首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The bundle of filaments within microvilli of intestinal epithelial cells contains five major proteins including actin, calmodulin, and subunits of 105-, 95-, and 70-kdaltons. It has been previously shown (Howe, C. L., M. S. Mooseker, and T. A. Graves. 1980. Brush-border calmodulin: a major component of the isolated microvillus core. J. Cell Biol. 85: 916-923) that the addition of Ca++ (> 10(-6) M) to microvillus cores causes a rapid, drastic, but at least partially reversible disruption of this actin filament bundle. High-speed centrifugation of microvillus cores treated with Ca++ indicates that several core proteins are solubilized, including 30-50% of the actin and calmodulin, along with much of the 95- and 70-kdalton subunits. Gel filtration of such Ca++ extracts in the presence and absence of Ca++ indicates that microvillar actin "solated" by Ca++ is in an oligomeric state probably complexed with the 95-kdalton subunit. Removal of Ca++ results in the reassembly of F-actin, probably still complexed with 95- kdalton subunit, as determined by gel filtration, cosedimentation, viscometry, and electron microscopy. The 95-kdalton subunit (95K) was purified from Ca++ extracts by DEAE-Sephadex chromatography and its interaction with actin characterized by viscometry, cosedimentation, and EM in the presence and absence of Ca++. In the presence, but not absence, of Ca++, 95K inhibits actin assembly (50% inhibition at 1:50- 60 95K to actin) and also reduces the viscosity of F-actin solutions. Similarly, sedimentation of actin is inhibited by 95K, but a small, presumably oligomeric actin- 95K complex formed in the presence of Ca++ is pelletable after long-term centrifugation. In the absence of Ca++, 95K cosediments with F-actin. EM of 95K-actin mixtures reveals that 95K "breaks" actin into small, filamentous fragments in the presence of Ca++. Reassembly of filaments occurs once Ca++ is removed. In the absence of Ca++, 95K has no effect on filament structure and, at relatively high ratios (1:2-6) of 95K to actin, this core protein will aggregate actin filaments into bundles.  相似文献   

2.
Canine and feline cardiac Z-lines and Z-rods were examined by electron microscopy before and after digestion of muscle fibers with Ca2+-activated protease (CAF). Removal by CAF of electron-dense material which covers Z-lines and Z-rods exposed interdigitating longitudinal filaments (6-7 nm in diameter) apparently continuous with thin filaments of the respective I-bands. The newly exposed longitudinal filaments of CAF-treated Z-lines and of CAF-treated Z-rods bound heavy meromyosin and therefore are actin. The width of Z-lines and length of Z-rods are determined by the amount of overlap of actin filaments of opposite polarity. The oblique filaments in Z-lines and Z-rods are responsible for the perpendicular periodicity of Z-lines and Z-rods, and are attributed to alpha-actinin.  相似文献   

3.
Cultured human polymorphonuclear leukocytes exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) spread on the substratum and undergo centrosome splitting. The two centrioles may separate by a distance of several micrometers, each being surrounded by an aster of microtubules. Here we show that the centriole/aster complexes are in constant, rapid motion through the cytoplasm, carrying with them some of the cytoplasmic granules while pushing aside others, or deforming and displacing the nucleus. An analysis of this unique motility phenomenon was undertaken. We show that intact microtubules are required for TPA-induced centrosome splitting and aster motility, but not for cell spreading. More importantly, disruption of the actin network inhibits both centrosome splitting and cell spreading, and even reverses splitting (induces convergence and fusion of asters) in polymorphonuclear leukocytes pretreated with TPA alone. These observations indicate the existence of a dynamic relationship between microtubules and actin networks and provide evidence for a role of actin in determining the position of the centrosome by way of interaction with the microtubules radiating from it.  相似文献   

