首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids, and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here, we report the X-ray structure of the coiled-coil domain of HIP1 (residues 482-586) that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel with S1 and S2. We present structural evidence supporting a role for the S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast.  相似文献   

4.
The membrane-anchored FtsH protease is essential in Escherichia coli as it adjusts the cellular amount of LpxC, the key enzyme in lipopolysaccharide (LPS) biosynthesis. Both accumulation and depletion of LpxC are toxic to E. coli. By continuous proteolysis of LpxC, FtsH maintains a low concentration of LpxC and, hence, the proper equilibrium between LPS and phospholipids. The C terminus of LpxC is required for turnover. By adding this tail to glutathione-S-transferase (GST) we show that it is necessary but not sufficient for FtsH-mediated degradation. A detailed mutational analysis revealed six non-polar residues in the C terminus of LpxC that are critical for degradation. Alteration of the C-terminal AVLA motif towards the SsrA-like sequence ALAA directed LpxC to other cellular proteases reinforcing the importance of the C-terminal tail for targeting to FtsH. Short C-terminal truncations stabilized LpxC. Most mutations in the C terminus of LpxC left its enzymatic activity intact as was shown by growth assays, microscopy and 2-keto-3-deoxyoctonate (KDO) determination. The critical length of the turnover element was defined by internal deletions. A C-terminal tail of about 20 amino acids length is required for proteolysis of LpxC by FtsH.  相似文献   

5.
6.
The COP9 signalosome (CSN) is a regulatory particle of the ubiquitin (Ub) proteasome system (UPS) consisting of eight subunits (CSN1-CSN8). We show that the CSN stabilizes the microtubule end-binding protein 1 (EB1) towards degradation by the UPS. EB1, the master regulator of microtubule plus ends, controls microtubule growth and dynamics. Therefore, regulation of EB1 stability by the CSN has consequences for microtubule function. EB1 binds the CSN via subunit CSN5. The C terminus of EB1 is sufficient for interaction with the CSN. Dimerization of EB1 is a prerequisite for complex association and subsequent CSN-mediated phosphorylation, as revealed by studies with the EB1I224A mutant, which is unable to dimerize. In cells, EB1 and CSN co-localize to the centrosome, as demonstrated by confocal fluorescence microscopy. EB1 is ubiquitinated and its proteolysis can be inhibited by MG132, demonstrating that it is a substrate of the UPS. Its degradation is accelerated by inhibition of CSN-associated kinases. HeLa cells permanently expressing siRNAs against CSN1 (siCSN1) or CSN3 (siCSN3) exhibit reduced levels of the CSN complex accompanied by lower steady-state concentrations of EB1. In siCSN1 cells, EB1 is less phosphorylated as compared with control cells, demonstrating that the protein is most likely protected towards the UPS by CSN-mediated phosphorylation. The CSN-dependent EB1 stabilization is not due to the CSN-associated deubiquitinating enzyme USP15. Treatment with nocodazole revealed a significantly increased sensitivity of siCSN1 and siCSN3 cells towards the microtubule depolymerizing drug accompanied by a collapse of microtubule filaments. A nocodazole-induced cell-cycle arrest was partially rescued by CSN1 or EB1. These data demonstrate that the CSN-dependent protection of EB1 is important for microtubule function.  相似文献   

7.
Metabotropic glutamate receptor subtype 1a (mGluR1a) associates with the proteins mediating its receptor activity, suggesting a complex-controlled function of mGluR1a. Here, using glutathione-S-transferase pull-down, co-immnoprecipitation and immnoflurescence assays in vitro and in vivo, we have found CFTR-associated ligand (CAL) to be a novel binding partner of mGluR1a, through its PSD95/discslarge/ZO1homology domain. Deletion of mGluR1a-carboxyl terminus (CT) or mutation of Leu to Ala in the CT of mGluR1a reduces the association, indicating the essential binding region of mGluR1a for CAL. Functionally, the interaction of mGluR1a with CAL was shown to inhibit mGluR1a-mediated ERK1/2 activation, without an apparent effect, via the C-terminal-truncated receptor. These findings might provide a novel mechanism for the regulation of mGluR1a-mediated signaling through the interaction with CAL.

