首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moore, R. and Dickey, K. 1985. Growth and graviresponsivenessof primary roots of Zea mays seedlings deficient in abscisicacid and gibberellic acid.—J. exp. Bot. 36: 1793–1798. The objective of this research was to determine if gibberellicacid (GA) and/or abscisic acid (ABA) are necessary for graviresponsivenessby primary roots of Zea mays. To accomplish this objective wemeasured the growth and graviresponsiveness of primary rootsof seedlings in which the synthesis of ABA and GA was inhibitedcollectively and individually by genetic and chemical means.Roots of seedlings treated with Fluridone (an inhibitor of ABAbiosynthesis) and Ancymidol (an inhibitor of GA biosynthesis)were characterized by slower growth rates but not significantlydifferent gravicurvatures as compared to untreated controls.Gravicurvatures of primary roots of d-5 mutants (having undetectablelevels of GA) and vp-9 mutants (having undetectable levels ofABA) were not significantly different from those of wild-typeseedlings. Roots of seedlings in which the biosynthesis of ABAand GA was collectively inhibited were characterized by gravicurvaturesnot significantly different from those of controls. These results(1) indicate that drastic reductions in the amount of ABA andGA in Z. mays seedlings do not significantly alter root graviresponsiveness,(2) suggest that neither ABA nor GA is necessary for root gravicurvature,and (3) indicate that root gravicurvature is not necessarilyproportional to root elongation. Key words: Abscisic acid, Ancymidol, Fluridone, gibberellic acid, root gravitropism, Zea mays  相似文献   

2.
The redistribution of organelles in columella cells of horizontally-oriented roots of Hordeum vulgare was quantified in order to determine what structural changes in graviperceptive (i.e., columella) cells are associated with the onset of the root gravicurvature. The sedimentation of amyloplasts is the only major change in cellular structure that correlates positively with the onset of root gravicurvature, which begins within 15 min after re-orientation. There is no consistent contact between sedimented amyloplasts and any other organelles. Nuclei are restricted to the proximal ends of columella cells in vertically-oriented roots, and remain there throughout gravicurvature after roots are oriented horizontally. Root gravicurvature does not involve significant changes in (1) the volume of columella cells, (2) the relative or absolute volumes of organelles in columella cells, or (3) the distribution of endoplasmic reticulum (ER). The size, number and sedimentation rates of amyloplasts in columella cells of non-graviresponsive roots of mutant seedlings are not significantly different from those of graviresponsive roots of normal seedlings. Similarly, there is no significant difference in (1) cellular volume, (2) distribution or surface area of ER, (3) patterns or rates of organelle redistribution in horizontally-oriented roots, (4) relative or absolute volumes of organelles in columella cells of graviresponsive and non-graviresponsive roots. These results suggest that the lack of graviresponsiveness by roots of mutant seedlings is probably not due to either (1) structural differences in columella cells, or (2) differences in patterns or rates of organelle redistribution as compared to that characteristic of graviresponsive roots. Thus, the basis of non-graviresponsiveness in this mutant is probably different from other agravitropic mutants so far studied.  相似文献   

3.
NG  YUK-KIU; MOORE  RANDY 《Annals of botany》1985,55(3):387-394
The effect of ABA on root growth, secondary-root formation androot gravitropism in seedlings of Zea mays was investigatedby using Fluridone-treated seedlings and a viviparous mutant,both of which lack carotenoids and ABA. Primary roots of seedlingsgrown in the presence of Fluridone grew significantly slowerthan those of control (i.e. untreated) roots. Elongation ofFluridone-treated roots was inhibited significantly by the exogenousapplication of 1 mM ABA. Exogenous application of 1 µMand 1 nM ABA had either no effect or only a slight stimulatoryeffect on root elongation, depending on the method of application.The absence of ABA in Fluridone-treated plants was not an importantfactor in secondary-root formation in seedlings less than 9–10d old. However, ABA may suppress secondary-root formation inolder seedlings, since 11-d-old control seedlings had significantlyfewer secondary roots than Fluridone-treated seedlings. Rootsof Fluridone-treated and control seedlings were graviresponsive.Similar data were obtained for vp-9 mutants of Z. mays, whichare phenotypically identical to Fluridone-treated seedlings.These results indicate that ABA is necessary for neither secondary-rootformation nor for positive gravitropism by primary roots. Zea mays, gravitropism, carotenoid-deficient, Fluridone, root growth, vp-9 mutant  相似文献   

