in excellent agreement with the equilibrium measurements. The extrapolated initial amplitudes of both the stopped-flow fluorescence and CD measurements show that there is no detectable burst phase intermediate. The domain contains three histidine residues, two of which are largely buried in the native state. They do not participate in salt-bridges or take part in a hydrogen bonded network. NMR measurements reveal that the buried histidine residues have significantly perturbed pK(a) values in the native state. The equilibrium stability and the folding rate are found to be strongly dependent upon their ionization state. There is a linear relationship between the log of the folding rate and DeltaG* (H2O) . The protein is much more stable and folds noticeably faster at pH values above the native state pK(a) values. DeltaG*(H2O) of unfolding increases from 2.90 kcal mol(-1) at pH 5.0 to 6.40 kcal mol(-1) at pH 8.0 while the folding rate increases from 0.60 to 18.7 s(-1). Tanford linkage analysis revealed that the interactions involving the two histidine residues are largely developed in the transition state. The results are compared to other studies of the pH-dependence of folding.  相似文献   

8.
J Nishimura  T F Deuel 《FEBS letters》1983,156(1):130-134
The human platelet derived-growth factor (PDGF) is both a potent mitogen and a strong chemoattractant protein for cells involved in inflammation and repair. In seeking mechanisms by which PDGF might initiate specific activities in target cells, it was found that highly purified PDGF stimulates the phosphorylation of an Mr approximately 33000 protein in confluent Swiss mouse 3T3 cells [Biochem. Biophys. Res. Commun. (1981) 103, 355-361]. The Mr approximately 33000 protein has now been recovered in polysomes by differential centrifugation and identified as ribosomal protein S6 by two-dimensional polyacrylamide gel electrophoresis.  相似文献   

9.
Ribosomal protein (rp) S5 belongs to a family of ribosomal proteins that includes bacterial rpS7. rpS5 forms part of the exit (E) site on the 40S ribosomal subunit and is essential for yeast viability. Human rpS5 is 67% identical and 79% similar to Saccharomyces cerevisiae rpS5 but lacks a negatively charged (pI approximately 3.27) 21 amino acid long N-terminal extension that is present in fungi. Here we report that replacement of yeast rpS5 with its human homolog yielded a viable yeast strain with a 20%-25% decrease in growth rate. This replacement also resulted in a moderate increase in the heavy polyribosomal components in the mutant strain, suggesting either translation elongation or termination defects, and in a reduction in the polyribosomal association of the elongation factors eEF3 and eEF1A. In addition, the mutant strain was characterized by moderate increases in +1 and -1 programmed frameshifting and hyperaccurate recognition of the UAA stop codon. The activities of the cricket paralysis virus (CrPV) IRES and two mammalian cellular IRESs (CAT-1 and SNAT-2) were also increased in the mutant strain. Consistently, the rpS5 replacement led to enhanced direct interaction between the CrPV IRES and the mutant yeast ribosomes. Taken together, these data indicate that rpS5 plays an important role in maintaining the accuracy of translation in eukaryotes and suggest that the negatively charged N-terminal extension of yeast rpS5 might affect the ribosomal recruitment of specific mRNAs.  相似文献   

10.
Malygin AA  Karpova GG 《FEBS letters》2010,584(21):4396-4400
After resolving the crystal structure of the prokaryotic ribosome, mapping the proteins in the eukaryotic ribosome is a challenging task. We applied RNase H digestion to split the human 40S ribosomal subunit into head and body parts. Mass spectrometry of the proteins in the 40S subunit head revealed the presence of eukaryote-specific ribosomal protein S28e. Recombinant S28e was capable of specific binding to the 3′ major domain of the 18S rRNA (Ka = 8.0 ± 0.5 × 109 M−1). We conclude that S28e has a binding site on the 18S rRNA within the 40S subunit head.

Structured summary

MINT-8044084: S8 (uniprotkb:P62241) and S19 (uniprotkb:P39019) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044095: S8 (uniprotkb:P62241), S19 (uniprotkb:P39019) and S13 (uniprotkb:P62277) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044024: S29 (uniprotkb:P62273), S28 (uniprotkb:P62857), S21 (uniprotkb:P63220), S20 (uniprotkb:P60866), S26 (uniprotkb:P62854), S25 (uniprotkb:P62851), S12 (uniprotkb:P25398), S17 (uniprotkb:P08708), S19 (uniprotkb:P39019), S14 (uniprotkb:P62263), S16 (uniprotkb:P62249) and S11 (uniprotkb:P62280) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044065: S29 (uniprotkb:P62273), S28 (uniprotkb:P62857), S19 (uniprotkb:P39019), S14 (uniprotkb:P62263) and S16 (uniprotkb:P62249) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)  相似文献   

11.
12.
Ribosomal protein S6 is phosphorylated in response to mitogens by activation of one or more protein kinase cascades. Phosphorylation of S6 in vivo is catalyzed by (at least) two distinct mitogen-activated S6 kinase families distinguishable by size, the 70 kDa and 90 kDa S6 kinases. Both S6 kinases are activated by serine/threonine phosphorylation. Members of each family have been cloned. The 90 kDa S6 kinases are activated more rapidly than the 80 kDa S6 kinase, and may have other intracellular targets. The 70 kDa S6 kinase is relatively specific for 40 S ribosomal subunits. No kinase capable of activating the 70 kDa S6 kinase has been identified. Members of the 90 kDa S6 kinases are activated in vitro by 42 kDa and 44 kDa MAP kinases, which are in turn activated by mitogen-dependent activators. The pathways for mitogen-stimulated S6 phosphorylation are discussed.  相似文献   