4.
Summary— When mouse peritoneal macrophages adherent to glass surface were removed by treatment with triethanolamine and Nonidet P-40, fine thread structures of unique loops were left behind on glass at the sites of cell adhesion. To examine the ultrastructural relationship between such looped threads and cytoskeletal components in glass-adherent macrophages, we successfully used the ‘zinc method’ to remove most of the cytoplasm including nuclei and to expose the cytoskeleton associated with the ventral plasma membrane. The cytoskeleton was seen to be mainly composed of actin filaments forming dense networks. The network contained scattered star-like foci from which actin filaments radiated. When the ventral plasma membrane-cytoskeleton complex was further treated with Nonidet P-40, the membrane was dissolved to expose the glass surface with actin foci persisting on glass. When the complex was removed by further treatment with Nonidet P-40 and DNase I, the looped threads became visible. Confocal laser microscopy of glass-adherent macrophages stained with fluorescent phalloidin showed the preferential distribution of F-actin in the ventral cytoplasm along the plasma membrane, where intense fluorescent spots were also scattered. Confocal interference reflection microscopy revealed densely populated dark dots and striae of focal contact, which corresponded in overall distribution to actin foci and looped threads. These observations suggest that actin cytoskeleton is closely associated with looped threads to reinforce cell adhesion to glass.  相似文献   

5.
6.
Proteins that cross-link actin filaments can either form bundles of parallel filaments or isotropic networks of individual filaments. We have found that mixtures of actin filaments with alpha-actinin purified from either Acanthamoeba castellanii or chicken smooth muscle can form bundles or isotropic networks depending on their concentration. Low concentrations of alpha-actinin and actin filaments form networks indistinguishable in electron micrographs from gels of actin alone. Higher concentrations of alpha-actinin and actin filaments form bundles. The threshold for bundling depends on the affinity of the alpha-actinin for actin. The complex of Acanthamoeba alpha-actinin with actin filaments has a Kd of 4.7 microM and a bundling threshold of 0.1 microM; chicken smooth muscle has a Kd of 0.6 microM and a bundling threshold of 1 microM. The physical properties of isotropic networks of cross-linked actin filaments are very different from a gel of bundles: the network behaves like a solid because each actin filament is part of a single structure that encompasses all the filaments. Bundles of filaments behave more like a very viscous fluid because each bundle, while very long and stiff, can slip past other bundles. We have developed a computer model that predicts the bundling threshold based on four variables: the length of the actin filaments, the affinity of the alpha-actinin for actin, and the concentrations of actin and alpha-actinin.  相似文献   

7.
Intratumor host cells of methylcholanthrene-induced fibrosarcoma(s) were shown to enhance the in vivo outgrowth of syngeneic homologous tumors (MCIA, Mc2A, Mc2B) but not two heterologous T-lymphomas (EL4 and TLX9) in the Winn adoptive transfer assay. This enhancing activity was not restricted only to the latent period of tumor growth but was also observed during the period of active in vivo tumor proliferation. Tumor enhancement was mediated by a population of cells adherent to nylon wool and glass and insensitive to irradiation (with 850 rads) or to treatment with anti-Thy 1.2 serum and complement. Macrophages from peritoneal exudates of normal mice, used as control host cell population, showed similar tumor-enhancing activity. These findings suggest that tumor infiltrating host cells, predominantly macrophages appear to be the cell type responsible for tumor enhancement and active promotion of tumor growth (in vivo).  相似文献   

8.
In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature—the calcium–myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins.  相似文献   