4.
The kinetics of root gravicurvature of intact maize ( Zea mays L., cv. LG 11) seedlings can be separated into two steps. From 0 to 2 h, a rapid downward bending, enhanced by light, occurred. During the next 4 h (2 to 6 h) no further curvature appeared in the dark, whereas it continued in light. The final root gravicurvature was greater for light-than dark-treated seedlings. Growth was particulary inhibited during the first 2 h.
When intact seedlings were placed horizontally and returned to the dark after a 4 h light pretreatment in a vertical position, only the second step (2 to 6 h) was changed. A negative gravitropism, associated with a stimulation of growth, appeared. Thus, when gravireaction took place in darkness, the final root gravicurvature was similar for the light-pretreated intact seedlings and the dark control. Using apical root segments, this phase of negative gravicurvature was not observed although the stimulation of gravicurvature of light-pretreated roots remained. Similar experiments were performed with seedlings having coleoptile or endosperm removed, after intact seedlings had been exposed to a light pretreatment, and gravireaction took place in the dark. Results indicated that these two organs could play an essential role in the development of gravicurvature and in the regulation of the light effects, respectively.  相似文献   

5.
The distribution of calcium (Ca) in caps of vertically- and horizontally-oriented roots of Zea mays was monitored to determine its possible role in root graviresponsiveness. A modification of the antimonate precipitation procedure was used to localize Ca in situ. In vertically-oriented roots, the presumed graviperceptive (i.e., columella) cells were characterized by minimal and symmetric staining of the plasmalemma and mitochondria. No precipitate was present in plasmodesmata or cell walls. Within 5 min after horizontal reorientation, staining was associated with the portion of the cell wall adjacent to the distal end of the cell. This asymmetric staining persisted throughout the onset of gravicurvature. No staining of lateral cell walls of columella cells was observed at any stage of gravicurvature, suggesting that a lateral flow of Ca through the columella tissue of horizontally-oriented roots does not occur. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like structures in their cell walls. These results are discussed relative to proposed roles of root-cap Ca in root gravicurvature.  相似文献   

6.
Roots of maize (Zea mays L.) seedlings continue to grow at low water potentials that cause complete inhibition of shoot growth. In this study, we have investigated the role of abscisic acid (ABA) in this differential growth sensitivity by manipulating endogenous ABA levels as an alternative to external applications of the hormone. An inhibitor of carotenoid biosynthesis (fluridone) and a mutant deficient in carotenoid biosynthesis (vp 5) were used to reduce the endogenous ABA content in the growing zones of the primary root and shoot at low water potentials. Experiments were performed on 30 to 60 hour old seedlings that were transplanted into vermiculite which had been preadjusted to water potentials of approximately −1.6 megapascals (roots) or −0.3 megapascals (shoots). Growth occurred in the dark at near-saturation humidity. Results of experiments using the inhibitor and mutant approaches were very similar. Reduced ABA content by either method was associated with inhibition of root elongation and promotion of shoot elongation at low water potentials, compared to untreated and wild-type seedlings at the same water potential. Elongation rates and ABA contents at high water potential were little affected. The inhibition of shoot elongation at low water potential was completely prevented in fluridone-treated seedlings during the first five hours after transplanting. The results indicate that ABA accumulation plays direct roles in both the maintenance of primary root elongation and the inhibition of shoot elongation at low water potentials.  相似文献   

7.
Primary roots of Zea mays cv. Amylomaize were less graviresponsive than primary roots of the wild-type Calumet cultivar. There were no significant differences in: 1) the partitioning of volume to organelles in columella cells, 2) the size or density of amyloplasts, or 3) rates and overall patterns of organelle redistribution in horizontally-oriented roots of the two cultivars. Amyloplasts and nuclei were the only organelles whose movement correlated positively with the onset of root gravicurvature. However, the onset of gravicurvature was not directly proportional to the average sedimentation rate of amyloplasts, since amyloplasts sedimented at equal rates in columella cells of both cultivars despite their differences in root gravicurvature. The more graviresponsive roots of Calumet seedlings were characterized by a more strongly polar movement of 45Ca2+ from the upper to lower sides of their root tips than the less graviresponsive roots of Amylomaize seedlings. These results suggest that the decreased graviresponsiveness of horizontally-oriented roots of Amylomaize seedlings may be due to a delay in or decreased ability for polar transport of calcium rather than to smaller, more slowly sedimenting amyloplasts as has been suggested for their less graviresponsive coleoptiles.  相似文献   

