首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Acute pancreatitis (AP) is an inflammatory disease involving the production of different cytokines and chemokines and is characterized by leukocyte infiltration. Because the chemokine receptor CCR5 and its ligands [the CC chemokines CCL3/MIP-1alpha, CCL4/MIP-1beta, and CCL5/regulated upon activation, normal T cell expressed and secreted (RANTES)] regulate leukocyte chemotaxis and activation, we investigated the expression of CCR5 ligands and the role of CCR5 and its ligands in experimental AP in mice. AP was induced by hourly intraperitoneal injections of cerulein in CCR5-deficient (CCR5(-/-)) or wild-type (WT) mice. Induction of AP by cerulein resulted in an early increase of pancreatic CCL2, CCL3, and CCL4 mRNA expression, whereas CCL5 mRNA expression occurred later. CCR5(-/-) mice developed a more severe pancreatic injury than WT mice during cerulein-induced AP, as assessed by a more pronounced increase in serum amylase and lipase levels and by more severe pancreatic edema, inflammatory infiltrates (mainly neutrophils), and necrosis. CCR5(-/-) mice also exhibited increased production of CCL2/MCP-1, CCL3/MIP-1alpha, and CCL4/MIP-1beta during the course of cerulein-induced AP. In vivo simultaneous neutralization of CC chemokines with monoclonal antibodies in CCR5(-/-) mice reduced the severity of cerulein-induced AP, indicating a role of CC chemokines in exacerbating the course of AP in the absence of CCR5. Moreover, simultaneous neutralization of CCR5 ligands in WT mice also reduced the severity of cerulein-induced AP. In conclusion, lack of the chemokine receptor CCR5 exacerbates experimental cerulein-induced AP and leads to increased levels of CC chemokines and a more pronounced pancreatic inflammatory infiltrate, suggesting that CCR5 expression can modulate severity of AP.  相似文献   

2.
Inflammation is counterbalanced by anti-inflammatory cytokines such as IL-10, in which Stat3 mediates the signaling pathway. In this study, we demonstrate that resident macrophages, but not other cell types, are important targets of IL-10 in a murine model of acute peritonitis. Injection of thioglycollate i.p. induced a considerable number of neutrophils and macrophages in the peritoneum, which was significantly augmented in mice with a cell-type specific disruption of the Stat3 gene in macrophages and neutrophils (LysMcre/Stat3flox/- mice). The augmented leukocyte infiltration was accompanied by increased peritoneal levels of TNF-alpha, MIP-2, KC chemokine (KC), and MCP-1/CCL2. Stat3 was tyrosine phosphorylated in peritoneal resident macrophages as well as infiltrating leukocytes in the littermate controls, suggesting that Stat3 in either or both of these cells might play a regulatory role in inflammation. The peritoneal levels of TNF-alpha, MIP-2, KC, and MCP-1 were similarly elevated in LysMcre/Stat3flox/- mice rendered leukopenic by cyclophosphamide treatment as compared with the controls. Adoptive transfer of resident macrophages from LysMcre/Stat3flox/- mice into the control littermates resulted in increases in the peritoneal level of TNF-alpha, MIP-2, KC, and MCP-1 after i.p. injection of thioglycollate. Under these conditions, control littermates harboring LysMcre/Stat3flox/- macrophages exhibited an augmented leukocyte infiltration relative to those received control macrophages. Taken together, these data provide evidence that resident macrophages, but not other cell types, play a regulatory role in inflammation through a Stat3 signaling pathway. Stat3 in resident macrophages appears to function as a repressor protein in this model of acute inflammation.  相似文献   