9.
The potential role of cytolytic macrophages in in vivo resistance to tumors induced by simian virus 40 (SV40) was evaluated in two experimental systems. First, a cell line produced by sequential in vivo passage of SV40-transformed fibroblasts through syngeneic C3H/HeJ mice was found to develop both increased neoplastic character and resistance to macrophage-mediated lysis, suggesting in vivo selection pressure against the macrophage-sensitive phenotype. In the second approach, SV40-transformed cells from C3H.OL mice, a strain that fails to produce SV40-specific cytolytic T lymphocytes (CTL), were cloned, and the cloned cells were tested for susceptibility to macrophage cytolysis in vitro. Two clones SV-COL-E8 and SV-COL-F5, which represent the extremes of macrophage susceptibility and resistance, respectively, were tested for progressive growth in syngeneic C3H.OL recipients. Progression in vivo was found to correlate with resistance to macrophage cytolysis in vitro. Other in vitro measures of the neoplastic phenotype, cell division rate and anchorage-independent growth, did not predict the relative abilities of clones E8 and F5 to form tumors. Likewise, the cells were indistinguishable in their sensitivity to cytolysis by allogeneic CTL and by natural killer cells. Finally, the presence of activated macrophages in the peritoneum of mice rejecting a challenge of syngeneic SV40-transformed cells was confirmed in both CTL responder and nonresponder strains. These studies suggest that cytolytic macrophages are indeed generated during rejection of SV40-induced mouse tumors and that, in the absence of an effective anti-SV40 CTL response, resistance of the transformed cell to macrophage-mediated cytolysis can be a determining factor in in vivo tumor growth.  相似文献   

10.
11.
The roles of potassium and calcium in the slow hyperpolarizations of membranes of activated macrophages are investigated using standard intracellular electrical recording techniques. The amplitude of spontaneous slow hyperpolarizations decreases as a logarithmic function of the external potassium concentration in the culture medium. Similar dependence on the potassium gradient is observed when different levels of membrane potentials are imposed by constant current injection. The reversal potential for electrically evoked slow hyperpolarizations is -90 mV. A 10-fold increase in external potassium concentration causes a 60 mV shift of the reversal potential towards zero. Divalent cation ionophores (A23187 and X537A) can induce slow hyperpolarization responses in quiescent cells or permanent hyperpolarization in spontaneously active cells. The amplitude of the ionophore-induced hyperpolarizations is reduced by an increase in external potassium concentration in a manner consistent with data on slow hyperpolarization responses in the absence of ionophore. The calcium antagonist, verapamil, depresses the slow hyperpolarization responses at the concentration of 10(-5) M. It is suggested that the development of the hyperpolarizing response is due to a calcium-dependent potassium channel. The data support the assumption that spontaneous and artificially elicited slow hyperpolarization responses share a common calcium-dependent mechanism.  相似文献   

12.
An apparatus is described which improves an earlier technique for eluting proteins from polyacrylamide-gel slabs by electrophoresis against a sucrose gradient. Another elution method where the components are concentrated electrophoretically in a collodion bag by altering the current density is described. This method enables the elution of small amounts of sample, free from disturbing background material arising from the gel, and also permits subsequent dialysis and ultrafiltration without transfer losses. It can be used with alkaline and acidic buffers and has been applied in the purification of human pituitary thyrotropin (TSH).  相似文献   

13.
14.
15.
The roles of potassium and calcium in the slow hyperpolarizations of membranes of activated macrophages are investigated using standard intracellular electrical recording techniques.The amplitude of spontaneous slow hyperpolarizations decreases as a logarithmic function of the external potassium concentration in the culture medium. Similar dependence on the potassium gradient is observed when different levels of membrane potentials are imposed by constant current injection. The reversal potential for electrically evoked slow hyperpolarizations is ?90 mV. A 10-fold increase in external potassium concentration causes a 60 mV shift of the reversal potential towards zero.Divalent cation ionophores (A23187 and X537A) can induce slow hyperpolarization responses in quiescent cells or permanent hyperpolarization in spontaneously active cells. The amplitude of the ionophore-induced hyperpolarizations is reduced by an increase in external potassium concentration in a manner consistent with data on slow hyperpolarization responses in the absence of ionophore.The calcium antagonist, verapamil, depresses the slow hyperpolarization responses at the concentration of 10?5 M.It is suggested that the development of the hyperpolarizing response is due to a calcium-dependent potassium channel. The data support the assumption that spontaneous and artificially elicited slow hyperpolarization responses share a common calcium-dependent mechanism.  相似文献   

