共查询到20条相似文献,搜索用时 8 毫秒
1.
Human brain development is a dramatic process composed of a series of complex and fine-tuned spatiotemporal gene expressions. A good comprehension of this process can assist us in developing the potential of our brain. However, we have only limited knowledge about the genes and gene functions that are involved in this biological process. Therefore, a substantial demand remains to discover new brain development-related genes and identify their biological functions. In this study, we aimed to discover new brain-development related genes by building a computational method. We referred to a series of computational methods used to discover new disease-related genes and developed a similar method. In this method, the shortest path algorithm was executed on a weighted graph that was constructed using protein-protein interactions. New candidate genes fell on at least one of the shortest paths connecting two known genes that are related to brain development. A randomization test was then adopted to filter positive discoveries. Of the final identified genes, several have been reported to be associated with brain development, indicating the effectiveness of the method, whereas several of the others may have potential roles in brain development. 相似文献
2.
Lung cancer causes over one million deaths every year worldwide. However, prevention and treatment methods for this serious disease are limited. The identification of new chemicals related to lung cancer may aid in disease prevention and the design of more effective treatments. This study employed a weighted network, constructed using chemical-chemical interaction information, to identify new chemicals related to two types of lung cancer: non-small lung cancer and small-cell lung cancer. Then, a randomization test as well as chemical-chemical interaction and chemical structure information were utilized to make further selections. A final analysis of these new chemicals in the context of the current literature indicates that several chemicals are strongly linked to lung cancer. 相似文献
3.
Yuan Rong Zeng Xinhua Zhao Shengbo Wu Gang Yan Xiaohong 《Plant Molecular Biology Reporter》2019,37(4):347-364
Plant Molecular Biology Reporter - Plant stems are involved in supporting the entire plant body, thus having an important effect on the yield of oilseed rape. The current understanding of the... 相似文献
4.
Richarda M. de Voer Marc-Manuel Hahn Robbert D. A. Weren Arjen R. Mensenkamp Christian Gilissen Wendy A. van Zelst-Stams Liesbeth Spruijt C. Marleen Kets Junxiao Zhang Hanka Venselaar Lilian Vreede Nil Schubert Marloes Tychon Ronny Derks Hans K. Schackert Ad Geurts van Kessel Nicoline Hoogerbrugge Marjolijn J. L. Ligtenberg Roland P. Kuiper 《PLoS genetics》2016,12(2)
Approximately 25–30% of colorectal cancer (CRC) cases are expected to result from a genetic predisposition, but in only 5–10% of these cases highly penetrant germline mutations are found. The remaining CRC heritability is still unexplained, and may be caused by a hitherto-undefined set of rare variants with a moderately penetrant risk. Here we aimed to identify novel risk factors for early-onset CRC using whole-exome sequencing, which was performed on a cohort of CRC individuals (n = 55) with a disease onset before 45 years of age. We searched for genes that were recurrently affected by rare variants (minor allele frequency ≤0.001) with potentially damaging effects and, subsequently, re-sequenced the candidate genes in a replication cohort of 174 early-onset or familial CRC individuals. Two functionally relevant genes with low frequency variants with potentially damaging effects, PTPN12 and LRP6, were found in at least three individuals. The protein tyrosine phosphatase PTP-PEST, encoded by PTPN12, is a regulator of cell motility and LRP6 is a component of the WNT-FZD-LRP5-LRP6 complex that triggers WNT signaling. All variants in LRP6 were identified in individuals with an extremely early-onset of the disease (≤30 years of age), and two of the three variants showed increased WNT signaling activity in vitro. In conclusion, we present PTPN12 and LRP6 as novel candidates contributing to the heterogeneous susceptibility to CRC. 相似文献
5.
