首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reproductive and early life-history traits can be considered aspects of either offspring or maternal phenotype, and their evolution will therefore depend on selection operating through offspring and maternal components of fitness. Furthermore, selection at these levels may be antagonistic, with optimal offspring and maternal fitness occurring at different phenotypic values. We examined selection regimes on the correlated traits of birth weight, birth date, and litter size in Soay sheep (Ovis aries) using data from a long-term study of a free-living population on the archipelago of St. Kilda, Scotland. We tested the hypothesis that selective constraints on the evolution of the multivariate phenotype arise through antagonistic selection, either acting at offspring and maternal levels, or on correlated aspects of phenotype. All three traits were found to be under selection through variance in short-term and lifetime measures of fitness. Analysis of lifetime fitness revealed strong positive directional selection on birth weight and weaker selection for increased birth date at both levels. However, there was also evidence for stabilizing selection on these traits at the maternal level, with reduced fitness at high phenotypic values indicating lower phenotypic optima for mothers than for offspring. Additionally, antagonistic selection was found on litter size. From the offspring's point of view it is better to be born a singleton, whereas maternal fitness increases with average litter size. The decreased fitness of twins is caused by their reduced birth weight; therefore, this antagonistic selection likely results from trade-offs between litter size and birth weight that have different optimal resolutions with respect to offspring and maternal fitness. Our results highlight how selection regimes may vary depending on the assignment of reproductive and early life-history traits to either offspring or maternal phenotype.  相似文献   

2.
Studies of phenotypic selection document directional selection in many natural populations. What factors reduce total directional selection and the cumulative evolutionary responses to selection? We combine two data sets for phenotypic selection, representing more than 4,600 distinct estimates of selection from 143 studies, to evaluate the potential roles of fitness trade-offs, indirect (correlated) selection, temporally varying selection, and stabilizing selection for reducing net directional selection and cumulative responses to selection. We detected little evidence that trade-offs among different fitness components reduced total directional selection in most study systems. Comparisons of selection gradients and selection differentials suggest that correlated selection frequently reduced total selection on size but not on other types of traits. The direction of selection on a trait often changes over time in many temporally replicated studies, but these fluctuations have limited impact in reducing cumulative directional selection in most study systems. Analyses of quadratic selection gradients indicated stabilizing selection on body size in at least some studies but provided little evidence that stabilizing selection is more common than disruptive selection for most traits or study systems. Our analyses provide little evidence that fitness trade-offs, correlated selection, or stabilizing selection strongly constrains the directional selection reported for most quantitative traits.  相似文献   

3.
The effects of multispecific systems containing both mutualistic and antagonistic interacting organisms on the evolution of plant traits have seldom been analyzed. We studied the selection exerted by several species of herbivores and pollinators in three populations of Hormathophylla spinosa (Cruciferae) in the Sierra Nevada (Spain) over 4 yr by using path analyses and structural equation modeling (SEM). The main selective pressures in our study sites were ungulates and pollinators. However, the importance of each kind of interacting organism differed among populations. Our results indicate a selection mosaic among populations of H. spinosa in the Sierra Nevada caused by the spatial variation in the relative importance of different interactions as selective pressures. We found two main selective scenarios, depending on the presence or absence of ungulates. In the populations with low ungulate pressure, there was positive phenotypic selection in flower number per plant and in flower density (mediated by nectarivorous pollinators). In the two populations with high ungulate pressure, there was a strong positive, ungulate-mediated selection in thorn density. Our results suggest that the application of SEM to several populations simultaneously monitored might help to isolate the major selection pressures on local populations and identify potential differences in selection among populations, becoming a useful exploratory approach to study the geographical variation of selection in complex systems.  相似文献   