Structured summary

MINT-6797987, MINT-6798009:
NHERF-2 (uniprotkb:Q15599) binds (MI:0407) to mGluR1a (uniprotkb:Q9R0W0) by proteinarray (MI:0089)
MINT-6798026, MINT-6798048, MINT-6798066:
mGluR1a (uniprotkb:Q9R0W0) physically interacts (MI:0218) with CAL (uniprotkb:Q9HD26) by pull down (MI:0096)
MINT-6797953, MINT-6797970:
NHERF-1 (uniprotkb:O14745) binds (MI:0407) to mGluR1a (uniprotkb:Q9R0W0) by protein array (MI:0089)
MINT-6797935:
CAL (uniprotkb:Q9HD26) binds (MI:0407) to mGluR1a (uniprotkb:Q9R0W0) by protein array (MI:0089)
MINT-6798084:
CAL (uniprotkb:Q9HD26) binds (MI:0407) to mGluR1a (uniprotkb:Q9R0W0) by filter binding (MI:0049)
MINT-6798134:
mGluR1a (uniprotkb:Q9R0W0) physically interacts (MI:0218) with CAL (uniprotkb:Q9HD26) by anti tag coimmunoprecipitation (MI:0007)
MINT-6798158:
CAL (uniprotkb:B4F775) physically interacts (MI:0218) with mGluR1a (uniprotkb:Q9R0W0) by anti bait coimmunoprecipitation (MI:0006)
MINT-6798233:
CAL (uniprotkb:Q9HD26) colocalizes (MI:0403) with mGluR1a (uniprotkb:Q9R0W0) by fluorescence microscopy (MI:0416)
  相似文献   

8.
Antibody Z13e1 is a relatively broadly neutralizing anti-human immunodeficiency virus type 1 antibody that recognizes the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Based on the crystal structure of an MPER epitope peptide in complex with Z13e1 Fab, we identified an unrelated protein, interleukin (IL)-22, with a surface-exposed region that is structurally homologous in its backbone to the gp41 Z13e1 epitope. By grafting the gp41 Z13e1 epitope sequence onto the structurally homologous region in IL-22, we engineered a novel protein (Z13-IL22-2) that contains the MPER epitope sequence for use as a potential immunogen and as a reagent for the detection of Z13e1-like antibodies. The Z13-IL22-2 protein binds Fab Z13e1 with a Kd of 73 nM. The crystal structure of Z13-IL22-2 in complex with Fab Z13e1 shows that the epitope region is faithfully replicated in the Fab-bound scaffold protein; however, isothermal calorimetry studies indicate that Fab binding to Z13-IL22-2 is not a lock-and-key event, leaving open the question of whether conformational changes upon binding occur in the Fab, in Z13-IL-22, or in both.  相似文献   

9.
Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle™ cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic™), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use.  相似文献   

10.
The ionized calcium-binding adaptor molecule 1 (Iba1) with 147 amino acid residues has been identified as a calcium-binding protein, expressed specifically in microglia/macrophages, and is expected to be a key factor in membrane ruffling, which is a typical feature of activated microglia. We have determined the crystal structure of human Iba1 in a Ca(2+)-free form and mouse Iba1 in a Ca(2+)-bound form, to a resolution of 1.9 A and 2.1 A, respectively. X-ray structures of Iba1 revealed a compact, single-domain protein with two EF-hand motifs, showing similarity in overall topology to partial structures of the classical EF-hand proteins troponin C and calmodulin. In mouse Iba1, the second EF-hand contains a bound Ca(2+), but the first EF-hand does not, which is often the case in S100 proteins, suggesting that Iba1 has S100 protein-like EF-hands. The molecular conformational change induced by Ca(2+)-binding of Iba1 is different from that found in the classical EF-hand proteins and/or S100 proteins, which demonstrates that Iba1 has an unique molecular switching mechanism dependent on Ca(2+)-binding, to interact with target molecules.  相似文献   

11.
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.  相似文献   

12.
13.
Phospholamban (PLN) is a key regulator of Ca(2+) homeostasis and contractility in the heart. Its regulatory effects are mediated through its interaction with the sarcoplasmic reticulum Ca(2+)-ATPase, (SERCA2a), resulting in alterations of its Ca(2+)-affinity. To identify additional proteins that may interact with PLN, we used the yeast-two-hybrid system to screen an adult human cardiac cDNA library. HS-1 associated protein X-1 (HAX-1) was identified as a PLN-binding partner. The minimal binding regions were mapped to amino acid residues 203-245 for HAX-1 and residues 16-22 for PLN. The interaction between the two proteins was confirmed using GST-HAX-1, bound to the glutathione-matrix, which specifically adsorbed native PLN from human or mouse cardiac homogenates, while in reciprocal binding studies, recombinant His-HAX-1 bound GST-PLN. Kinetic studies using surface plasmon resonance yielded a K(D) of approximately 1 muM as the binding affinity for the PLN/HAX-1 complex. Phosphorylation of PLN by cAMP-dependent protein kinase reduced binding to HAX-1, while increasing concentrations of Ca(2+) diminished the PLN/HAX-1 interaction in a dose-dependent manner. HAX-1 concentrated to mitochondria, but upon transient co-transfection of HEK 293 cells with PLN, HAX-1 redistributed and co-localized with PLN at the endoplasmic reticulum. Analysis of the anti-apoptotic function of HAX-1 revealed that the presence of PLN enhanced the HAX-1 protective effects from hypoxia/reoxygenation-induced cell death. These findings suggest a possible link between the Ca(2+) handling by the sarcoplasmic reticulum and cell survival mediated by the PLN/HAX-1 interaction.  相似文献   

