首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stereo immunofluorescence microscopy avoids the problem of juxtaposition of structures often encountered in normal fluorescence microscopy. The procedure has been used in conjunction with antibodies against microfilament associated proteins to reveal the arrangement of microfilaments in a rat mammary cell line both in the fully spread state and in cells during the process of spreading on the substratum. use of antibodies to myosin, tropomyosin, alpha-actinin and filamin emphasizes that at early times during the spreading process these proteins are abundantly present underneath the upper plasma membrane, suggesting that the cortical layer present underneath this membrane may be contractile. In addition the results emphasize that even in well spread cells microfilament bundles are expressed both above and below the nucleus, in agreement with the assumption that microfilaments may form a supporting layer underneath the plasma membrane.  相似文献   

2.
We documented the activity of cultured cells on time-lapse videotapes and then stained these identified cells with antibodies to actin and myosin. This experimental approach enabled us to directly correlate cellular activity with the distribution of cytoplasmic actin and myosin. When trypsinized HeLa cells spread onto a glass surface, the cortical cytoplasm was the most actively motile and random, bleb-like extensions (0.5-4.0 micrometer wide, 2-5 micrometer long) occurred over the entire surface until the cells started to spread. During spreading, ruffling membranes were found at the cell perimeter. The actin staining was found alone in the surface blebs and ruffles and together with myosin staining in the cortical cytoplasm at the bases of the blebs and ruffles. In well-spread, stationary HeLa cells most of the actin and myosin was found in stress fibers but there was also diffuse antiactin fluorescence in areas of motile cytoplasm such as leading lamellae and ruffling membranes. Similarly, all 22 of the rapidly translocating embryonic chick cells had only diffuse actin staining. Between these extremes were slow-moving HeLa cells, which had combinations of diffuse and fibrous antiactin and antimyosin staining. These results suggest that large actomyosin filament bundles are associated with nonmotile cytoplasm and that actively motile cytoplasm has a more diffuse distribution of these proteins.  相似文献   

3.
Indirect immunofluorescence microscopy was used to localize microfilament-associated proteins in the brush border of mouse intestinal epithelial cells. As expected, antibodies to actin decorated the microfilaments of the microvilli, giving rise to a very intense fluorescence. By contrast, antibodies to myosin, tropomyosin, filamin, and alpha-actinin did not decorate the microvilli. All these antibodies, however, decorated the terminal web region of the brush border. Myosin, tropomyosin, and alpha-actinin, although present throughout the terminal web, were found to be preferentially located around the periphery of the organelle. Therefore, two classes of microfilamentous structures can be documented in the brush border. First, the highly ordered microfilaments which make up the cores of the microvilli apparently lack the associated proteins. Second, seemingly less-ordered microfilaments are found in the terminal web, in which region the myosin, tropomyosin, filamin and alpha-actinin are located.  相似文献   

4.
Affinity-purified rabbit antibody to purified chicken gizzard filamin was used in indirect immunofluorescence to localize filamin in dividing chick embryo cells. The antibody was shown to bind only chick embryo cell filamin when whole cell extracts were analyzed by the sensitive sodium dodecyl sulfate-polyacrylamide gel electrophoresis overlay technique described by Adair et al. (1978, J. Cell Biol. 790:281-285). The results show that filamin is located in stress fibers and membrane ruffles during interphase. As cells prophase, the condensing chromosomes are surrounded by diffuse antifilamin staining. No stress fibers are apparent. During metaphase and anaphase, the staining is bright but diffuse. There is often peripheral membrane staining. Filamin is not concentrated in the spindle region but neither is it excluded from the spindle. During cytokinesis, filamin is found highly concentrated in the cleavage furrow in 16 out of 100 cells examined. This frequency of concentration in the furrow is comparable to that observed for alpha-actinin (14%). Myosin concentration in the furrow is more frequent; it is observed in 37% of the cells examined. Neither myosin, alpha-actinin, nor filamin is observed concentrated in the furrow 100% of the time. We conclude that the results are consistent with, but not sufficient to prove, the hypothesis that alpha-actinin and filamin are essential components of the mechanism of cytokinesis.  相似文献   

