首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testicular germ cell tumor (TGCT) is the most common cancer in young men. Despite a considerable familial component to TGCT risk, no genetic change that confers increased risk has been substantiated to date. The human Y chromosome carries a number of genes specifically involved in male germ cell development, and deletion of the AZFc region at Yq11 is the most common known genetic cause of infertility. Recently, a 1.6-Mb deletion of the Y chromosome that removes part of the AZFc region—known as the “gr/gr” deletion—has been associated with infertility. In epidemiological studies, male infertility has shown an association with TGCT that is out of proportion with what can be explained by tumor effects. Thus, we hypothesized that the gr/gr deletion may be associated with TGCT. Using logistic modeling, we analyzed this deletion in a large series of TGCT cases with and without a family history of TGCT. The gr/gr deletion was present in 3.0% (13/431) of TGCT cases with a family history, 2% (28/1,376) of TGCT cases without a family history, and 1.3% (33/2,599) of unaffected males. Presence of the gr/gr deletion was associated with a twofold increased risk of TGCT (adjusted odds ratio [aOR] 2.1; 95% confidence interval [CI] 1.3–3.6; P = .005) and a threefold increased risk of TGCT among patients with a positive family history (aOR 3.2; 95% CI 1.5–6.7; P = .0027). The gr/gr deletion was more strongly associated with seminoma (aOR 3.0; 95% CI 1.6–5.4; P = .0004) than with nonseminoma TGCT (aOR 1.5; 95% CI 0.72–3.0; P = .29). These data indicate that the Y microdeletion gr/gr is a rare, low-penetrance allele that confers susceptibility to TGCT.  相似文献   

2.
Human Y chromosome is used as a tool in male infertility and population genetic studies. The aims of this research were to analyse the prevalence of Y chromosome microdeletions among infertile Latvian men, and to identify possible lineages of Y chromosome that may be at increased risk of developing infertility. A study encompassed 105 infertile men with different spermatogenic disturbances. Deletions on Y chromosome were detected in 5 out of 105 (∼5%) cases analysed in this study. Three of them carried deletion in AZFc region and two individuals had AZFa+b+c deletion. Study of Y chromosome haplogroups showed that N3a1 and R1a1 lineages were found less frequently in the infertile male group compared to ethnic Latvian group, however K* cluster was predominantly found in infertile male Y chromosomes. Conclusions: (1) Our study advocates running Y chromosome microdeletion analyses only in cases of severe form of infertility; (2) Ychromosome haplogroup analysis showed statistically significant tendencies that some haplogroups are more common in ethnic male group, but others are more common in infertile males.  相似文献   

3.
Human Y chromosome is used as a tool in male infertility and population genetic studies. The aims of this research were to analyse the prevalence of Y chromosome microdeletions among infertile Latvian men, and to identify possible lineages of Y chromosome that may be at increased risk of developing infertility. A study encompassed 105 infertile men with different spermatogenic disturbances. Deletions on Y chromosome were detected in 5 out of 105 (approximately 5%) cases analysed in this study. Three of them carried deletion in AZFc region and two individuals had AZFa + b + c deletion. Study of Y chromosome haplogroups showed that N3a1 and R1a1 lineages were found less frequently in the infertile male group compared to ethnic Latvian group, however K* cluster was predominantly found in infertile male Y chromosomes. Conclusions: 1) Our study advocates running Y chromosome microdeletion analyses only in cases of severe form of infertility; 2) Y chromosome haplogroup analysis showed statistically significant tendencies that some haplogroups are more common in ethnic male group, but others are more common in infertile males.  相似文献   