3.
Increased lipid peroxidation, enhanced nuclear factor kappa-B (NF-kappaB) activation and augmented tumor necrosis factor-alpha (TNF-alpha) production have been implicated in cerulein-induced pancreatitis. We investigated whether lipid peroxidation inhibition might reduce NF-kappaB activation and the inflammatory response in cerulein-induced pancreatitis. Male Sprague-Dawley rats of 230-250g body weight received administration of cerulein (80 microg/kg s.c. for each of four injections at hourly intervals). A control group received four s.c. injections of 0.9% saline at hourly intervals. Animals were randomized to receive either raxofelast, an inhibitor of lipid peroxidation (20 mg/kg i.p. administered with the first cerulein injection) or its vehicle (1 ml/kg of a 10% DMSO/NaCl solution). All these rats were sacrificed 2 h after the last injection of either cerulein or its vehicle. Raxofelast administration (20 mg/kg i.p. with the first cerulein) significantly reduced malondialdehyde (MDA) levels, an index of lipid peroxidation (CER + DMSO = 3.075 +/- 0.54 micromol/g; CER + raxofelast = 0.693 +/- 0.18 micromol/g; p < 0.001), decreased myeloperoxidase (MPO) activity (CER + DMSO = 22.2 +/- 3.54 mU/g; CER + raxofelast = 9.07 +/- 2.05 mU/g, p < 0.01), increased glutathione levels (GSH) (CER + DMSO = 5.21 +/- 1.79 micromol/g; CER + raxofelast = 15.71 +/- 2.14 micronol/g; p < 0.001), and reduced acinar cell damage evaluated by means of histology and serum levels of both amylase (CER + DMSO = 4063 +/- 707.9 U/l; CER + raxofelast = 1198 +/- 214.4 U/l; p < 0.001), and lipase (CER + DMSO = 1654 +/- 330 U/l; CER + raxofelast = 386 +/- 118.2 U/l; p < 0.001), Furthermore, raxofelast reduced pancreatic NF-kappaB activation and the TNF-alpha mRNA levels and tissue content of mature protein in the pancreas. Indeed, lipid peroxidation inhibition might be considered a potential therapeutic approach to prevent the severe damage in acute pancreatitis.  相似文献   

4.
5.
Recent studies have indicated that pre-induction of heat shock protein 70 (HSP70) expression in the pancreas protects against secretagogue-induced pancreatitis. In those studies, the HSP70 was mostly induced by unfeasible conditions. The aim of this current study was to investigate the effect of peritoneal lavage with hot 0.9 % saline (42 °C) on the pancreatic expression of HSP70 and its protective effect on cerulein-induced acute pancreatitis in rats. Male Wistar rats were peritoneally lavaged with 0.9 % saline at 42 °C for 30 min. HSP70 expression was evaluated by western blotting analysis. Prior peritoneal lavages with hot and warm saline were performed. Acute pancreatitis was induced by administration of intraperitoneal injection of cerulein (20 μg/kg) four times, and its severity was assessed by measuring serum amylase, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and trypsinogen activation peptide (TAP) levels. Pancreatic sections were stained with hematoxylin and eosin for histological evaluation. Peritoneal lavage with hot 0.9 % saline increased intrapancreatic HSP70 expression and ameliorated the cerulein-induced pancreatitis in rats, judged by the significantly reduced serum amylase, TNF-α, and IL-6 concentrations; histopathological scores, and serum TAP levels. Peritoneal lavage with hot 0.9 % saline can induce HSP70 expression and prevent cerulein-induced acute pancreatitis in rats. The results suggest that HSP70 protects against cerulein-induced pancreatitis by preventing proinflammatory cytokine synthesis and trypsinogen activation during acute pancreatitis.  相似文献   

6.
7.
8.
Cyclooxygenase-2 (COX-2), a widely distributed enzyme, plays an important role in inflammation. We have studied the role of COX-2 in acute pancreatitis and pancreatitis-associated lung injury using both the pharmacological inhibition of COX-2 and genetic deletion of COX-2. Pancreatitis was induced in mice by 12 hourly injections of cerulein. The severity of pancreatitis was assessed by measuring serum amylase, pancreatic trypsin activity, intrapancreatic sequestration of neutrophils, and acinar cell necrosis. The severity of lung injury was evaluated by measuring lactate dehydrogenase levels in the bronchoalveolar lavage fluid and by quantitating neutrophil sequestration in the lung. In both the pharmacologically inhibited and genetically altered mice, the severity of pancreatitis and pancreatitis-associated lung injury was reduced compared with the noninhibited strains of COX-2-sufficient mice. This reduction in injury indicates that COX-2 plays an important proinflammatory role in pancreatitis and its associated lung injury. Our findings support the concept that COX-2 inhibitors may play a beneficial role in the prevention of acute pancreatitis or in the reduction of its severity.  相似文献   

