共查询到20条相似文献,搜索用时 0 毫秒
1.
TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex 总被引:11,自引:0,他引:11
Blanchard N Lankar D Faure F Regnault A Dumont C Raposo G Hivroz C 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(7):3235-3241
We show in this study that human T cells purified from peripheral blood, T cell clones, and Jurkat T cells release microvesicles in the culture medium. These microvesicles have a diameter of 50-100 nm, are delimited by a lipidic bilayer membrane, and bear TCR beta, CD3epsilon, and zeta. This microvesicle production is regulated because it is highly increased upon TCR activation, whereas another mitogenic signal, such as PMA and ionomycin, does not induce any release. T cell-derived microvesicles also contain the tetraspan protein CD63, suggesting that they originate from endocytic compartments. They contain adhesion molecules such as CD2 and LFA-1, MHC class I and class II, and the chemokine receptor CXCR4. These transmembrane proteins are selectively sorted in microvesicles because CD28 and CD45, which are highly expressed at the plasma membrane, are not found. The presence of phosphorylated zeta in these microvesicles suggests that the CD3/TCR found in the microvesicles come from the pool of complexes that have been activated. Proteins of the transduction machinery, tyrosine kinases of the Src family, and c-Cbl are also observed in the T cell-derived microvesicles. Our data demonstrate that T lymphocytes produce, upon TCR triggering, vesicles whose morphology and phenotype are reminiscent of vesicles of endocytic origin produced by many cell types and called exosomes. Although the exact content of T cell-derived exosomes remains to be determined, we suggest that the presence of TCR/CD3 at their surface makes them powerful vehicles to specifically deliver signals to cells bearing the right combination of peptide/MHC complexes. 相似文献
2.
Stimulation through the TCR/CD3 complex up-regulates the CD2 surface expression on human T lymphocytes. 总被引:4,自引:0,他引:4
J Alberola-Ila L Places O de la Calle M Romero J Yagüe T Gallart J Vives F Lozano 《Journal of immunology (Baltimore, Md. : 1950)》1991,146(4):1085-1092
Despite the well known interrelationship between the CD2- and CD3-mediated signal transduction pathways, it is not well established whether the CD2 surface expression can be regulated by triggering of TCR/CD3 complex. In this study we show that the stimulation of human PBMC with the Cris-7 (CD3) mAb, both in soluble and particulate form, results in hyperexpression of the CD2 surface Ag, as assessed by immunofluorescence and semi-quantitative immunoprecipitation assays. Similar effects on CD2 surface expression were obtained when different CD3 mAb (OKT3, RW2-8C8 and Leu-4) were tested. The CD3-mediated CD2 up-regulation was suppressed by cycloheximide and actinomycin D, indicating that it requires de novo protein and RNA synthesis. In agreement with this, increased CD2 RNA levels were observed after 3 h of stimulation, reaching a plateau at 24 h that was maintained for 72 h. The CD2 up-regulation was concomitant to other CD3-induced activation-related events such as induction of surface CD25 and CD71 and high RNA levels for c-myc, IL-2R alpha- and beta-chains, CD71, and IFN-gamma. CD2 up-regulation appeared to be elicited by a protein kinase C-dependent mechanism because it was abrogated by staurosporine, a potent protein kinase C inhibitor. Moreover, IL-2-dependent events may also help in enhancing CD2 hyper-expression because it was only partially inhibitable by cyclosporine, dexamethasone, or Mar-108 (CD25) mAb. In conclusion, our data suggest that CD2 up-regulation can be a relevant event in T cell activation triggered by the physiologic engagement of the TCR/CD3 complex. 相似文献
3.