5.
Filamin A regulates cell spreading and survival via beta1 integrins   总被引:1,自引:0,他引:1  
Cell spreading and exploration of topographically complex substrates require tightly-regulated interactions between extracellular matrix receptors and the cytoskeleton, but the molecular determinants of these interactions are not defined. We examined whether the actin-binding proteins cortactin, vinculin and filamin A are involved in the formation of the earliest extensions of cells spreading over collagen or poly-L-lysine-coated smooth and beaded substrates. Spreading of human gingival fibroblasts was substantially reduced on beaded or poly-L-lysine-coated substrates. Filamin A, vinculin and cortactin were found in cell extensions on smooth collagen. HEK-293 cells also spread rapidly on smooth collagen and formed numerous cell extensions enriched with filamin A. Knockdown of filamin A in HEK-293 cells by short hairpin RNA reduced spreading and the number of cell extensions. Blocking beta1 integrin function significantly reduced cell spreading and localization of filamin A to cell extensions. Conversely, filamin A-knockdown reduced beta1 integrin-collagen binding as measured by 12G10 antibody, suggesting co-dependence between filamin A and beta1 integrin functions. TUNEL staining showed higher percentages of apoptosis after filamin A-knockdown in spreading cells. Chelation of [Ca2+]i with BAPTA/AM reduced spreading of wild-type and filamin A-knockdown cells, however wild-type cells showed recruitment of filamin A to the subcortex, indicating independent roles of filamin A and [Ca2+]i in cell spreading. We conclude that filamin A integrates with beta1 integrins to mediate cell spreading and prevent apoptosis.  相似文献   

6.
After trypsinization and replating, BHK-21 cells spread and change shape from a rounded to a fibroblastic form. Time-lapse movies of spreading cells reveal that organelles are redistributed by saltatory movements from a juxtanuclear position into the expanding regions of cytoplasm. Bidirectional saltations are seen along the long axes of fully spread cells. As the spreading process progresses, the pattern of saltatory movements changes and the average speed of saltations increases from 1.7 MICROMETER/S during the early stages of spreading to 2.3 micrometer/s in fully spread cells. Correlative electron microscope studies indicate that the patterns of saltatory movements that lead to the redistribution of organelles during spreading are closely related to changes in the degree of assembly, organization, and distribution of microtubules and 10-nm filaments. Colchicine (10 microgram/ml of culture medium) reversibly disassembles the microtubule-10-nm filament complexes which form during cell spreading. This treatment results in the disappearance of microtubules and the appearance of a juxtanuclear accumulation of 10-nm filaments. These changes closely parallel an inhibition of saltatory movements. Within 30 min after the addition of the colchicine, pseudopod-like extensions form rapidly at the cell periphery, and adjacent organelles are seen to stream into them. The pseudopods contain extensive arrays of actinlike microfilament bundles which bind skeletal-muscle heavy meromyosin (HMM). Therefore, in the presence of colchicine, intracellular movements are altered from a normal saltatory pattern into a pattern reminiscent of the type of cytoplasmic streaming seen in amoeboid organisms. The streaming may reflect either the activity or the contractility of submembranous microfilament bundles. Streaming activity is not seen in cells containing well-organized microtubule-10-nm filament complexes.  相似文献   

7.
T Fujimoto  K Ogawa 《Histochemistry》1988,88(3-6):525-532
The distribution of F-actin, alpha-actinin and filamin in smooth muscle cells of the chicken was examined by immunofluorescent and immunoelectron microscopy. Those from the gizzard, the femoral artery and the aortic arch were compared. F-Actin labeled by NBD-phallacidin was seen diffusely distributed in the sarcoplasm in the gizzard and the femoral artery, but in the aorta it was observed as streaks and spots, with unstained areas in between. Epon sections of the aortic arch showed that bundles of thin myofilaments run in various directions interspersed with areas mostly occupied by intermediate filaments. alpha-Actinin labelling occurred in dense plaques along the sarcolemma in all the muscles examined. While dense bodies in the sarcoplasm were common and labelled for alpha-actinin in the gizzard and the femoral artery, hardly any were seen in the aortic arch and little labelling for alpha-actinin was observed in the sarcoplasm. Filamin was concentrated along the periphery of dense bodies and plaques in the gizzard and the femoral artery, but it was seen diffusely in the sarcoplasm of the aortic muscle. After chemical skinning of the latter, filamin labelling persisted only in the F-actin bundles, and other areas became negative. The present results show that smooth muscle cells of the aortic arch contrast with those of the gizzard and even with those of the femoral artery in the distribution of F-actin, alpha-actinin and filamin. The mechanisms of contraction and/or stress maintenance in the aortic smooth muscle may be different from those in other smooth muscles.  相似文献   