9.
10.
The host response to Gram-negative LPS is characterized by an influx of inflammatory cells into host tissues, which is mediated, in part, by localized production of chemokines. The expression and function of chemokines in vivo appears to be highly selective, though the molecular mechanisms responsible are not well understood. All CXC (IFN-gamma-inducible protein (IP-10), macrophage inflammatory protein (MIP)-2, and KC) and CC (JE/monocyte chemoattractant protein (MCP)-1, MCP-5, MIP-1alpha, MIP-1beta, and RANTES) chemokine genes evaluated were sensitive to stimulation by LPS in vitro and in vivo. While IL-10 suppressed the expression of all LPS-induced chemokine genes evaluated in vitro, treatment with IFN-gamma selectively induced IP-10 and MCP-5 mRNAs, but inhibited LPS-induced MIP-2, KC, JE/MCP-1, MIP-1alpha, and MIP-1beta mRNA and/or protein. Like the response to IFN-gamma, LPS-mediated induction of IP-10 and MCP-5 was Stat1 dependent. Interestingly, only the IFN-gamma-mediated suppression of LPS-induced KC gene expression was IFN regulatory factor-2 dependent. Treatment of mice with LPS in vivo also induced high levels of chemokine mRNA in the liver and lung, with a concomitant increase in circulating protein. Hepatic expression of MIP-1alpha, MIP-1beta, RANTES, and MCP-5 mRNAs were dramatically reduced in Kupffer cell-depleted mice, while IP-10, KC, MIP-2, and MCP-1 were unaffected or enhanced. These findings indicate that selective regulation of chemokine expression in vivo may result from differential response of macrophages to pro- and antiinflammatory stimuli and to cell type-specific patterns of stimulus sensitivity. Moreover, the data suggest that individual chemokine genes are differentially regulated in response to LPS, suggesting unique roles during the sepsis cascade.  相似文献   

11.
Cecal ligation and puncture (CLP) caused septic peritonitis in wild-type (WT) mice, with approximately 33% mortality within 7 days after the procedure. Concomitantly, the protein level of intraperitoneal CX3CL1/fractalkine was increased, with infiltration by CX3CR1-expressing macrophages into the peritoneum. CLP induced 75% mortality in CX3CR1-deficient (CX3CR1(-/-)) mice, which, however, exhibited a similar degree of intraperitoneal leukocyte infiltration as WT mice. Despite this, CX3CR1(-/-) mice exhibited impairment in intraperitoneal bacterial clearance, together with a reduction in the expression of intraperitoneal inducible NO synthase (iNOS) and bactericidal proinflammatory cytokines, including IL-1beta, TNF-alpha, IFN-gamma, and IL-12, compared with WT mice. Bactericidal ability of peritoneal phagocytes such as neutrophils and macrophages was consistently attenuated in CX3CR1(-/-) mice compared with WT mice. Moreover, when WT macrophages were stimulated in vitro with CX3CL1, their bactericidal activity was augmented in a dose-dependent manner, with enhanced iNOS gene expression and subsequent NO generation. Furthermore, CX3CL1 enhanced the gene expression of IL-1beta, TNF-alpha, IFN-gamma, and IL-12 by WT macrophages with NF-kappaB activation. Thus, CX3CL1-CX3CR1 interaction is crucial for optimal host defense against bacterial infection by activating bacterial killing functions of phagocytes, and by augmenting iNOS-mediated NO generation and bactericidal proinflammatory cytokine production mainly through the NF-kappaB signal pathway, with few effects on macrophage infiltration.  相似文献   