4.
The relationship between male infertility and microdeletions in the Y chromosome that remove multiple genes varies among countries and populations. The aim of this study was to investigate the different types of Chromodomain protein, Y-linked 1 (CDY1) gene deletions and their effect on male infertility and spermatogenesis in Tunisian men. A total of 241 infertile men with different spermatogenic impairments and 115 fertile men were included in this study. We determined the prevalence of CDY1a and CDY1b copy deletions by PCR-RFLP using PvuII as restriction endonuclease. Results: Among the 356 Tunisian individuals, 93.25% had the two copies (CDY1a and CDY1b) of CDY gene (91.2% in infertile patients and 97.3% in fertile men). We also found that deletion of CDY1b was significantly more frequent in infertile patients (azoo/oligospermic and normospermic) than in fertile men (7% vs 1.7% respectively; p value = 0.02). However, deletion of CDY1a copy was very rare, and was detected in only one fertile man and four normospermic infertile patients. Our findings showed that deletion of CDY1b copy gene is a significant risk factor for male infertility independent of sperm concentration, whereas deletion of CDY1a gene seems to have no effect on fertility in the Tunisian population.  相似文献   

5.
Fifteen percent of couples are infertile and in about 50% of cases the cause is of male origin. The aetiology is still unknown in more than 90% of cases and there may be genetic or environmental causes. Three approaches are used to detect genetic causes for male infertility: 1) cytogenetics, resulting in particular from progress made in molecular cytogenetics and the direct analysis of gametes by in situ molecular hybridation techniques. When a chromosome anomaly, the most common cause of infertility, including deletion of the Y chromosome, is discovered, it is not easy to distinguish between gene anomalies resulting from change and mechanical anomalies that are an integral part of meiosis; 2) the analysis of candidate genes, which often uses data obtained from animal, usually murine, models. This approach, frequently described in the literature, tends to be lengthy, expensive and rarely results in the discovery of an abnormal gene, as is the case, for example, with meiotic genes; 3) Mendel’s approach is clearly the preferred choice, studying as it does cases of inherited infertility, which is much more widespread than we might think.  相似文献   

6.
An increasing number of couples require medical assistance to achieve a pregnancy, and more than 2% of the births in Western countries now result from assisted reproductive technologies. To identify genetic variants responsible for male infertility, we performed a whole-genome SNP scan on patients presenting with total globozoospermia, a primary infertility phenotype characterized by the presence of 100% round acrosomeless spermatozoa in the ejaculate. This strategy allowed us to identify in most patients (15/20) a 200 kb homozygous deletion encompassing only DPY19L2, which is highly expressed in the testis. Although there was no known function for DPY19L2 in humans, previous work indicated that its ortholog in C. elegans is involved in cell polarity. In man, the DPY19L2 region has been described as a copy-number variant (CNV) found to be duplicated and heterozygously deleted in healthy individuals. We show here that the breakpoints of the deletions are located on a highly homologous 28 kb low copy repeat (LCR) sequence present on each side of DPY19L2, indicating that the identified deletions were probably produced by nonallelic homologous recombination (NAHR) between these two regions. We demonstrate that patients with globozoospermia have a homozygous deletion of DPY19L2, thus indicating that DPY19L2 is necessary in men for sperm head elongation and acrosome formation. A molecular diagnosis can now be proposed to affected men; the presence of the deletion confirms the diagnosis of globozoospermia and assigns a poor prognosis for the success of in vitro fertilization.  相似文献   

7.
8.
The combined deletion of 1p and 19q chromosomal arms is frequent in oligodendrogliomas (OD) and has recently been shown to be mediated by an unbalanced t(1;19) translocation. Recent studies of 1p/19q co-deleted OD suggest that the NOTCH2 gene is implicated in oligodendrocyte differentiation and may be involved in this rearrangement. The objective of the present study was to analyze the NOTCH2 locus either as a chromosomal translocation locus that may be altered by the 1p/19q recurrent rearrangement or as a gene that may be inactivated by a two hit process. We performed an array-CGH analysis of 15 ODs presenting 1p/19q co-deletion using a high-density oligonucleotide microarray spanning 1p and 19q pericentromeric regions with 377 bp average probe spacing. We showed that the 1p deletion extends to the centromere of chromosome 1 and includes the entire NOTCH2 gene. No internal rearrangement of this gene was observed. This strongly suggests that the t(1;19) translocation does not lead to an abnormal NOTCH2 structure. The analysis of the entire NOTCH2 coding sequence was performed in four cases and did not reveal any mutation therefore indicating that NOTCH2 does not harbor genetic characteristics of a tumor suppressor gene. Finally, the detailed analysis of chromosome 19 pericentromeric region led to the identification of two breakpoint clusters at 19p12 and 19q11–12. Interestingly, these two regions share a large stretch of homology. Together with previous observations of similarities between chromosome 1 and 19 alphoid sequences, this suggests that the t(1;19) translocation arises from complex intra and interchromosomal rearrangements.This is the first comprehensive deletion mapping by high density oligo-array of the 1p/19q co-deletion in oligodendroglioma tumors using a methodological approach superior to others previously applied. As such this paper provides clear evidence that the NOTCH2 gene is not physically rearranged by t(1;19) translocation of oligodendroglioma tumors.  相似文献   

9.

