首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Yang H  Henning D  Valdez BC 《The FEBS journal》2005,272(15):3788-3802
RNA helicase II/Gu(alpha) is a multifunctional nucleolar protein involved in ribosomal RNA processing in Xenopus laevis oocytes and mammalian cells. Downregulation of Gu(alpha) using small interfering RNA (siRNA) in HeLa cells resulted in 80% inhibition of both 18S and 28S rRNA production. The mechanisms underlying this effect remain unclear. Here we show that in mammalian cells, Gu(alpha) physically interacts with ribosomal protein L4 (RPL4), a component of 60S ribosome large subunit. The ATPase activity of Gu(alpha) is important for this interaction and is also necessary for the function of Gu(alpha) in the production of both 18S and 28S rRNAs. Knocking down RPL4 expression using siRNA in mouse LAP3 cells inhibits the production of 47/45S, 32S, 28S, and 18S rRNAs. This inhibition is reversed by exogenous expression of wild-type human RPL4 protein but not the mutant form lacking Gu(alpha)-interacting motif. These observations have suggested that the function of Gu(alpha) in rRNA processing is at least partially dependent on its ability to interact with RPL4.  相似文献   

4.
5.
The maturation of ribosomal RNAs (rRNAs) is an important but incompletely understood process required for rRNAs to become functional. In order to determine the enzymes responsible for initiating 3' end maturation of 23S rRNA in Escherichia coli, we analyzed a number of strains lacking different combinations of 3' to 5' exo-RNases. Through these analyses, we identified RNase PH as a key effector of 3' end maturation. Further analysis of the processing reaction revealed that the 23S rRNA precursor contains a CC dinucleotide sequence that prevents maturation from being performed by RNase T instead. Mutation of this dinucleotide resulted in a growth defect, suggesting a strategic significance for this RNase T stalling sequence to prevent premature processing by RNase T. To further explore the roles of RNase PH and RNase T in RNA processing, we identified a subset of transfer RNAs (tRNAs) that contain an RNase T stall sequence, and showed that RNase PH activity is particularly important to process these tRNAs. Overall, the results obtained point to a key role of RNase PH in 23S rRNA processing and to an interplay between this enzyme and RNase T in the processing of different species of RNA molecules in the cell.  相似文献   

6.
7.
The nucleolus, the compartment in which the large ribosomal RNA precursor (pre-rRNA) is synthesized, processed through a series of nucleolytic cleavages and modifications into the mature 18S, 5.8S, and 28S rRNAs, and assembled with proteins to form ribosomal subunits, also contains many small nucleolar RNAs (snoRNAs). We present evidence that the first processing event in mouse rRNA maturation, cleavage within the 5' external transcribed spacer, is facilitated by at least four snoRNAs: U14, U17(E1), and E3, as well as U3. These snoRNAs do not augment this processing by directing 2'-O-methylation of the pre-rRNA. A macromolecular complex in which this 5'ETS processing occurs may then function in the processing of 18S rRNA.  相似文献   

8.
Creation of the mature 5' terminus of human 18 S rRNA in vitro occurs via a two-step processing reaction. In the first step, an endonucleolytic activity found in HeLa cell nucleolar extract cleaves an rRNA precursor spanning the external transcribed spacer-18 S boundary at a position 3 bases upstream from the mature 18 S terminus leaving 2',3'-cyclic phosphate, 5' hydroxyl termini. In the second step, a nucleolytic activity(s) found in HeLa cell cytoplasmic extract removes the 3 extra bases and creates the authentic 5'-phosphorylated terminus of 18 S rRNA. Here we have examined the sequence requirements for the trimming reaction. The trimming activity(s), in addition to requiring a 5' hydroxyl terminus, prefers the naturally occurring adenosine as the 5'-terminal base. By a combination of deletion, site-directed mutagenesis, and chemical modification interference approaches we have also identified a region of 18 S rRNA spanning bases +6 to +25 (with respect to the mature 5' end) which comprises a critical recognition sequence for the trimming activity(s).  相似文献   