8.
Steffens B  Wang J  Sauter M 《Planta》2006,223(3):604-612
Growth of adventitious roots is induced in deepwater rice (Oryza sativa L.) when plants become submerged. Ethylene which accumulates in flooded plant parts is responsible for root growth induction. Gibberellin (GA) is ineffective on its own but acts in a synergistic manner together with ethylene to promote the number of penetrating roots and the growth rate of emerged roots. Studies with the GA biosynthesis inhibitor paclobutrazol revealed that root emergence was dependent on GA activity. Abscisic acid (ABA) acted as a competitive inhibitor of GA activity. Root growth rate on the other hand was dependent on GA concentration and ABA acted as a potent inhibitor possibly of GA but also of ethylene signaling. The results indicated that root emergence and elongation are distinct phases of adventitious root growth that are regulated through different networking between ethylene, GA and ABA signaling pathways. Adventitious root emergence must be coordinated with programmed death of epidermal cells which cover root primordia. Epidermal cell death is also controlled by ethylene, GA and ABA albeit with cell-type specific cross-talk. Different interactions between the same hormones may be a means to ensure proper timing of cell death and root emergence and to adjust the growth rate of emerged adventitious roots.  相似文献   

9.
Previous work showed that primary root elongation in maize (Zea mays L.) seedlings at low water potentials (psi(w)) requires the accumulation of abscisic acid (ABA) (R.E. Sharp, Y. Wu, G.S. Voetberg, I.N. Saab, M.E. LeNoble [1994] J Exp Bot 45: 1743-1751). The objective of the present study was to determine whether the inhibition of elongation in ABA-deficient roots is attributable to ethylene. At a psi(w) of -1.6 MPa, inhibition of root elongation in dark-grown seedlings treated with fluridone to impose ABA deficiency was largely prevented with two inhibitors of ethylene synthesis (aminooxyacetic acid and aminoethoxyvinylglycine) and one inhibitor of ethylene action (silver thiosulfate). The fluridone treatment caused an increase in the rate of ethylene evolution from intact seedlings. This effect was completely prevented with aminooxyacetic acid and also when ABA was supplied at a concentration that restored the ABA content of the root elongation zone and the root elongation rate. Consistent results were obtained when ABA deficiency was imposed using the vp5 mutant. Both fluridone-treated and vp5 roots exhibited additional morphological symptoms of excess ethylene. The results demonstrate that an important role of ABA accumulation in the maintenance of root elongation at low psi(w) is to restrict ethylene production.  相似文献   

10.
Moore, R. 1985. A morphometric analysis of the redistributionof organellcs in columella cells in primary roots of normalseedlings and agravitropic mutants of Hordeum vulgare.—J.exp. Bot. 36:1275–1286. The redistribution of organeUes m columella cells of horizontally-orientedroots of Hordeum vulgare was quantified in order to determinewhat structural changes in graviperceptive (i.e, columella)cells are associated with the onset of root gravicurvature.The sedimentation of amyloplasts is the only major change incellular structure that correlates positively with the onsetof root gravicurvature, which begins within 15 min after re-orientation.There is no consistent contact between sedimented amyloplastsand any other organelles. Nuclei are restricted to the proximalends of columella cells in vertically-oriented roots, and remainthere throughout gravicurvature after roots are oriented horizontally.Root gravicurvature does not involve significant changes in(1) the volume of columella cells, (2) the relative or absolutevolumes of organelles in columella cells, or (3) the distributionof endoplasmic reticulum (ER). The size, number and sedimentationrates of amyloplasts in columella cells of non-graviresponsiveroots of mutant seedlings are not significantly different fromthose of graviresponsive roots of normal seedlings. Similarly,there is no significant difference in (1) cellular volume, (2)distribution or surface area of ER, (3) patterns or rates oforganelle redistribution in horizontally-oriented roots, or(4) relative or absolute volumes of organelles in columellacells of graviresponsive and non-graviresponsive roots. Theseresults suggest that the lack of gravi-responsiveness by rootsof mutant seedlings is probably not due to either (1) structuraldifferences in columella cells, or (2) differences in patternsor rates of organelle redistribution as compared to that characteristicof graviresponsive roots. Thus, the basis of non-graviresponsivenessin this mutant is probably different from other agravitropicmutants so far studied. Key words: Agravitropic mutant, barley, columella cell, gravitropism (root), Hordeum vulgare, ultrastructure  相似文献   