14.
15.
We report the characterization of a cDNA induced in mouse macrophages that encodes a 332-amino acid protein with extensive sequence identity with members of the mammalian nudC-like genes. The interaction between mNUDC and the regulatory beta subunit of platelet activating factor acetylhydrolase I (PAF-AH(I)) shown in this article indicates a new function of NUDC. Thus, we show that NUDC increases the catalytic activity of PAF-AH(I) and that this regulatory activity is located in the carboxyl terminal half of the protein which is highly conserved. This suggests a novel function for mammalian nudC-like genes as anti-inflammatory proteins.  相似文献   

16.
Nuclear import of proteins is determined by specific signals that allow them to bind to receptors that mediate their energy-dependent transport through the nuclear pore. These signals are termed nuclear localization signals and do not constitute a specific consensus sequence. Among them, the most characterized correspond to monopartite and bipartite nuclear localization signals, which interact with the importin alpha/beta heterodimer. We previously described a cytotoxic variant of human pancreatic-ribonuclease that is actively transported into the nucleus. Here, we show that this protein interacts with importin alpha through different basic residues, including Lys1 and the arginine clusters 31-33 and 89-91. Although these residues are scattered along the sequence, they are close in the three-dimensional structure of the protein and their topological disposition strongly resembles that of a classical bipartite nuclear localization signal.  相似文献   

17.
Chagasin is a protein produced by Trypanosoma cruzi, the parasite that causes Chagas' disease. This small protein belongs to a recently defined family of cysteine protease inhibitors. Although resembling well-known inhibitors like the cystatins in size (110 amino acid residues) and function (they all inhibit papain-like (C1 family) proteases), it has a unique amino acid sequence and structure. We have crystallized and solved the structure of chagasin in complex with the host cysteine protease, cathepsin L, at 1.75 A resolution. An inhibitory wedge composed of three loops (L2, L4, and L6) forms a number of contacts responsible for high-affinity binding (K(i), 39 pM) to the enzyme. All three loops interact with the catalytic groove, with the central loop L2 inserted directly into the catalytic center. Loops L4 and L6 embrace the enzyme molecule from both sides and exhibit distinctly different patterns of protein-protein recognition. Comparison with a 1.7 A structure of uncomplexed chagasin, also determined in this study, demonstrates that a conformational change of the first binding loop (L4) allows extended binding to the non-primed substrate pockets of the enzyme active site cleft, thereby providing a substantial part of the inhibitory surface. The mode of chagasin binding is generally similar, albeit distinctly different in detail, when compared to those displayed by cystatins and the cysteine protease inhibitory p41 fragment of the invariant chain. The chagasin-cathepsin L complex structure provides details of how the parasite protein inhibits a host enzyme of possible importance in host defense. The high level of structural and functional similarity between cathepsin L and the T. cruzi enzyme cruzipain gives clues to how the cysteine protease activity of the parasite can be targeted. This information will aid in the development of synthetic inhibitors for use as potential drugs for the treatment of Chagas disease.  相似文献   

18.
19.
The commonly used anti-cancer drug chlorambucil is the primary treatment for patients with chronic lymphocytic leukaemia. Chlorambucil has been shown to be detoxified by human glutathione transferase Pi (GST P1-1), an enzyme that is often found over-expressed in cancer tissues. The allelic variants of GST P1-1 are associated with differing susceptibilities to leukaemia and differ markedly in their efficiency in catalysing glutathione (GSH) conjugation reactions. Here, we perform detailed kinetic studies of the allelic variants with the aid of three representative co-substrates. We show that the differing catalytic properties of the variants are highly substrate-dependent. We show also that all variants exhibit the same temperature stability in the range 10 °C to 45 °C. We have determined the crystal structures of GST P1-1 in complex with chlorambucil and its GSH conjugate for two of these allelic variants that have different residues at positions 104 and 113. Chlorambucil is found to bind in a non-productive mode to the substrate-binding site (H-site) in the absence of GSH. This result suggests that under certain stress conditions where GSH levels are low, GST P1-1 can inactivate the drug by sequestering it from the surrounding medium. However, in the presence of GSH, chlorambucil binds in the H-site in a productive mode and undergoes a conjugation reaction with GSH present in the crystal. The crystal structure of the GSH-chlorambucil complex bound to the *C variant is identical with the *A variant ruling out the hypothesis that primary structure differences between the variants cause structural changes at the active site. Finally, we show that chlorambucil is a very poor inhibitor of the enzyme in contrast to ethacrynic acid, which binds to the enzyme in a similar fashion but can act as both substrate and inhibitor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号