8.
During the spreading of a population of rat embryo cells, approximately 40% of the cells develop a strikingly regular network which precedes the formation of the straight actin filament bundles seen in the fully spread out cells. Immunofluorescence studies with antibodies specific for the skeletal muscle structural proteins actin, alpha-actinin, and tropomyosin indicate that this network is composed of foci containing actin and alpha-actinin, connected by tropomyosin-associated actin filaments. Actin filaments, having both tropomyosin and alpha-actinin associated with them, are also seen to extend from the vertices of this network to the edges of the cell. These results demonstrate a specific interaction of alpha-actinin and tropomyosin with actin filaments during the assembly and organization of the actin filament bundles of tissue culture cells. The three-dimensional network they form may be regarded as the structural precursor and the vertices of this network as the organization centers of the ultimately formed actin filament bundles of the fully spread out cells.  相似文献   

9.
Antibodies to chicken fast skeletal muscle (pectoralis) alpha-actinin and to smooth muscle (gizzard) alpha-actinin were absorbed with opposite antigens by affinity chromatography, and four antibody fractions were thus obtained: common antibodies reactive with both pectoralis and gizzard alpha-actinins ([C]anti-P alpha-An and [C]anti-G alpha-An), antibody specifically reactive with pectoralis alpha-actinin ([S]anti-P alpha-An), and antibody specifically reactive with gizzard alpha-actinin ([S]anti-G alpha-An). In indirect immunofluorescence microscopy, (C)anti-P alpha-An, (S)anti-P alpha-An, and (C)anti-G alpha- An stained Z bands of skeletal muscle myofibrils, whereas (S)anti-G alpha-An did not. Although (S)anti-G alpha-An and two common antibodies stained smooth muscle cells, (S)anti-P alpha-An did not. We used (S)anti-P alpha-An and (S)anti-G alpha-An for immunofluorescence microscopy to investigate the expression and distribution of skeletal- and smooth-muscle-type alpha-actinins during myogenesis of cultured skeletal muscle cells. Skeletal-muscle-type alpha-actinin was found to be absent from myogenic cells before fusion but present in them after fusion, restricted to Z bodies or Z bands. Smooth-muscle-type alpha- actinin was present diffusely in the cytoplasm and on membrane- associated structures of mononucleated and fused myoblasts, and then confined to membrane-associated structures of myotubes. Immunoblotting and peptide mapping by limited proteolysis support the above results that skeletal-muscle-type alpha-actinin appears at the onset of fusion and that smooth-muscle-type alpha-actinin persists throughout the myogenesis. These results indicate (a) that the timing of expression of skeletal-muscle-type alpha-actinin is under regulation coordination with other major skeletal muscle proteins; (b) that, with respect to expression and distribution, skeletal-muscle-type alpha-actinin is closely related to alpha-actin, whereas smooth-muscle-type alpha- actinin is to gamma- and beta-actins; and (c) that skeletal- and smooth- muscle-type alpha-actinins have complementary distribution and do not co-exist in situ.  相似文献   

10.
Cultured megakaryocytes, isolated from guinea pig bone marrow, were treated with buffer or adenosine diphosphate (ADP) (10 microM) on plain or coated glass surfaces. Control cells were rounded and non-adherent. The nucleotide induced the cells to spread to several times the initial diameter, and to become flattened and markedly adherent to the substratum. 'Cytoskeletons' were examined by transmission electron microscopy (TEM). Those from unspread cells contained only rare microfilaments and no filament bundles; those from spread cells contained large numbers of microfilaments in nets and many filament bundles, which were largely oriented circumferentially. Interference reflection microscopy demonstrated that the spread cells were attached to the substratum in arc-shaped regions, which corresponded to arcs containing alpha-actinin as seen by specific immunofluorescence of the same cells. However, other arcs of alpha-actinin staining did not correspond to arcs of tight attachment. We conclude that fibrous arcs, which appear to assemble as part of the spreading process, play a role in what are probably transient surface attachment sites. A survey of observations of spreading in other cell types suggests that similar arcs are more widespread than has been realized.  相似文献   

11.
We have studied the distribution of myosin and tubulin molecules inside the same tissue culture cells by using two antibodies labeled with contrasting fluorochromes. Antimyosin raised against human platelet myosin was labeled with rhodamine. Antitubulin raised against sea urchin vinblastine-induced tubulin crystals was labeled with fluorescein. The two antibodies stained entirely different structures inside the same flat interphase cell: antimyosin bound to stress fibers and antitubulin bound to thin, wavy fibers thought to be individual microtubules. Compact interphase cells stained diffusely with both antibodies. From prophase through early anaphase both antibodies stained the mitotic spindle, although the fluorescence contrast between the spindle and the cytoplasm was much higher with antitubulin than with antimyosin. From anaphase through telophase, strong antimyosin staining occurred in the cleavage furrow, while antitubulin stained the region between the separated chromosomes. This study established the feasibility of high-resolution fluorescent antibody localization of pairs of motility proteins in the cytoplasm of single cells, an approach which will make it possible to map out the sites of the various contractile protein interactions in situ.  相似文献   