4.
Flood response is a crucial component of the life strategy of many plants, but it is seldom studied in non-flooded tolerant species, even though they may be subjected to stressful environmental conditions. Phenotypic plasticity in reaction to environmental stress affects the whole plant phenotype and can alter the character correlations that constitute the phenotypic architecture of the individual, yet few studies have investigated the lability of phenotypic integration to water regime. Moreover, little has been done to date to quantify the sort of selective pressures that different components of a plant's phenotype may be experiencing under contrasting water regimes. Genetic differentiation and phenotypic plasticity at the single-trait and multivariate levels were investigated in 47 accessions of the weedy plant Arabidopsis thaliana, and the relationship of plastic characters to reproductive fitness was quantified. Results indicate that these plants tend to be highly genetically differentiated for all traits, in agreement with predictions made on the basis of environmental variation and mating system. Varied patterns of apparent selection under flooded and non-flooded conditions were also uncovered, suggesting trade-offs in allocation between roots and above-ground biomass, as well as between leaves and reproductive structures. While the major components of the plants' multivariate phenotypic architecture were not significantly affected by environmental changes, many of the details were different under flooded and non-flooded conditions.  相似文献   

5.
Saxer G  Doebeli M  Travisano M 《PloS one》2010,5(12):e14184
Adaptive radiations occur when a species diversifies into different ecological specialists due to competition for resources and trade-offs associated with the specialization. The evolutionary outcome of an instance of adaptive radiation cannot generally be predicted because chance (stochastic events) and necessity (deterministic events) contribute to the evolution of diversity. With increasing contributions of chance, the degree of parallelism among different instances of adaptive radiations and the predictability of an outcome will decrease. To assess the relative contributions of chance and necessity during adaptive radiation, we performed a selection experiment by evolving twelve independent microcosms of Escherichia coli for 1000 generations in an environment that contained two distinct resources. Specialization to either of these resources involves strong trade-offs in the ability to use the other resource. After selection, we measured three phenotypic traits: 1) fitness, 2) mean colony size, and 3) colony size diversity. We used fitness relative to the ancestor as a measure of adaptation to the selective environment; changes in colony size as a measure of the evolution of new resource specialists because colony size has been shown to correlate with resource specialization; and colony size diversity as a measure of the evolved ecological diversity. Resource competition led to the rapid evolution of phenotypic diversity within microcosms. Measurements of fitness, colony size, and colony size diversity within and among microcosms showed that the repeatability of adaptive radiation was high, despite the evolution of genetic variation within microcosms. Consistent with the observation of parallel evolution, we show that the relative contributions of chance are far smaller and less important than effects due to adaptation for the traits investigated. The two-resource environment imposed similar selection pressures in independent populations and promoted parallel phenotypic adaptive radiations in all independently evolved microcosms.  相似文献   

6.
Natural selection drives adaptive evolution, but contrasting environmental pressures may lead to trade-offs between phenotypes that confer different performances. Such trade-offs may weaken the strength of selection and/or generate complex fitness surfaces with multiple local optima that correspond to different selection regimes. We evaluated how differences in patterns of phenotypic selection might promote morphological differences between subpopulations of the amphidromous Hawaiian waterfall-climbing goby, Sicyopterus stimpsoni. We conducted laboratory experiments on fish from the islands of Kaua‘i and Hawai‘i (the “Big Island”) to compare patterns of linear and nonlinear selection, and the opportunity for selection, that result from two contrasting pressures, predator evasion and waterfall climbing, which vary in intensity between islands. We found directional and nonlinear selection were strongest when individuals were exposed to their primary selective pressures (predator evasion on Kaua‘i, waterfall climbing on the Big Island). However, the opportunity for selection was greater for the non-primary pressure: climbing on Kaua‘i, predator evasion on the Big Island. Canonical rotation of the nonlinear gamma matrix demonstrated that individuals from Kaua‘i and the Big Island occupy regions near their local fitness peaks for some traits. Therefore, selection for predator evasion on Kaua‘i and climbing on the Big Island may be less effective in promoting morphological changes in this species, because variation of functionally important traits in their respective environments may have been reduced by directional or stabilizing selection. These results demonstrate that despite constraints on the opportunities for selection, population differences in phenotypic traits can arise due to differences in selective regimes. For S. stimpsoni, sufficient variation exists in other locomotor traits, allowing for necessary levels of performance in the contrasting selective regime (i.e., climbing on Kaua‘i and predator evasion on the Big Island) through many-to-one-mapping, which may be essential for the survival of local populations in an evanescent island environment.  相似文献   