9.
Highly conserved sequences present at an identical position near the 3' ends of eukaryotic and prokaryotic 5S rRNAs are complementary to the 5' strand of the m2(6)A hairpin structure near the 3' ends of 18S rRNA and 16S rRNA, respectively. The extent of base-pairing and the calculated stabilities of the hybrids that can be constructed between 5S rRNAs and the small ribosomal subunit RNAs are greater than most, if not all, RNA-RNA interactions that have been implicated in protein synthesis. The existence of complementary sequences in 5S rRNA and small ribosomal subunit RNA, along with the previous observation that there is very efficient and selective hybridization in vitro between 5S and 18S rRNA, suggests that base-pairing between 5S rRNA in the large ribosomal subunit and 18S (16S) rRNA in the small ribosomal subunit might be involved in the reversible association of ribosomal subunits. Structural and functional evidence supporting this hypothesis is discussed.  相似文献   

10.
11.
12.
13.
D H Price  C S Parker 《Cell》1984,38(2):423-429
  相似文献   

14.
K Zahn  M Inui    H Yukawa 《Nucleic acids research》1999,27(21):4241-4250
We demonstrate the presence of a separate processed domain derived from the 5' end of 23S rRNA in ribosomes of Rhodopseudomonas palustris, a member of the alpha-++proteobacteria. Previous sequencing studies predicted intervening sequences (IVS) at homologous positions within the 23S rRNA genes of several alpha-proteobacteria, including R.palustris, and we find a processed 23S rRNA 5' domain in unfractionated RNA from several species. 5.8S rRNA from eukaryotic cytoplasmic large subunit ribosomes and the bacterial processed 23S rRNA 5' domain share homology, possess similar structures and are both derived by processing of large precursors. However, the internal transcribed spacer regions or IVSs separating them from the main large subunit rRNAs are evolutionarily unrelated. Consistent with the difference in sequence, we find that the site and mechanism of IVS processing also differs. Rhodopseudomonas palustris IVS-containing RNA precursors are cleaved in vitro by Escherichia coli RNase III or a similar activity present in R.palustris extracts at a processing site distinct from that found in eukaryotic systems and this results in only partial processing of the IVS. Surprisingly, in a reaction unlike characterized cases of eubacterial IVS processing, an RNA segment larger than the corresponding DNA insertion is removed which contains conserved sequences. These sequences, by analogy, serve to link the 23S rRNA 5' rRNA domains or 5.8S rRNAs to the main portion of other prokaryotic 23S rRNAs or to eukaryotic 28S rRNAs, respectively.  相似文献   

15.
Full-length precursor ribosomal RNA molecules (6440 bases) were produced in vitro using a plasmid containing the yeast 35 S pre-rRNA operon under the control of phage T7 promoter. The higher-order structure of the internal transcribed spacer 2 (ITS-2) region (between the 5.8 S and 25 S rRNA sequence) in the pre-rRNA molecule was investigated using a combination of enzymatic and chemical structural probes. The data were used to evaluate several structural models predicted by a minimum free-energy calculation. The results supported a model in which the 3' end of the 5.8 S rRNA and the 5' end of the 25 S rRNA are hydrogen-bonded better than the one in which the ends are not. The model contains a high degree of secondary structure with several stable hairpins. Similar structural models for the ITS-2 regions of Schizosaccharomyces pombe, Saccharomyces carlsbergensis, mung bean and Xenopus laevis were derived. Certain common folding features appear to be conserved, in spite of extensive sequence divergence. The yeast model should be useful as a prototype in future investigations of the structure, function and processing of pre-rRNA.  相似文献   

16.
17.
18.
A precursor of 5S ribosomal ribonucleic acid (rRNA) from Bacillus subtilis was cleaved by ribonuclease (RNase) M5 in cell-free extracts from B. subtilis to yield the mature 5S rRNA plus RNA fragments derived from both termini of the precursor. The released, mature 5S rRNA was stable in these extracts; however, as occurred in vivo, the precursor-specific fragments were rapidly and completely destroyed. Such destruction was not observed in the presence of partially purified RNase M5, so fragment scavenging was not effected by the maturation nuclease itself. The selective destruction of the precursor-specific fragments was shown to occur through a 3'-exonucleolytic process with the release of nucleoside 5'-monophosphates; the responsible activity therefore had the character of RNAse II. Consideration of the primary and probable secondary structures of the precursor-specific fragments and mature 5S rRNA suggested that involvement of 3' termini in tight secondary structure may confer protection against the scavenging activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号