Background

The chromosome 22q11.2 region microduplication has been described in patients with variable phenotypes. Here we present a 3-month-old girl with both 22q11.2 microduplication and 19p13.12–13.13 deletion. The presence of both genomic imbalances in one patient has not been previously reported in literature.

Methods

A routine G-banding karyotype analysis was performed using peripheral lymphocytes. Chromosome microarray analysis (CMA) was done using Affymetrix CytoScan™ HD array.

Results

The result of karyotyping showed that the patient is 46,XX,t(12;19)(q24.3;p13.1), but CMA detected a 2.8 Mb microduplication within the region 22q11.2 (chr22: 18,648,866–21,465,659) and a 1.2 Mb deletion on the chromosome 19at band p13.12–p13.13 (chr19: 13,107,938–14,337,347) in her genome, while no abnormalities were identified on 12q24.3. The 3-month-old girl presented with microcephaly, cleft palate, low set and retroverted ears, and facial dysmorphism which consisted of the following: a long narrow face, widely spaced eyes, downslanting palpebral fissures, broad nasal base, short philtrum, thin upper lip, and micro/retrognathia. She also had a congenital right pulmonary artery sling and tracheal stenosis and suffered from significant hypotonia and partial bilateral mixed hearing loss.

Conclusions

We report a case of 22q11.2 duplication syndrome with 19p13.12–13.13 deletion. Synergistic effect from the two genomic imbalances is likely responsible for the complicated clinical features observed in this patient.  相似文献   

10.
Gametocidal (Gc) genes of Aegilops in the background of the wheat genome lead to breakage of wheat chromosomes. The Q gene of wheat was used as a marker to select 19 deletion lines for the long arm of chromosome 5A of common wheat, Triticum aestivum cv. Chinese Spring (CS). The extents of deleted segments were cytologically estimated by the C-banding technique. The DNAs of deletion lines were hybridized with 22 DNA probes recognizing sites on the long arm of the chromosome (5AL) to determine their physical order. Based on the breeding behavior of the deletion lines, the location of a novel gene (Pv, pollen viability) affecting the viability of the male gamete was deduced. The segment translocated from 4AL to 5AL in CS was cytologically estimated to represent 13% of the total length of 5AL. Although DNA markers were almost randomly distributed along the chromosome arm, DNA markers located around the centromere and C-banded regions were obtained only rarely. Some deletion lines were highly rearranged in chromosome structure due to the effect(s) of the Gc gene. Applications of Gc genes for manipulating wheat chromosomes are discussed.  相似文献   

11.
The relationship between male infertility and AZFc micro-deletions that remove multiple genes of the Y chromosome varies among countries and populations. The purpose of this study was to analyze the prevalence and the characteristics of different Deleted in azoospermia (DAZ) gene copy deletions and their association with spermatogenic failure and male infertility in Tunisian men. 241 infertile men (30.7% azoospermic (n = 74), 31.5% oligozoospermic (n = 76) and 37.7% normozoospermic (n = 91)) and 115 fertile healthy males who fathered at least one child were included in the study. Three DAZ-specific single nucleotide variant loci and six bi-allelic DAZ-SNVs (I–VI) were analyzed using polymerase chain reaction (PCR)–restriction fragment length polymorphism and PCR. Our findings showed high frequencies of infertile men (73.85%) and controls (78.26%) having only three DAZ gene copies (DAZ1/DAZ2/DAZ3 or DAZ1/DAZ3/DAZ4 variants); so deletion of DAZ2 or DAZ4 were frequent both in infertile (36.5% and 37.3%, respectively) and fertile groups (33.9% and 44.3%, respectively) and removing DAZ4 copy was significantly more frequent in oligospermic than in normospermic men (p = 0.04) in infertile group. We also report for the first time that simultaneous deletion of both DAZ2 and DAZ4 copies was significantly more common in infertile men (12.4%) than in fertile men (4.3%) (p = 0.01). However, deletions of DAZ1/DAZ2 and DAZ3/DAZ4 clusters were very rare. Analysis of DAZ gene copies in Tunisian population, suggested that the simultaneous deletion of DAZ2 and DAZ4 gene copies is associated with male infertility, and that oligospermia seems to be promoted by removing DAZ4 copy.  相似文献   