Tsuzaka K Setoyama Y Yoshimoto K Shiraishi K Suzuki K Abe T Takeuchi T 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(6):3518-3525
The reduction or absence of TCR zeta-chain (zeta) expression in patients with systemic lupus erythematosus (SLE) is thought to be a factor in the pathogenesis of SLE. We previously reported a splice variant of zeta mRNA that lacks the 36-bp exon 7 (zeta mRNA/exon 7(-)) and is accompanied by the down-regulation of zeta protein in T cells from SLE patients. In this study, we show that EX7- mutants (MA5.8 cells deficient in zeta protein that have been transfected with zeta mRNA/exon 7(-)) exhibit a reduction in the expression of TCR/CD3 complex and zeta protein on their cell surface as well as a reduction in the production of IL-2 after stimulation with anti-CD3 Ab, compared with that in wild-type (WT) mutants (MA5.8 cells transfected with the WT zeta mRNA). Furthermore, real-time PCR analyses demonstrated that zeta mRNA/exon 7(-) in EX7- mutants was easily degraded compared with zeta mRNA by the WT mutants. Pulse-chase experiment showed zeta protein produced by this EX7- mutants was more rapidly decreased compared with the WT mutants. Thus, the lower stability of zeta mRNA/exon 7(-) might also be responsible for the reduced expression of the TCR/CD3 complex, including zeta protein, in SLE T cells. 相似文献
4.
Tsuzaka K Fukuhara I Setoyama Y Yoshimoto K Suzuki K Abe T Takeuchi T 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(5):2496-2503
The reduction or absence of TCR zeta-chain (zeta) expression in systemic lupus erythematosus (SLE) patients is thought to be related to the pathogenesis of SLE. Recently, we reported the predominant expression of zeta mRNA containing an alternatively spliced 3'-untranslated region (3'UTR; zetamRNA/as-3'UTR) and a reduction in the expression of zeta mRNA containing the wild-type 3'UTR (zetamRNA/w-3'UTR) in T cells from SLE patients. Here we show that AS3'UTR mutants (MA5.8 cells deficient in zeta protein that have been transfected with zetamRNA/as-3'UTR) exhibit a reduction in the expression of TCR/CD3 complex and zeta protein on their cell surface as well as a reduction in the production of IL-2 after stimulation with anti-CD3 Ab compared with that in wild-type 3'UTR mutants (MA5.8 cells transfected with zetamRNA/w-3'UTR). Furthermore, the real-time PCR analyses demonstrated that the half-life of zetamRNA/as-3'UTR in AS3'UTR mutants (3 h) was much shorter than that of zetamRNA/w-3'UTR in wild-type 3'UTR mutants (15 h). Thus, the lower stability of zetamRNA/as-3'UTR, which is predominant in SLE T cells, may be responsible for the reduced expression of the TCR/CD3 complex, including zeta protein, in SLE T cells. 相似文献
5.
Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta) 总被引:3,自引:0,他引:3
Zabaleta J McGee DJ Zea AH Hernández CP Rodriguez PC Sierra RA Correa P Ochoa AC 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(1):586-593
Helicobacter pylori infects approximately half the human population. The outcomes of the infection range from gastritis to gastric cancer and appear to be associated with the immunity to H. pylori. Patients developing nonatrophic gastritis present a Th1 response without developing protective immunity, suggesting that this bacterium may have mechanisms to evade the immune response of the host. Several H. pylori proteins can impair macrophage and T cell function in vitro through mechanisms that are poorly understood. We tested the effect of H. pylori extracts and live H. pylori on Jurkat cells and freshly isolated human normal T lymphocytes to identify possible mechanisms by which the bacteria might impair T cell function. Jurkat cells or activated T lymphocytes cultured with an H. pylori sonicate had a reduced proliferation that was not caused by T cell apoptosis or impairment in the early T cell signaling events. Instead, both the H. pylori sonicate and live H. pylori induced a decreased expression of the CD3zeta-chain of the TCR. Coculture of live H. pylori with T cells demonstrated that the wild-type strain, but not the arginase mutant rocF(-), depleted L-arginine and caused a decrease in CD3zeta expression. Furthermore, arginase inhibitors reversed these events. These results suggest that H. pylori arginase is not only important for urea production, but may also impair T cell function during infection. 相似文献
6.
7.
8.