12.
Filamin and vinculin from chicken gizzards were significantly phosphorylated in vitro by casein kinases 1 and 2, but not by alpha-actinin. Antisera raised against these actin-binding proteins immunoprecipitated the phosphorylated proteins corresponding to filamin and vinculin, but no phosphoprotein corresponding to alpha-actinin was detected. These results suggest that filamin and vinculin are phosphorylated in vivo but alpha-actinin is not.  相似文献   

13.
To study how contractile proteins become organized into sarcomeric units in striated muscle, we have exposed glycerinated myofibrils to fluorescently labeled actin, alpha-actinin, and tropomyosin. In this in vitro system, alpha-actinin bound to the Z-bands and the binding could not be saturated by prior addition of excess unlabeled alpha-actinin. Conditions known to prevent self-association of alpha-actinin, however, blocked the binding of fluorescently labeled alpha-actinin to Z-bands. When tropomyosin was removed from the myofibrils, alpha-actinin then added to the thin filaments as well as the Z-bands. Actin bound in a doublet pattern to the regions of the myosin filaments where there were free cross-bridges i.e., in that part of the A-band free of interdigitating native thin filaments but not in the center of the A- band which lacks cross-bridges. In the presence of 0.1-0.2 mM ATP, no actin binding occurred. When unlabeled alpha-actinin was added first to myofibrils and then labeled actin was added fluorescence occurred not in a doublet pattern but along the entire length of the myofibril. Tropomyosin did not bind to myofibrils unless the existing tropomyosin was first removed, in which case it added to the thin filaments in the l-band. Tropomyosin did bind, however, to the exogenously added tropomyosin-free actin that localizes as a doublet in the A-band. These results indicate that the alpha-actinin present in Z-bands of myofibrils is fully complexed with actin, but can bind exogenous alpha- actinin and, if actin is added subsequently, the exogenous alpha- actinin in the Z-band will bind the newly formed fluorescent actin filaments. Myofibrillar actin filaments did not increase in length when G-actin was present under polymerizing conditions, nor did they bind any added tropomyosin. These observations are discussed in terms of the structure and in vivo assembly of myofibrils.  相似文献   

14.
The participation of alpha-actinin in the capping of cell membrane components.   总被引:36,自引:0,他引:36  
B Geiger  S J Singer 《Cell》1979,16(1):213-222
By means of double fluorescence staining experiments, intracellular alpha-actinin was found to accumulate under caps and patches induced in several cells by a variety of ligands. This phenomenon was demonstrated in lymphocytes and lymphoma cells treated with anti-H-2 sera; spleen lymphocytes treated with concanavalin A or anti-immunoglobulin antibodies, and VSV-infected mouse fibroblast line MC57 treated with antiserum against viral antigens. It occurred during both rapid and slow capping processes, and could be obtained by either direct or indirect ligand-induced redistribution. These observations were carried out on whole cells. For other cytoskeletal proteins such as filamin, tropomyosin and myosin, a similar accumulation under caps was not readily apparent using whole cell mounts, although earlier experiments with frozen-sectioned cells had shown such an enrichment of myosin (as well as actin). The enrichment of alpha-actinin under the clustered surface molecules was already apparent in early stages (patching) of the capping process, with or without 10 mM sodium azide present. Prolonged incubation of the cells with the different ligands resulted in endocytosis of the ligand-receptor complex. alpha-Actinin was not associated with the inernalized complex, however, suggesting that it may dissociate from the patched or capped surface structures at some stage during endocytosis.  相似文献   

15.
Alpha-actinin localization in the cleavage furrow during cytokinesis   总被引:24,自引:18,他引:6  
We used antibodies against alpha-actinin and myosin labeled directly with contrasting fluorochromes to localize these contractile proteins simultaneously in dividing chick embryo cells. During mitosis anti-alpha-actinin stains diffusely the entire cytoplasm including the mitotic spindle, while in the same cells intense antimyosin staining delineates the spindle. During cytokinesis both antibodies stain the cleavage furrow intensely, and until the midbody forms the two staining patterns in the same cell are identical at the resolution of the light microscope. Thereafter the anti-alpha-actinin staining of the furrow remains strong, but the antimyosin staining diminishes. These observations suggest that alpha-actinin participates along with actin and myosin in the membrane movements associated with cytokinesis.  相似文献   