11.
根据水稻、拟南芥和玉米等植株的CYCB基因序列设计引物,以花生根系成熟区总RNA逆转录得到的cDNA为模板,用PCR扩增克隆花生CYCB1基因片段,命名为AhCYCB1(GenBank登录号为GQ868755)。该基因编码的蛋白具有CYCB1蛋白序列的特征区,与拟南芥的AtCYCB1蛋白聚类关系最近。半定量RT-PCR分析表明,ABA处理后,侧根起始部位的AhCY-CB1基因表达水平降低,ABA合成抑制剂萘普生(naproxen)处理使AhCYCB1基因表达水平明显上调。推测ABA抑制侧根发生与其降低侧根发生部位由G2期进入M期的细胞数目有关。  相似文献   

12.
Roots of plants growing "aeroponically" (AP) on moistened filter paper in Petri dishes for a few days are fairly often used for physiological experiments (e.g. measurement of root growth), for ion or herbicide uptake tests, before the establishment of hydroponic or aseptic cultures although their hormonal status is markedly different from that of the hydroponic (HP) control. On the 4th day of germination the ethylene production of cucumber (Cucumis sativus L. cv. Budai csemege) roots growing in AP under controlled conditions increased considerably and exhibited a maximum curve, HP roots evolved ethylene much more constantly. The morphological changes in AP roots (e.g. inhibited elongation and swelling of primary roots, and increased formation of root hairs), resembling those caused by exogenously applied ethylene, can be prevented with 10(-5) M Ag+, an inhibitor of ethylene action. In roots of one-week-old AP seedlings, the amount of an acidic inhibitor, which as judged from the Rf values is likely to be abscisic acid (ABA), is about twice as high as in HP seedlings. An elevated ethylene or ABA level of AP roots may result in a reduced elongation of the primary roots. Counteraction of this inhibition by Ag+ suggests that the effect of ethylene is the primary event in the reduction of root length. When using plant material grown in Petri dishes the possibility of similar changes in hormonal status of the roots must be taken into consideration.  相似文献   

13.
Graviresponding primary roots of Phaseolus vulgaris were characterized by more acid efflux on the upper (i.e., rapidly growing) side of the root than on the lower side of the root. Acid efflux patterns of the upper and lower sides of horizontally-oriented lateral roots were symmetrical. Addition of sodium orthovanadate (an inhibitor of auxin-induced H+ efflux) to the growth medium abolished gravicurvature and development of acid efflux asymmetry in horizontally-oriented roots. These results 1) support the suggestion that auxin redistribution may cause the asymmetry of acid efflux that mediates gravitropism, and 2) indicate that the lack of an auxin-induced asymmetry of acid efflux may be involved in explaining the minimal graviresponsiveness of lateral roots.  相似文献   

14.
The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45Ca2+. Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increased with 1) currents between 8-35 mA, and 2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that 1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, 2) exogenously-induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, 3) the gravity-induced downward movement of exogenously-applied 45Ca2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, 4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca2+) induces root curvature, and 5) electrically-induced curvature is apparently dependent on auxin transport. These results are discussed relative to a model to account for the lack of graviresponsiveness by these roots.  相似文献   

15.
Primary roots of Zea mays seedlings germinated and grown in 0.1 mM chloramphenicol (CMP) were significantly less graviresponsive than primary roots of seedlings germinated and grown in distilled water. Elongation rates of roots treated with CMP were significantly greater than those grown in distilled water. Caps of control and CMP-treated roots possessed extensive columella tissues comprised of cells containing numerous sedimented amyloplasts. These results indicate that the reduced graviresponsiveness of CMP-treated roots is not due to reduced rates of elongation, the absence of the presumed gravireceptors (i.e., amyloplasts in columella cells), or reduced amounts of columella tissue. These results are consistent with CMP altering the production and/or transport of effectors that mediate gravitropism.  相似文献   