7.
Explanations of floral adaptation to diverse pollinator faunas have often invoked visitor-mediated trade-offs in which no intermediate, generalized floral phenotype is optimal for pollination success, i.e. fitness valleys are created. In such cases, plant species are expected to specialize on particular groups of flower visitors. Contrary to this expectation, it is commonly observed that flowers interact with various groups of visitors, while at the same time maintaining distinct phenotypes among ecotypes, subspecies, or congeners. This apparent paradox may be due to a gap in our understanding of how visitor-mediated trade-offs could affect floral adaptation. Here we provide a conceptual framework for analysing visitor-mediated trade-offs with the hope of stimulating empirical and theoretical studies to fill this gap. We propose two types of visitor-mediated trade-offs to address negative correlations among fitness contributions of different visitors: visitor-mediated phenotypic trade-offs (phenotypic trade-offs) and visitor-mediated opportunity trade-offs (opportunity trade-offs). Phenotypic trade-offs occur when different groups of visitors impose conflicting selection pressures on a floral trait. By contrast, opportunity trade-offs emerge only when some visitors’ actions (e.g. pollen collection) remove opportunities for fitness contribution by more beneficial visitors. Previous studies have observed disruptive selection due to phenotypic trade-offs less often than expected. In addition to existing explanations, we propose that some flowers have achieved ‘adaptive generalization’ by evolving features to avoid or eliminate the fitness valleys that phenotypic trade-offs tend to produce. The literature suggests a variety of pathways to such ‘trade-off mitigation’. Trade-off mitigation may also evolve as an adaptation to opportunity trade-offs. We argue that active exclusion, or floral specialization, can be viewed as a trade-off mitigation, occurring only when flowers cannot otherwise avoid strong opportunity trade-offs. These considerations suggest that an evolutionary strategy for trade-off mitigation is achieved often by acquiring novel combinations of traits. Thus, phenotypic diversification of flowers through convergent evolution of certain trait combinations may have been enhanced not only through adaptive specialization for particular visitors, but also through adaptive generalization for particular visitor communities. Explorations of how visitor-mediated trade-offs explain the recurrent patterns of floral phenotypes may help reconcile the long-lasting controversy on the validity of pollination syndromes.  相似文献   

8.
Whole organism performance represents the integration of numerousphysiological, morphological, and behavioral traits. How adaptivechanges in performance evolve therefore requires an understandingof how selection acts on multiple integrated traits. Two approachesthat lend themselves to studying the evolution of performancein natural populations are the use of quantitative geneticsmodels for estimating the strength of selection acting on multiplequantitative traits and ecological genetic comparisons of populationsexhibiting phenotypic differences correlated with environmentalvariation. In both cases, the ultimate goal is to understandhow suites of traits and trade-offs between competing functionsrespond to natural selection. Here we consider how these twocomplimentary approaches can be applied to study the adaptiveevolution of escape performance in fish. We first present anextension of Arnold's (1983) quantitative genetic approach thatexplicitly considers how trade-offs between different componentsof performance interact with the underlying genetics. We proposethat such a model can reveal the conditions under which multipleselection pressures will cause adaptive change in traits thatinfluence more than one component of fitness. We then reviewwork on the Atlantic silversides and Trinidadian guppies astwo case studies where an ecological genetics approach has beensuccessfully applied to evaluate how the evolution of escapeperformance trades-off with other components of fitness. Weconclude with the general lesson that whole organism performanceis embedded in a complex phenotype, and that the net outcomeof selection acting on different aspects of the organism willoften result in a compromise among competing influences.  相似文献   