16.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3'5'-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

17.
Prostaglandin synthesis in endothelial cells may be initiated by the addition of exogenous substrate (arachidonic acid) or by addition of thrombin or the CA2+-ionophore A23187, which leads to prostacyclin formation from endogenous substrates. We noticed that endothelial cells produce more than twice the amount of prostacyclin when incubated with thrombin and arachidonic acid together than with arachidonic acid alone. In addition, it was found that the thrombin-induced conversion of endogenous substrates was inhibited by exogenous arachidonic acid. This means that the conversion of exogenous added arachidonic acid to prostacyclin was stimulated by thrombin. This activation of the enzymes involved in prostacyclin synthesis lasted about 5 min and could be inhibited by phospholipase inhibitors such as mepacrine and p-bromophenyl-acylbromide but not by the cAMP analogue dibutyryl cAMP, an inhibitor of arachidonic acid release from cellular phospholipids. These data demonstrate that, in addition to causing release of endogenous substrate, thrombin and the Ca2+-ionophore also activate the enzyme system involved in the further transformation of arachidonic acid.  相似文献   

18.
Cultured megakaryocytes, isolated from guinea pig bone marrow, were treated with buffer or adenosine diphosphate (ADP) (10 μM) on plain or coated glass surfaces. Control cells were rounded and non-adherent. The nucleotide induced the cells to spread to several times the initial diameter, and to become flattened and markedly adherent to the substratum. ‘Cytoskeletons’ were examined by transmission electron microscopy (TEM). Those from unspread cells contained only rare microfilaments and no filament bundles; those from spread cells contained large numbers of microfilaments in nets and many filament bundles, which were largely oriented circumferentially. Interference reflection microscopy demonstrated that the spread cells were attached to the substratum in arc-shaped regions, which corresponded to arcs containing alpha-actinin as seen by specific immunofluorescence of the same cells. However, other arcs of α-actinin staining did not correspond to arcs of tight attachment. We conclude that fibrous arcs, which appear to assemble as part of the spreading process, play a role in what are probably transient surface attachment sites. A survey of observations of spreading in other cell types suggests that similar arcs are more widespread than has been realized.  相似文献   

19.
Stress fiber dynamics as probed by antibodies against myosin   总被引:3,自引:0,他引:3  
The dynamics of microfilament bundles (stress fibers) in tissue culture cells were studied by microinjecting an affinity-purified polyclonal antibody against chicken gizzard myosin. This antibody cross-reacted exclusively with the light chains of nonmuscle myosin and should therefore bind to the head portion of myosin molecules. When injected in high concentrations (13-26 mg/ml), it disrupted stress fibers in a high proportion (60-80%) of rat and chicken embryo fibroblasts, as well as in PtK2 cells. Myosin was found collected in large aggregates probably comprising protein: antibody precipitates, while actin and alpha-actinin were not localized in any defined structures in stress fiber depleted cells. Fibroblasts rounded up, probably because of lack of tension-generating microfilament bundles. After several hours, stress fibers were seen to regrow again in the afflicted cells, even when myosin precipitates and excess antibody were still present. The extent of stress fiber disruption and the time point of their reappearance were dependent on the concentration of the injected antibody.  相似文献   

20.
The purpose of this study was to address the paradox of calponin localization with alpha-actinin and filamin, two proteins with tandem calponin homology (CH) domains, by determining the effect of these proteins on the binding of calponin to actin. The results show that actin can accommodate near-saturating concentrations of either calponin and alpha-actinin or calponin and filamin with little change or no change in ligand affinity. Little direct interaction occurred between alpha-actinin and calponin in the absence of actin, so this effect is not likely to explain the co-distribution of these proteins. Calponin, like alpha-actinin, induced elastic gel formation when added to actin. When alpha-actinin was added to newly formed calponin/actin gels, no change was seen in the mechanical properties of the gel compared to calponin and actin alone. However, when calponin was added to newly formed alpha-actinin/actin gels, the resulting gel was much stronger than the gels formed by either ligand alone. Furthermore, gels formed by the addition of calponin to alpha-actinin/actin exhibited a phenomenon known as strain hardening, a characteristic of mechanically resilient gels. These results add weight to the concept that one of the functions of calponin is to stabilize the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号