16.
Exogenous abscisic acid (ABA) applied to the roots and excised shoots of aspen (Populus tremuloides Michx.) inhibited stomatal conductance. However, the effect of ABA on stomatal conductance was more pronounced in the excised shoots compared with the intact seedlings. Approximately 10% of the ABA concentration applied to the roots was found in the xylem exudates of root systems exposed to a hydrostatic pressure of 0.3 MPa. A similar concentration of ABA applied to the excised shoots produced a faster and greater reduction of stomatal conductance. ABA applied to the roots had no effect on root steady-state flow rate over the 5-h experimental period. Moreover, pre-incubating root systems of intact seedlings for 12 h with 5 x 10(-5) M ABA did not significantly reduce volume flow density. Similarly, ABA had no effect on root hydraulic conductivity and the activation energy of root water flow rates.  相似文献   

17.
Half-tipped primary and lateral roots of Ricinus communis cv Hale bend toward the side of the root on which the intact half-tip remains. Therefore, the minimal graviresponsiveness of lateral roots is not due to the inability of their caps to produce growth effectors (presumably inhibitors). The columella tissues of primary (i.e. graviresponsive) roots are (a) 4.30 times longer, (b) 2.95 times wider, (c) 37.4 times more voluminous, and (d) composed of 17.2 times more cells than those of lateral roots. The onset of positive gravitropism by lateral roots is positively correlated with a (a) 2.99-fold increase in length, (b) 2.63-fold increase in width, and (c) 20.7-fold increase in volume of their columella tissues. We propose that the minimal graviresponsiveness of lateral roots is due to the small size of their columella tissues, which results in their caps being unable to (a) establish a concentration gradient of the effector sufficient to induce gravicurvature and (b) produce as much of the effector as caps of graviresponsive roots.  相似文献   

18.
MOORE  RANDY 《Annals of botany》1989,64(3):271-277
Primary roots of a starchless mutant of Arabidopsis thalianaL. are strongly graviresponsive despite lacking amyloplastsin their columella cells. The ultrastructures of calyptrogenand peripheral cells in wild-type as compared to mutant seedlingsare not significantly different. The largest difference in cellulardifferentiation in caps of mutant and wild-type roots is therelative volume of plastids in columella cells. Plastids occupy12.3% of the volume of columella cells in wild-type seedlings,but only 3.69% of columella cells in mutant seedlings. Theseresults indicate that: (1) amyloplasts and starch are not necessaryfor root graviresponsiveness; (2) the increase in relative volumeof plastids that usually accompanies differentiation of columellacells is not necessary for root graviresponsiveness; and (3)the absence of starch and amyloplasts does not affect the structureof calyptrogen (i.e. meristematic) and secretory (i.e. peripheral)cells in root caps. These results are discussed relative toproposed models for root gravitropism. Arabidopsis thaliana, gravitropism (root), plastids, root cap, stereology, ultrastructure  相似文献   

19.
Randy Moore  James D. Smith 《Planta》1985,164(1):126-128
The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g–1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g–1 FW,±standard deviation): w-3, 279±43; vp-5, 237±26; vp-7, 338±61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necesary for positive gravitropism by primary roots of Z. mays.Abbreviation ABA abscisic acid  相似文献   

20.
Primary roots of Zea mays cv. Ageotropic are nonresponsive to gravity and elongate approximately 0.80 mm h?1. Applying mucilage-like material (K-Y Jelly) to the terminal 1.5 cm of these roots induces graviresponsiveness and slow elongation 28% (i.e. from 0.80 to 0.58mm h?1). Applying mucilage-like material to one side of the terminal 1.5 cm of the root induces curvature toward the mucilage, irrespective of the root's orientation to gravity. Applying a 2-mm-wideband of mucilage-like material to a root's circumference 8 to 10 mm behind the root cap neither induces gravicurvature nor affects elongation significantly. Similarly, applying mucilage-like material to only the root cap does not significantly affect elongation or graviresponsiveness. Gravicurvature of mutant roots occurs only when mucilage-like material is applied to the root/root-cap junction. Reversing the caps of wild-type and mutant roots produces gravitropic responses characteristic of the root cap rather than the host root. These results are consistent with the suggestion that gravitropic effectors are growth inhibitors that move apoplastically through mucilage between the root cap and root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号