应用蛋白质组学技术筛选胃癌耐药相关蛋白质 总被引:4,自引:1,他引:3
胃癌多药耐药性是临床胃癌化疗失败最主要的原因之一,但其分子机制仍然不太清楚.为了寻找新的胃癌耐药相关的蛋白质,揭示胃癌多药耐药的分子机制,以胃癌细胞SGC7901和长春新碱诱导的耐药胃癌细胞SGC7901/VCR为研究对象,应用二维凝胶电泳(two-dimensionalelectrophoresis,2-DE)技术分离两种细胞的总蛋白质,图像分析识别差异表达的蛋白质点,基质辅助激光解吸电离飞行时间质谱(matrix-assistedlaserdesorption/ionizationtimeofflightmassspectrometry,MALDI-TOF-MS)及电喷雾电离串联质谱(electrosprayionizationtandemmassspectrometry,ESI-Q-TOF)对差异表达的蛋白质点进行鉴定,蛋白质印迹和实时RT-PCR验证部分差异蛋白质在两株细胞中的表达水平,反义核酸转染技术分析HSP27(heatshockprotein27,HSP27)高表达与SGC7901/VCR耐药的相关性.得到了分辨率较高、重复性较好的两株细胞系的二维凝胶电泳图谱,质谱分析共鉴定了24个差异蛋白质点,蛋白质印迹和实时RT-PCR验证了部分差异蛋白的表达水平,反义寡核苷酸抑制HSP27表达能增加SGC7901/VCR对长春新碱的敏感性.研究结果不仅提示这些差异蛋白质如HSP27,Sorcin等可能与胃癌的多药耐药相关,而且为揭示胃癌细胞的多药耐药性产生机制提供了线索. 相似文献
6.
7.
8.
网上实验室克隆与鉴定食管癌相关基因ECRG—4 总被引:3,自引:0,他引:3
利用生物信息学,探索网上克隆基因与鉴定基因的新方法。以因特网为平台,数据库为试验材料,各种软件为工具组成网上实验室,是人类基因组计划带来的实验技术革命。利用网上实验室以食管癌相关基因E-CRG-4的97bpEST为基础,成功克隆并鉴定了该基因。结果显示ECRG-4近似cDNA全长序列为772bp,其中含有一447bp的完整阅读框,编码148个氨基酸。氨基酸序列相似性分配表明ECRG-4与细胞膜上的免疫球蛋白超家族具有31%同源性。该基因定位于染色体2q141-14.3。组织分布表明ECRG-4须正常食管、膀胱组织中表达明显高于相应的癌组织。采用辐射杂交细胞系GeneBridge4RH嵌板作染色体定位进行初步验证,所得结果与网上克隆完全一致。研究提示,利用网上实验室克隆鉴定基因,是一种简便、精确的好方法。ECRG-4可能是一个在细胞癌变过程中具有非常重要意义的基因。 相似文献
9.
乳腺癌是女性最常见的恶性肿瘤,转移与复发是乳腺癌患者死亡的主要原因. 研究与乳腺癌细胞转移相关的分子靶点对预防乳腺癌术后复发、提高疗效有重要意义. 本研究以3组乳腺癌转移相关的基因表达谱数据(GSE2034, GSE2603, GSE12276)为分析材料,采用GeneSpring软件筛选乳腺癌原发瘤与转移瘤芯片数据的差异表达基因,结合生物信息学工具PATHER、STRING、pSTIING和文献挖掘工具iHOP对差异基因及其相互作用关系进行分析. 结果显示,共筛选出乳腺癌转移共同差异基因147个,其中表达上调93个,表达下调54个. 这些差异基因主要涉及细胞周期与增殖、细胞粘附、细胞迁移、血管形成及信号转导等生物通路和生物过程. 差异基因编码蛋白间的相互作用主要集中在14个蛋白,且在更为复杂的网络图谱中仍可见其中9个基因(CXCR4、MMP1、MMP2、MMP3、CTGF、COL1A1、MEF2C、PTGS2及SPARC)在重要的节点位置. 文献挖掘发现,COL1A1基因可能为新发现的乳腺癌转移候选基因,为乳腺癌转移的发病机制提供新的思路,也为转移性乳腺癌的分子诊断和个体化治疗奠定基础. 相似文献
10.