9.
Although conflicting selection from different resources is thought to play a critical role in the evolution of specialized species, the prevalence of conflicting selection in generalists is poorly understood. Plants may experience conflicting selection on floral traits by different pollinators and between genders. Using artificial selection to increase phenotypic variation, we tested for conflicting and nonadditive selection on wild radish (Raphanus raphanistrum) flowers. To do this, we measured selection by each of the major pollinator taxa through both male and female fitness, and tested for a single-generation response to selection by a subset of these pollinators. We found some evidence for conflicting selection on anther exertion--sweat bees exerted stabilizing selection and larger bees selected for increased exertion. Stamen dimorphism was only under selection by honey bees, causing a response to selection in the next generation, and flower size was under similar selection by multiple pollinators. Selection differed significantly between genders for two traits, but there was no evidence for stronger selection through male fitness or for conflicting selection between genders. Our results suggest wild radish flowers can adapt to multiple pollinators, as we found little evidence for conflicting selection and no evidence for nonadditive selection among pollinators.  相似文献   

10.
Negative genetic correlation between performance at different temperatures or temperature-dependent mutations may promote evolution of thermal specialization in ectotherms. The first hypothesis implies that a selective change in performance at one temperature simultaneously results in change in performance at others, while the second implies a delay before observing such indirect responses. Comparison of the direction of evolution among Trichogramma lines selected for improvement of parasitization capacity at low, medium, or high temperatures indicated that a change in performance at one temperature concurrently resulted in opposite changes at distant temperatures. Unexpectedly, selection at high temperatures resulted in a decrease in adult fitness components, while adult performance expressed at cold temperatures simultaneously increased. The relationship between maternal fecundity and offspring fitness components varied across the thermal range. No correlation between these traits was present at cold or medium temperatures, but negative relationships appeared at high temperatures. We show that maternal selection resulting from a conflict between adult and offspring fitness components may have resulted in reversed evolution of the adult traits at the high end of the thermal range. Thus, genetic trade-offs in performance at different temperatures and phenotypic plasticity in maternal selection may constrain evolution of the thermal niche in Trichogramma.  相似文献   

11.
The evolution of floral display and flowering time in animal-pollinated plants is commonly attributed to pollinator-mediated selection. Yet, the causes of selection on flowering phenology and traits contributing to floral display have rarely been tested experimentally in natural populations. We quantified phenotypic selection on morphological and phenological characters in the perennial, outcrossing herb Arabidopsis lyrata in two years using female reproductive success as a proxy of fitness. To determine whether selection on floral display and flowering phenology can be attributed to interactions with pollinators, selection was quantified both for open-pollinated controls and for plants receiving supplemental hand-pollination. We documented directional selection for many flowers, large petals, late start of flowering, and early end of flowering. Seed output was pollen-limited in both years and supplemental hand-pollination reduced the magnitude of selection on number of flowers, and reversed the direction of selection on end of flowering. The results demonstrate that interactions with pollinators may affect the strength of selection on floral display and the direction of selection on phenology of flowering in natural plant populations. They thus support the contention that pollinators can drive the evolution of both floral display and flowering time.  相似文献   

12.
Evolutionary biologists explain the maintenance of intermediate levels of defense in plant populations as being due to trade-offs, or negative genetic covariances among ecologically important traits. Attempts at detecting trade-offs as constraints on the evolution of defense have not always been successful, leading some to conclude that such trade-offs rarely explain current levels of defense in the population. Using the agricultural pest Ipomoea purpurea, we measured correlations between traits involved in defense to glyphosate, the active ingredient in Roundup, a widely used herbicide. We found significant allocation costs of tolerance, as well as trade-offs between resistance and two measures of tolerance to glyphosate. Selection on resistance and tolerance exhibited differing patterns: tolerance to leaf damage was under negative directional selection, whereas resistance was under positive directional selection. The joint pattern of selection on resistance and tolerance to leaf damage indicated the presence of alternate peaks in the fitness landscape such that a combination of either high tolerance and low resistance, or high resistance and low tolerance was favored. The widespread use of this herbicide suggests that it is likely an important selective agent on weed populations. Understanding the evolutionary dynamics of herbicide defense traits is thus of increasing importance in the context of human-mediated evolution.  相似文献   