16.
17.
Here we report the development of a highly sensitive procedure to detect proteins within separation matrices which should facilitate the characterization of rare proteins. The procedure is based on photochemical reactions where very low amounts of silver are deposited around proteins and in a series of steps are converted to silver sulfide. When this conversion is carried out in the presence of [35S]thiourea the resulting radioactive silver sulfide allows detection down to femtogram quantities of protein. In this work we applied the above principle to proteins separated on sodium dodecyl sulfate-polyacrylamide gels, thus not influencing physical and chemical parameters which are important for separation. This procedure should find application in any technique where detection of very low or limited amounts of proteins are required.  相似文献   

18.
Human erythroleukaemia (HEL) cells were exposed to thrombin and other platelet-activating stimuli, and changes in radiolabelled phospholipid metabolism were measured. Thrombin caused a transient fall in PtdInsP and PtdInsP2 levels, accompanied by a rise in diacylglycerol and phosphatidic acid, indicative of a classical phospholipase C/diacylglycerol kinase pathway. However, the rise in phosphatidic acid preceded that of diacylglycerol, which is inconsistent with phospholipase C/diacylglycerol kinase being the sole source of phosphatidic acid. In the presence of ethanol, thrombin and other agonists (platelet-activating factor, adrenaline and ADP, as well as fetal-calf serum) stimulated the appearance of phosphatidylethanol, an indicator of phospholipase D activity. The Ca2+ ionophore A23187 and the protein kinase C activator phorbol myristate acetate (PMA) also elicited phosphatidylethanol formation, although A23187 was at least 5-fold more effective than PMA. Phosphatidylethanol production stimulated by agonists or A23187 was Ca2(+)-dependent, whereas that with PMA was not. These result suggest that phosphatidic acid is generated in agonist-stimulated HEL cells by two routes: phospholipase C/diacylglycerol kinase and phospholipase D. Activation of the HEL-cell phospholipase D in response to agonists may be mediated by a rise in intracellular Ca2+.  相似文献   

19.
It is presently unclear what role elevations in intracellular calcium concentration ([Ca2+]i) play in the control of monokine secretion, or whether such alterations underlie the ability of physiologic stimuli to induce production of these important signalling molecules. To address these issues, we have performed experiments in murine peritoneal macrophages to determine whether lipopolysaccharide (LPS) or interferon gamma (IFN-γ) initiate production of the proinflammatory monokine interleukin 6 (IL-6) concomitant with elevations in [Ca2+]i and with kinetics similar to that seen with known Ca2+ mobilizing agents. Alterations in [Ca2+]i after treatment with LPS, IFN-γ, platelet activating factor (PAF), or thapsigargin were measured by fluorimetric methods. These effects were compared with the ability of each to induce IL-6 mRNA expression as measured by semiquantitative reverse-transcribed polymerase chain reactions. We report that neither LPS nor IFN-γ elicited detectable elevations in [Ca2+]i but that both up-regulated expression of IL-6 mRNA expression within 60 min. In contrast, experiments using either thapsigargin or PAF showed rapid and dramatic elevations in [Ca2+]i with marked increases in IL-6 mRNA expression, as quickly as 15 min after initial exposure. Elevations in mRNA encoding IL-6 by thapsigargin and PAF were found to occur in a dose-dependent manner, mirroring their ability to elicit elevations in [Ca2+]i. These data demonstrate that LPS and IFN-γ induce IL-6 message expression by means of Ca2+-independent signalling pathways. Furthermore, Ca2+-mobilizing agents that evoke monokine message expression do so far more rapidly than do LPS or IFN-γ. Taken in concert, these data are consistent with the hypothesis that multiple signalling pathways exist by which production of proinflammatory monokines are initiated. J. Cell. Physiol. 177:232–240, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号