Raf激酶抑制蛋白(RKIP)的异常表达在胃癌的发生发展中起重要的作用,为了阐明其作用机制,应用脂质体将RKIP-3xFLAG-pcDNA3.1质粒转染至SGC7901细胞,建立RKIP-3xFLAG高表达的SGC7901细胞;并利用3xFLAG标签的亲和层析技术联合质谱分析,分离、鉴定与RKIP相互作用的蛋白质,并应用免疫共沉淀联合Western-blot进一步验证质谱结果.共鉴定出66个RKIP相互作用蛋白质,功能分类包括蛋白质代谢酶类、生物氧化相关酶类,细胞骨架蛋白、分子伴侣、信号转导相关蛋白、酶解相关蛋白等.并首次证实14-3-3蛋白与RKIP存在相互作用.为阐明RKIP在胃癌发生发展中的作用机制提供了重要的线索,为胃癌的早期诊治及预后监测提供了新的靶点. 相似文献
11.
12.
差异显示法分离水稻抗稻瘟病相关基因 总被引:6,自引:1,他引:6
采用mRNA差异显示技术,分析水稻稻瘟病抗源材料“地谷”叶片受稻瘟病菌侵染前后的基因的表达差异,获得87个差异片段。对这87个差异片段进行了回收、重扩增与克隆,并对其中的81个片段进行了杂交鉴定。斑点杂交结果证实其中6个片段受稻瘟病菌诱导表达。进一步克隆测序并进行数据库比对分析表明其中一个与水稻4号染色体中一推测的苹果酸合成酶高度同源,一个与水稻11号染色体上的RPR1基因高度同源,RPR1基因具有保守的NBS-LRR结构,并与水稻防卫反应的信号传导有关;另一个与水稻第6号染色体上一推测的硫氧还蛋白高度同源,其余3个为新的cDNA片段。 相似文献
13.
14.
George J. Burghel Wei-Yu Lin Helen Whitehouse Ian Brock David Hammond Jonathan Bury Yvonne Stephenson Rina George Angela Cox 《PloS one》2013,8(12)
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Chromosomal instability (CIN) is a major driving force of microsatellite stable (MSS) sporadic CRC. CIN tumours are characterised by a large number of somatic chromosomal copy number aberrations (SCNA) that frequently affect oncogenes and tumour suppressor genes. The main aim of this work was to identify novel candidate CRC driver genes affected by recurrent and focal SCNA. High resolution genome-wide comparative genome hybridisation (CGH) arrays were used to compare tumour and normal DNA for 53 sporadic CRC cases. Context corrected common aberration (COCA) analysis and custom algorithms identified 64 deletions and 32 gains of focal minimal common regions (FMCR) at high frequency (>10%). Comparison of these FMCR with published genomic profiles from CRC revealed common overlap (42.2% of deletions and 34.4% of copy gains). Pathway analysis showed that apoptosis and p53 signalling pathways were commonly affected by deleted FMCR, and MAPK and potassium channel pathways by gains of FMCR. Candidate tumour suppressor genes in deleted FMCR included RASSF3, IFNAR1, IFNAR2 and NFKBIA and candidate oncogenes in gained FMCR included PRDM16, TNS1, RPA3 and KCNMA1. In conclusion, this study confirms some previously identified aberrations in MSS CRC and provides in silico evidence for some novel candidate driver genes. 相似文献
15.
阐明花器官发育调控机理具重要的进化、发育和生态学意义。该文以拟南芥(Arabidopsis thaliana)花瓣发育为例, 整合蛋白质互作、亚细胞定位、基因芯片和基因功能注释等数据库, 通过组建蛋白质互作可信预测模型, 获得拟南芥花瓣蛋白质互作网络, 以含有MADS-box结构域蛋白为诱饵在网络中进行一级拓展, 得到含38个蛋白质和67对互作的拓展网络。基于拓展网络, DAVID基因功能注释表明, 多数蛋白质涉及的生物学过程与花发育调控相关; 提取到19个候选四元互作, 涉及ABCDE模型基因之外的8个基因, 其中含MADS-box结构域的AGL16可能是B类基因新成员或其冗余; SEU、LUH、CHR4、CHR11、CHR17和AT3G04960为拟南芥花瓣AP1-AP3-PI-SEP四聚体的候选靶标基因。研究结果为深入解析拟南芥花瓣发育分子调控网络奠定了基础。 相似文献
16.
Manasa Ramakrishna Louise H. Williams Samantha E. Boyle Jennifer L. Bearfoot Anita Sridhar Terence P. Speed Kylie L. Gorringe Ian G. Campbell 《PloS one》2010,5(4)
Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (>40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r≥0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2. 相似文献
17.