12.
13.
The renin-angiotensin system (RAS) plays important roles in various pathophysiological processes. However, the role of the RAS in pancreatic fibrosis has not been established. We investigated the role of angiotensin II (ANG II)-ANG II type 1 (AT(1)) receptor pathway in the development of pancreatic fibrosis with AT(1a) receptor-deficient [AT(1a)(-/-)] mice. To induce pancreatic fibrosis, AT(1a)(-/-) and wild-type (WT) mice were submitted to three episodes of acute pancreatitis induced by six intraperitoneal injections of 50 microg/kg body wt cerulein at hourly intervals, per week, for four consecutive weeks. Pancreatic fibrosis was assessed by histology and hydroxyproline content. Pancreatic stellate cell (PSC) activation and the localization of AT(1) receptors were assessed by Western blot analysis for alpha-smooth muscle actin and immunostaining. Transforming growth factor-beta(1) (TGF-beta(1)) mRNA expression in the pancreas was assessed by RT-PCR. Six intraperitoneal injections of cerulein induced acute pancreatitis in both AT(1a)(-/-) and WT mice. There were no significant differences between two groups with regard to serum amylase and histological changes. Pancreatic fibrosis induced by repeated episodes of acute pancreatitis was significantly attenuated in AT(1a)(-/-) mice compared with that in WT mice. This finding was accompanied by a reduction of activated PSCs. Dual-immunofluorescence staining in WT mice revealed that activated PSCs express AT(1) receptors. The level of TGF-beta(1) mRNA was lower in AT(1a)(-/-) mice than in WT mice. Our results demonstrate that the ANG II-AT(1) receptor pathway is not essential for the local pancreatic injury in acute pancreatitis but plays an important role in the development of pancreatic fibrosis through PSC activation and proliferation.  相似文献   

14.
15.
16.
Regulation of cytokine and chemokine expression in microglia may have implications for CNS inflammatory disorders. In this study we examined the role of the cyclopentenone PG 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) in microglial inflammatory activation in primary cultures of human fetal microglia. 15d-PGJ(2) potently inhibited the expression of microglial cytokines (IL-1, TNF-alpha, and IL-6). We found that 15d-PGJ(2) had differential effects on the expression of two alpha-chemokines; whereas the Glu-Lys-Arg (ELR)(-) chemokine IFN-inducible protein-10/CXCL10 was inhibited, the ELR(+) chemokine IL-8/CXCL8 was not inhibited. These findings were shown in primary human microglia and the human monocytic cells line THP-1 cells, using diverse cell stimuli such as bacterial endotoxin, proinflammatory cytokines (IL-1 and TNF-alpha), IFN-beta, and HIV-1. Furthermore, IL-8/CXCL8 expression was induced by 15d-PGJ(2) alone or in combination with TNF-alpha or HIV-1. Combined results from EMSA, Western blot analysis, and immunocytochemistry showed that 15d-PGJ(2) inhibited NF-kappaB, Stat1, and p38 MAPK activation in microglia. Adenoviral transduction of super-repressor IkappaBalpha, dominant negative MKK6, and dominant negative Ras demonstrated that NF-kappaB and p38 MAPK were involved in LPS-induced IFN-inducible protein 10/CXCL10 production. Interestingly, although LPS-induced IL-8/CXCL8 was dependent on NF-kappaB, the baseline or 15d-PGJ(2)-mediated IL-8/CXCL8 production was NF-kappaB independent. Our results demonstrate that 15d-PGJ(2) has opposing effects on the expression of two alpha-chemokines. These data may have implications for CNS inflammatory diseases.  相似文献   

17.
The epithelial surface is often proposed to actively participate in host defense, but evidence that this is the case remains circumstantial. Similarly, respiratory paramyxoviral infections are a leading cause of serious respiratory disease, but the basis for host defense against severe illness is uncertain. Here we use a common mouse paramyxovirus (Sendai virus) to show that a prominent early event in respiratory paramyxoviral infection is activation of the IFN-signaling protein Stat1 in airway epithelial cells. Furthermore, Stat1-/- mice developed illness that resembled severe paramyxoviral respiratory infection in humans and was characterized by increased viral replication and neutrophilic inflammation in concert with overproduction of TNF-alpha and neutrophil chemokine CXCL2. Poor control of viral replication as well as TNF-alpha and CXCL2 overproduction were both mimicked by infection of Stat1-/- airway epithelial cells in culture. TNF-alpha drives the CXCL2 response, because it can be reversed by TNF-alpha blockade in vitro and in vivo. These findings pointed to an epithelial defect in Stat1-/- mice. Indeed, we next demonstrated that Stat1-/- mice that were reconstituted with wild-type bone marrow were still susceptible to infection with Sendai virus, whereas wild-type mice that received Stat1-/- bone marrow retained resistance to infection. The susceptible epithelial Stat1-/- chimeric mice also exhibited increased viral replication as well as excessive neutrophils, CXCL2, and TNF-alpha in the airspace. These findings provide some of the most definitive evidence to date for the critical role of barrier epithelial cells in innate immunity to common pathogens, particularly in controlling viral replication.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号