Regulation of T cell receptor CD3zeta chain expression by L-arginine 总被引:11,自引:0,他引:11
Rodriguez PC Zea AH Culotta KS Zabaleta J Ochoa JB Ochoa AC 《The Journal of biological chemistry》2002,277(24):21123-21129
9.
Forced expression of the Fc receptor gamma-chain renders human T cells hyperresponsive to TCR/CD3 stimulation 总被引:2,自引:0,他引:2
Nambiar MP Fisher CU Kumar A Tsokos CG Warke VG Tsokos GC 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(6):2871-2876
High level expression of Fc epsilon RI gamma chain replaces the deficient TCR zeta-chain and contributes to altered TCR/CD3-mediated signaling abnormalities in T cells of patients with systemic lupus erythematosus. Increased responsiveness to Ag has been considered to lead to autoimmunity. To test this concept, we studied early signaling events and IL-2 production in fresh cells transfected with a eukaryotic expression vector encoding the Fc epsilon RI gamma gene. We found that the overexpressed Fc epsilon RI gamma chain colocalizes with the CD3 epsilon chain on the surface membrane of T cells and that cross-linking of the new TCR/CD3 complex leads to a dramatic increase of intracytoplasmic calcium concentration, protein tyrosine phosphorylation, and IL-2 production. We observed that overexpression of Fc epsilon RI gamma is associated with increased phosphorylation of Syk kinase, while the endogenous TCR zeta-chain is down-regulated. We propose that altered composition of the CD3 complex leads to increased T cell responsiveness to TCR/CD3 stimulation and sets the biochemical grounds for the development of autoimmunity. 相似文献
10.
11.
Zea AH Rodriguez PC Culotta KS Hernandez CP DeSalvo J Ochoa JB Park HJ Zabaleta J Ochoa AC 《Cellular immunology》2004,232(1-2):21-31
Engagement of the T cell receptor (TCR) by antigen or anti-CD3 antibody results in a cycle of internalization and re-expression of the CD3zeta. Following internalization, CD3zeta is degraded and replaced by newly synthesized CD3zeta on the cell surface. Here, we provide evidence that availability of the amino acid L-arginine modulates the cycle of internalization and re-expression of CD3zeta and cause T cell dysfunction. T cells stimulated and cultured in presence of L-arginine, undergo the normal cycle of internalization and re-expression of CD3zeta. In contrast, T cells stimulated and cultured in absence of L-arginine, present a sustained down-regulation of CD3zeta preventing the normal expression of the TCR, exhibit a decreased proliferation, and a significantly diminished production of IFNgamma, IL5, and IL10, but not IL2. The replenishment of L-arginine recovers the expression of CD3zeta. The decreased expression of CD3zeta is not caused by a decreased CD3zeta mRNA, an increased CD3zeta degradation or T cell apoptosis. 相似文献
12.
We investigated the expression of the T cell receptor (TCR)/CD3 complex on a CD4-positive human T cell lymphoma cell line treated with phorbol myristate acetate (PMA) and/or CA2+ ionophore using fluorescence flow cytometry and fluorescence microscopic analysis. PMA induced a significant decrease in the expression of the CD3 complex on the cell membranes. Fluorescence microscopy confirmed that the down regulation is due to internalization of the antigens. Ca2+ ionophore treatment had no effect on the internalization of the CD3 complex. Double staining revealed that the vesicles containing the internalized CD3 complex and those containing intra-cytoplasmic class I major histocompatibility complex antigen had similar distribution in the PMA-stimulated cells, implying coexistence of these two antigens in a cytoplasmic perinuclear distribution. 相似文献
13.