Seed weight is a critical and direct trait for oilseed crop seed yield. Understanding its genetic mechanism is of great importance for yield improvement in Brassica napus breeding. Two hundred and fifty doubled haploid lines derived by microspore culture were developed from a cross between a large-seed line G-42 and a small-seed line 7–9. According to the 1000-seed weight (TSW) data, the individual DNA of the heaviest 46 lines and the lightest 47 lines were respectively selected to establish two bulked DNA pools. A new high-throughput sequencing technology, Specific Locus Amplified Fragment Sequencing (SLAF-seq), was used to identify candidate genes of TSW in association analysis combined with bulked segregant analysis (BSA). A total of 1,933 high quality polymorphic SLAF markers were developed and 4 associated markers of TSW were procured. A hot region of ~0.58 Mb at nucleotides 25,401,885–25,985,931 on ChrA09 containing 91 candidate genes was identified as tightly associated with the TSW trait. From annotation information, four genes (GSBRNA2T00037136001, GSBRNA2T00037157001, GSBRNA2T00037129001 and GSBRNA2T00069389001) might be interesting candidate genes that are highly related to seed weight. 相似文献
18.
Background
Salmonella are important human and animal pathogens. Though highly related, the Salmonella lineages may be strictly adapted to different hosts or cause different diseases, from mild local illness like gastroenteritis to fatal systemic infections like typhoid. Therefore, rapid and accurate identification of Salmonella is essential for timely and correct diagnosis of Salmonella infections. The current identification methods such as 16S rRNA sequencing and multilocus sequence typing are expensive and time consuming. Additionally, these methods often do not have sufficient distinguishing resolution among the Salmonella lineages.Methodologies/Principal Findings
We compared 27 completely sequenced Salmonella genomes to identify possible genomic features that could be used for differentiation of individual lineages. We concatenated 2372 core genes in each of the 27 genomes and constructed a neighbor-joining tree. On the tree, strains of each serotype were clustered tightly together and different serotypes were unambiguously separated with clear genetic distances, demonstrating systematic genomic divergence among the Salmonella lineages. We made detailed comparisons among the 27 genomes and identified distinct sets of genomic differences, including nucleotide variations and genomic islands (GIs), among the Salmonella lineages. Two core genes STM4261 and entF together could unambiguously distinguish all Salmonella lineages compared in this study. Additionally, strains of a lineage have a common set of GIs and closely related lineages have similar sets of GIs.Conclusions
Salmonella lineages have accumulated distinct sets of mutations and laterally acquired DNA (e.g., GIs) in evolution. Two genes entF and STM4261 have diverged sufficiently among the Salmonella lineages to be used for their differentiation. Further investigation of the distinct sets of mutations and GIs will lead to novel insights into genomic evolution of Salmonella and greatly facilitate the elucidation of pathogeneses of Salmonella infections. 相似文献19.
开花是植物从营养生长进入生殖生长的重要阶段.油菜早花早熟,可有效解决油菜与其他夏季作物的茬口矛盾.挖掘不同的早花油菜资源,研究油菜早花性状形成的分子机理,可促进利用分子技术快速选育早熟油菜的育种进程.本研究以1个新发现的稳定遗传的特早花油菜迎春一号为研究对象,在覆盖全年9个月的时间中设计了15个不同的播种期,调查其开花... 相似文献
20.
利用酵母双杂交系统研究植物与病毒蛋白相互作用的进展 总被引:2,自引:0,他引:2
在长期进化中,植物形成了抵御病毒等病原微生物侵染的精细防御系统。在病毒侵染、复制和传播过程中,其编码的一些蛋白,如外壳蛋白、运动蛋白、复制酶类等能够与植物基因编码的蛋白发生相互作用。酵母双杂交系统是体外研究蛋白质间相互作用的有利工具,不但可以用于研究已知蛋白质的互作,还可以发现新蛋白,揭示特定蛋白互作网络与作用机制,在植物蛋白与病毒蛋白互作研究中已得到广泛的利用。本文主要综述利用酵母双杂交系统研究植物与病毒蛋白相互作用的国内外进展。 相似文献