13.
Estimates of the form and magnitude of natural selection based on phenotypic relationships between traits and fitness measures can be biased when environmental factors influence both relative fitness and phenotypic trait values. I quantified genetic variances and covariances, and estimated linear and quadratic selection coefficients, for seven traits of an annual plant grown in the field. For replicates of 50 paternal half-sib families, coefficients of selection were calculated both for individual phenotypic values of the traits and for half-sib family mean values. The potential for evolutionary response was supported by significant heritability and phenotypic directional selection for several traits but contradicted by the absence of significant genetic variation for fitness estimates and evidence of bias in phenotypic selection coefficients due to environmental covariance for at least two of the traits analysed. Only studies of a much wider range of organisms and traits will reveal the frequency and extent of such bias.  相似文献   

14.
The phenotypic view of selection assumes that genetic responses can be predicted from selective forces and heritability — or in the classical quantitative genetic equation: R = h2S. However, data on selection in bird populations show that often no selection responses is found, despite consistent selective forces on phenotypes and significant heritable variation. Such discrepancies may arise due to the assumption that selection only acts on observed phenotypes. We derive a general selection equation that takes into account the possibility that some relevant (internal or external) traits are not measured. This equation shows that the classic equation applies if selection directly acts on the measured, phenotypic traits. This is not the case when, for instance, there are unknown internal genetic trade-offs, or unknown common environmental factors affecting both trait and fitness. In such cases, any relationship between phenotypic selection and genetic response is possible. Fortunately, the classical model can be tested by comparing phenotypic and genetic covariances between traits and fitness; an indication that important internal or external traits are missing can thus be obtained. Such an analysis was indeed found in the literature; for selection on fledging weight in Great Tits it yielded valuable extra information.  相似文献   

15.
Abundance and visitation of pollinator assemblages tend to decrease with altitude, leading to an increase in pollen limitation. Thus increased competition for pollinators may generate stronger selection on attractive traits of flowers at high elevations and cause floral adaptive evolution. Few studies have related geographically variable selection from pollinators and intraspecific floral differentiation. We investigated the variation of Trollius ranunculoides flowers and its pollinators along an altitudinal gradient on the eastern Qinghai-Tibet Plateau, and measured phenotypic selection by pollinators on floral traits across populations. The results showed significant decline of visitation rate of bees along altitudinal gradients, while flies was unchanged. When fitness is estimated by the visitation rate rather than the seed number per plant, phenotypic selection on the sepal length and width shows a significant correlation between the selection strength and the altitude, with stronger selection at higher altitudes. However, significant decreases in the sepal length and width of T. ranunculoides along the altitudinal gradient did not correspond to stronger selection of pollinators. In contrast to the pollinator visitation, mean annual precipitation negatively affected the sepal length and width, and contributed more to geographical variation in measured floral traits than the visitation rate of pollinators. Therefore, the sepal size may have been influenced by conflicting selection pressures from biotic and abiotic selective agents. This study supports the hypothesis that lower pollinator availability at high altitude can intensify selection on flower attractive traits, but abiotic selection is preventing a response to selection from pollinators.  相似文献   

16.
Nectar spurs have an important role in floral evolution and plant–pollinator coadaptation. The flowers of some species possess spurs curving into a circle. However, it is unclear whether spur circle diameter is under direct selection pressure from different sources, such as pollinators and nectar robbers. In this study, we quantified selection on some floral traits, such as spur circle diameter in Impatiens oxyanthera (Balsaminaceae) using phenotypic selection analysis and compared the relative importance of pollinators and nectar robbers as selective agents using mediation analysis. The study showed that pollinators caused significant selection on corolla length, spur curvature and spur circle diameter while nectar robbers only imposed strong selection on spur circle diameter. Pollinators favored flowers with large corolla, curly spurs and large spur circle while nectar robbers preferred flowers with small spur circle. More pollinator visits resulted in higher female reproductive success, while robbery reduced female fitness. Conflicting selection on spur traits from pollinators and nectar robbers was not found. Mediation analysis showed that selection on floral traits through nectar robbing was stronger than selection through pollination. The results suggested that pollinators and nectar robbers jointly mediated the directional selection for large spur circle, and nectar robbers caused stronger selection than pollinators on floral traits.  相似文献   