The TCR/CD3 complex is a multimeric protein complex composed of a minimum of seven transmembrane chains (TCR alpha beta-CD3 gamma delta epsilon zeta 2). Whereas earlier studies have demonstrated that both the TCR-alpha and -beta chains are required for the cell surface expression of the TCR/CD3 complex, the role of the CD3 chains for the TCR/CD3 expression have not been experimentally addressed in human T cells. In this study the function of the CD3-zeta chain for the assembly, intracellular processing, and expression of the TCR/CD3 complex in the human leukemic T cell line Jurkat was investigated. The results indicate that: 1) CD3-zeta is required for the cell surface expression of the TCR/CD3 complex; 2) the pentameric form (TCR alpha beta-CD3 gamma delta epsilon) of the TCR/CD3 complex and single TCR chains associated with CD3 (TCR alpha-CD3 gamma delta epsilon and TCR beta-CD3 gamma delta epsilon) are produced in the endoplasmic reticulum in the absence of CD3-zeta; 3) the CD3-zeta does not associate with TCR alpha-CD3 gamma delta epsilon or TCR beta-CD3 gamma delta epsilon complexes; 4) CD3-zeta associate with the pentameric form of the TCR/CD3 complex in the endoplasmic reticulum to form the heptameric complex (TCR alpha beta-CD3 gamma delta epsilon----TCR alpha beta-CD3 gamma delta epsilon 2); and 5) CD3-zeta is required for the export of the TCR/CD3 complex from the endoplasmic reticulum to the Golgi apparatus for subsequent processing. 相似文献
14.
M S Block A J Johnson Y Mendez-Fernandez L R Pease 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(2):821-826
Both CD8 and the TCR bind to MHC class I molecules during physiologic T cell activation. It has been shown that for optimal T cell activation to occur, CD8 must be able to bind the same class I molecule that is bound by the TCR. However, no direct evidence for the class I-dependent association of CD8 and the TCR has been demonstrated. Using fluorescence resonance energy transfer, we show directly that a single class I molecule causes TCR/CD8 interaction by serving as a docking molecule for both CD8 and the TCR. Furthermore, we show that CD3epsilon is brought into close proximity with CD8 upon TCR/CD8 association. These interactions are not dependent on the phosphorylation events characteristic of T cell activation. Thus, MHC class I molecules, by binding to both CD8 and the TCR, mediate the reorganization of T cell membrane components to promote cellular activation. 相似文献
15.
CD2 can mediate TCR/CD3-independent T cell activation. 总被引:5,自引:0,他引:5
H Ohno C Ushiyama M Taniguchi R N Germain T Saito 《Journal of immunology (Baltimore, Md. : 1950)》1991,146(11):3742-3746
T lymphocytes can be activated clonotypically through TCR/CD3 complex or polyclonally via the CD2 molecule. Whether CD2-mediated activation is dependent on TCR/CD3 expression or signaling is controversial. We have re-explored this issue by using a series of CD2-transfected, TCR/CD3 surface membrane-negative human and mouse T cells. Our results clearly show that such T cells can be triggered for IL-2 secretion and increases in intracellular Ca2+ through the CD2 molecule in the absence of surface expression of TCR/CD3 complexes. These responses are only observed when cells express high levels of CD2 and there is a critical threshold of CD2 expression necessary for such activation in the absence of CD3. Concomitant expression of TCR/CD3 complex markedly lowers the level of CD2 required for activation via the latter pathway. These results provide a clear resolution of the controversy concerning the requirement for surface CD3 expression in T cell activation through CD2 and further suggest a possible role for CD2 in activation of TCR/CD3-negative cells. 相似文献
16.
The rupture forces and adhesion frequencies of single recognition complexes between an affinity selected peptide/MHC complex and a TCR at a murine hybridoma surface were measured using Atomic Force Microscopy. When the CD8 coreceptor is absent, the adhesion frequency depends on the nature of the peptide but the rupture force does not. When CD8 is present, no effect of the nature of the peptide is observed. CD8 is proposed to act as a time and distance lock, enabling the shorter TCR molecule to bridge the pMHC and have time to finely read the peptide. Ultimately, such experiments could help the dissection of the sequential steps by which the TCR reads the peptide/MHC complex in order to control T cell activation. 相似文献
17.