13.
Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization.  相似文献   

14.
The gene encoding the ribosomal protein from Thermus thermophilus, TL5, which binds to the 5S rRNA, has been cloned and sequenced. The codon usage shows a clear preference for G/C rich codons that is characteristic for many genes in thermophilic bacteria. The deduced amino acid sequence consists of 206 residues. The sequence of TL5 shows a strong similarity to a general shock protein from Bacillus subtilis, named CTC. The protein CTC is homologous in its N-terminal part to the 5S rRNA binding protein, L25, from E coli. An alignment of the TL5, CTC and L25 sequences displays a number of residues that are totally conserved. No clear sequence similarity was found between TL5 and other proteins which are known to bind to 5S rRNA. The evolutionary relationship of a heat shock protein in mesophiles and a ribosomal protein in thermophilic bacteria as well as a possible role of TL5 in the ribosome are discussed.  相似文献   

15.
A library of random mutations in Xenopus ribosomal protein L5 was generated by error-prone PCR and used to delineate the binding domain for 5S rRNA. All but one of the amino acid substitutions that affected binding affinity are clustered in the central region of the protein. Several of the mutations are conservative substitutions of non-polar amino acid residues that are unlikely to form energetically significant contacts to the RNA. Thermal denaturation, monitored by circular dichroism (CD), indicates that L5 is not fully structured and association with 5S rRNA increases the t(m) of the protein by 16 degrees C. L5 induces changes in the CD spectrum of 5S rRNA, establishing that the complex forms by a mutual induced fit mechanism. Deuterium exchange reveals that a considerable amount of L5 is unstructured in the absence of 5S rRNA. The fluorescence emission of W266 provides evidence for structural changes in the C-terminal region of L5 upon binding to 5S rRNA; whereas, protection experiments demonstrate that the N terminus remains highly sensitive to protease digestion in the complex. Analysis of the amino acid sequence of L5 by the program PONDR predicts that the N and C-terminal regions of L5 are intrinsically disordered, but that the central region, which contains three essential tyrosine residues and other residues important for binding to 5S rRNA, is likely to be structured. Initial interaction of the protein with 5S rRNA likely occurs through this region, followed by induced folding of the C-terminal region. The persistent disorder in the N-terminal domain is possibly exploited for interactions between the L5-5S rRNA complex and other proteins.  相似文献   

16.
The position and conformation of the N-terminal helix of free ribosomal protein S15 was earlier found to be modified under various conditions. This variability was supposed to provide the recognition by the protein of its specific site on 16S rRNA. To test this hypothesis, we substituted some amino acid residues in this helix and assessed effects of these substitutions on the affinity of the protein for 16S rRNA. The crystal structure of the complex of one of these mutants (Thr3Cys S15) with the 16S rRNA fragment was determined, and a computer model of the complex containing another mutant (Gln8Met S15) was designed. The available and new information was analyzed in detail, and the N-terminal helix was concluded to play no significant role in the specific binding of the S15 protein to its target on 16S rRNA.  相似文献   

17.
核糖体蛋白S6(rpS6)是核糖体40S小亚基的核心组成蛋白之一。研究表明,rpS6可以通过核定位信号进入细胞核中,在核仁中参与核糖体的组装。在该研究中发现,rpS6在高等真核细胞核仁中的聚积与细胞周期有关,rpS6在S期中晚期开始在核仁中聚积,G2期含量达到最高,M期核仁分解时消失。推测,rpS6在核仁中的这种分布特性可能与核糖体的合成随细胞周期变化有关。  相似文献   

18.
To analyze the immunochemical structure ofEscherichia coli ribosomal protein S13 and its organizationin situ, we have generated and characterized 22 S13-specific monoclonal antibodies. We used a competitive enzyme-linked immunosorbent assay to divide them into groups based on their ability to inhibit binding of one another. The discovery of five groups with distinct binding properties suggested that a minimum of five distinct determinants on S13 are recognized by our monoclonal antibodies. The locations of the epitopes detected by these monoclonal antibodies have been mapped on S13 peptides. Three monoclonal antibodies bind a S13 C-terminal 34-residue segment. All the other 19 monoclonal antibodies bind a S13N-terminal segment of about 80 residues. The binding sites of these 19 monoclonal antibodies have been further mapped to subfragments of peptides. Two monoclonal antibodies recognized S131–22; three monoclonal antibodies bound to S131–40; the binding sites of three other antibodies have been located in S1323–80, with epitopes possibly associated with residues 40–80. The remaining 11 monoclonal antibodies did not bind to these subfragments. These data provide molecular basis to the structure of S13 epitopes, whosein situ accessibility may reveal the S13 organization on the ribosome.  相似文献   

19.
A trypsin-activated protein kinase has been isolated from rat liver using a peptide analogue of ribosomal protein S6 as a substrate in kinase assays. The structure of the peptide, Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala, was based on a region of S6 containing both an insulin- and cyclic AMP-regulated phosphorylation site. The trypsin-activated protein kinase phosphorylated a corresponding site in the peptide analogue and ribosomal protein S6 that was distinct from the preferred site for cyclic AMP-dependent protein kinase. Ribosomal S6 contained at least one other major site for the trypsin-activated protein kinase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号