17.
The availability of both pollen and resources can influence natural selection on floral traits, but their relative importance in shaping floral evolution is unclear. We experimentally manipulated pollinator and resource (fertilizer and water) availability in the perennial wildflower Asclepias syriaca L. Nine floral traits, one male fitness component (number of pollinia removed), and two female fitness components (number of pollinia inserted and number of fruits initiated) were measured for plants in each of three treatments (unmanipulated control, decreased pollinator access, and resource supplementation). Although decreasing pollinators’ access to flowers did result in fewer pollinia inserted and removed, fruit set and phenotypic selection on floral traits via female and male fitness did not differ from the control. In contrast, resource supplementation increased fruit set, and phenotypic selection on seven out of nine floral traits was stronger via female than male fitness, consistent with the prediction that selection via female fitness would be greater when reproduction was less resource-limited. Our results support the hypothesis that abiotic resource availability can influence floral evolution by altering gender-specific selection.  相似文献   

18.
Resource allocation within individuals may often be hierarchical, and this may have important effects on genetic correlations and on trait evolution. For example, organisms may divide energy between reproduction and somatic growth and then subdivide reproductive resources. Genetic variation in allocation to pathways early in such hierarchies (e.g., reproduction) can cause positive genetic correlations between traits that trade off (e.g., offspring size and number) because some individuals invest more resources in reproduction than others. We used quantitative-genetic models to explore the evolutionary implications of allocation hierarchies. Our results showed that when variation in allocation early in the hierarchy exceeds subsequent variation in allocation, genetic covariances and initial responses to selection do not reflect trade-offs occurring at later levels in the hierarchy. This general pattern was evident for many starting allocations and optima and for whether traits contributed multiplicatively or additively to fitness. Finally, artificial selection on a single trait revealed masked trade-offs when variation in early allocation was comparable to subsequent variation in allocation. This result confirms artificial selection as a powerful, but not foolproof, method of detecting trade-offs. Thus, allocation hierarchies can profoundly affect life-history evolution by causing traits to evolve in the opposite direction to that predicted by trade-offs.  相似文献   

19.
Rapid evolution may be common in human-dominated landscapes where environmental changes are severe. We used phenotypic selection analyses and a marker-based method to estimate genetic variances and covariances to predict the potential response to selection in populations of a long-lived cycad recently exposed to drastic environmental changes. Patterns of selection in adult fecundity showed that different traits were under directional selection in subpopulations from native-undisturbed habitats and the novel degraded-forest habitat. Plants from a native-habitat subpopulation tend to maximize fitness through larger leaf area or smaller specific leaf area (SLA). In contrast, larger leaf production increased fitness in a degraded-habitat subpopulation, and canopy openness appears to be a major agent of selection for this trait. Leaf production and SLA showed significant additive genetic variance and no genetic trade-offs with examined traits, suggesting that these traits can respond to selection. Directional selection coefficients and heritability values were large, therefore significant phenotypic changes between subpopulations in few generations are possible. These results suggest that recent environmental change can result in strong directional selection in subpopulations of this cycad, and that these subpopulations have the potential to diverge at the genetic level in leaf traits after anthropogenic habitat degradation.  相似文献   

20.
I measured phenotypic traits important to the fitness of larval anurans to assess the relative roles of ancestral trait value and selective regime in determining present-day phenotypes. The positions of 14 species from three taxonomic families and three different habitats in a phenotypic space defined by 19 traits provided measures of taxonomic and ecological similarity. The distribution of phenotypic distances among species revealed that neither taxonomy nor habitat overwhelmingly determined phenotype. There appear to be multiple ways in which anurans can exploit pond types. However, the direction of phenotypic movement was not random from one species to the next. Independent contrasts revealed significant correlations in the evolution of traits that were consistent among lineages. These correlations reflected well-known trade-offs that result from functional relationships among the constituent traits. Although there is no simple pattern in the distribution of mean phenotypes across environments and lineages, the pattern of the evolutionary trajectories that created that distribution is consistent with a predictive theory of multivariate evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号