Xie P Kraus ZJ Stunz LL Liu Y Bishop GA 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(1):143-155
We recently reported that TNFR-associated factor (TRAF)3, a ubiquitously expressed adaptor protein, promotes mature B cell apoptosis. However, the specific function of TRAF3 in T cells has remained unclear. In this article, we report the generation and characterization of T cell-specific TRAF3(-/-) mice, in which the traf3 gene was deleted from thymocytes and T cells. Ablation of TRAF3 in the T cell lineage did not affect CD4 or CD8 T cell populations in secondary lymphoid organs or the numbers or proportions of CD4(+),CD8(+) or double-positive or double-negative thymocytes, except that the T cell-specific TRAF3(-/-) mice had a 2-fold increase in FoxP3(+) T cells. In striking contrast to mice lacking TRAF3 in B cells, the T cell TRAF3-deficient mice exhibited defective IgG1 responses to a T-dependent Ag, as well as impaired T cell-mediated immunity to infection with Listeria monocytogenes. Surprisingly, we found that TRAF3 was recruited to the TCR/CD28 signaling complex upon costimulation and that TCR/CD28-mediated proximal and distal signaling events were compromised by TRAF3 deficiency. These findings provide insights into the roles played by TRAF3 in T cell activation and T cell-mediated immunity. 相似文献
18.
Krishnan S Kiang JG Fisher CU Nambiar MP Nguyen HT Kyttaris VC Chowdhury B Rus V Tsokos GC 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(5):3417-3423
T cells isolated from patients with systemic lupus erythematosus (SLE) express low levels of CD3zeta-chain, a critical molecule involved in TCR-mediated signaling, but the involved mechanisms are not fully understood. In this study we examined caspase-3 as a candidate for cleaving CD3zeta in SLE T cells. We demonstrate that SLE T cells display increased expression and activity of caspase-3. Treatment of SLE T cells with the caspase-3 inhibitor Z-Asp-Glu-Val-Asp-FMK reduced proteolysis of CD3zeta and enhanced its expression. In addition, Z-Asp-Glu-Val-Asp-FMK treatment increased the association of CD3zeta with lipid rafts and simultaneously reversed the abnormal lipid raft preclustering, heightened TCR-induced calcium responses, and reduced the expression of FcRgamma-chain exclusively in SLE T cells. We conclude that caspase-3 inhibitors can normalize SLE T cell function by limiting the excessive digestion of CD3zeta-chain and suggest that such molecules can be considered in the treatment of this disease. 相似文献
19.
Dumont C Blanchard N Di Bartolo V Lezot N Dufour E Jauliac S Hivroz C 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(4):1705-1712
TCR down-modulation following binding to MHC/peptide complexes is considered to be instrumental for T cell activation because it allows serial triggering of receptors and the desensitization of stimulated cells. We studied CD3/TCR down-modulation and zeta degradation in T cells from two ZAP-70-immunodeficient patients. We show that, at high occupancy of the TCR, down-modulation of the CD3/TCR is comparable whether T cells express or do not express ZAP-70. However, if TCR occupancy was low, we found that CD3/TCR was down-regulated to a lesser extent in ZAP-70-negative than in ZAP-70-positive T cells. We studied CD3/TCR down-modulation in P116 (a ZAP-70-negative Jurkat cell-derived clone) and in P116 transfected with genes encoding the wild-type or a kinase-dead form of ZAP-70. Down-modulation of the TCR at high occupancy did not require ZAP-70, whereas at low TCR occupancy down-modulation was markedly reduced in the absence of ZAP-70 and in cells expressing a dead kinase mutant of ZAP-70. Thus, the presence of ZAP-70 alone is not sufficient for down-modulation; the kinase activity of this molecule is also required. The degradation of zeta induced by TCR triggering is also severely impaired in T cells from ZAP-70-deficient patients, P116 cells, and P116 cells expressing a kinase-dead form of ZAP-70. This defect in TCR-induced zeta degradation is observed at low and high levels of TCR occupancy. Our results identify ZAP-70, a tyrosine kinase known to be crucial for T cell activation, as a key player in TCR down-modulation and zeta degradation. 相似文献