12.
《Mutation research》1995,329(2):97-105
The mouse P19H22 embryonal carcinoma cell line contains two distinct chromosome 8 homologs, one derived from Mus musculus domesticus (M. domesticus) and the other derived from Mus musculus musculus (M. musculus). It also contains a deletion for the M. musculus aprt allele, which is located on chromosome 8. In this study, cells with spontaneous or induced aprt deficiencies were isolated from P19H22 and examined to determine the nature of the mutational events that had occurred. Ultraviolet radiation (UV), ethyl methanesulfonate (EMS), and two forms of ionizing radiation, 137Cs and 252Cf, were used for mutation induction. DNA preparations from the aprt deficient cells were initially screened with a Southern blot analysis and separated into two broad classes: those that had lost the M. domesticus aprt allele and those that had retained it. The overwhelming majority ( > 95%) of the spontaneous and ionizing radiation-induced mutants exhibited aprt gene loss, indicating that relatively large events had occurred and that homozygosity for the deleted region was not a lethal event. Loss of heterozygosity for syntenic markers was found to be a common event in cells exhibiting aprt gene loss. In contrast, a majority of the UV-induced mutants (61%) and a substantial minority of the EMS-induced mutants (38%) retained the aprt gene. A sequence analysis confirmed that base-pair substitutions were responsible for this class of mutation. Gene inactivation associated with hypermethylation of the promoter region was found to be a rare event and was not induced by any of the mutagenic agents tested. The results demonstrate the suitability of the P19H22 cell line for mutational studies, particularly those that are large in nature.  相似文献   

13.
Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a man''s risk of disease by 10% (OR 1.10 [1.04–1.16], p<2×10−3), rare X-linked CNVs by 29%, (OR 1.29 [1.11–1.50], p<1×10−3), and rare Y-linked duplications by 88% (OR 1.88 [1.13–3.13], p<0.03). By contrasting the properties of our case-specific CNVs with those of CNV callsets from cases of autism, schizophrenia, bipolar disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.2×10−5). Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes.  相似文献   

14.
Ghorbian S 《Gene》2012,503(1):160-164
Male factor infertility elucidated about half the couple of infertility and in around 50% of cases, its etiology remains unknown. The aim of this study was to investigate a predisposing genetic background for Yq deletions and male infertility and effectiveness of molecular genetic approaches have uncovered several etiopathogenetic factors, such as microdeletions of Yq chromosome. The Y chromosome microdeletions removing the azoospermia factor (AZF) regions, which are most common molecular genetic causes of oligospermia or azoospermia. However, with the analysis of Yq deletions, we are able to obtain a better understanding of the clinical significance of genetic anomaly and to the identifying of fertility candidate genes in the AZF regions. Molecular genetic approaches, becomes a routine diagnostic test, that provides an etiology for spermatogenic disturbances, and prognosis for testicular sperm retrieval according to the type of deletion.  相似文献   

15.
MECP2 duplication results in a well-recognised syndrome in 100% of affected male children; this syndrome is characterised by severe neurodevelopmental disabilities and recurrent infections. However, no sonographic findings have been reported for affected foetuses, and prenatal molecular diagnosis has not been possible for this disease due to lack of prenatal clinical presentation. In this study, we identified a small duplication comprising the MECP2 and L1CAM genes in the Xq28 region in a patient from a family with severe X-linked mental retardation and in a prenatal foetus with brain structural abnormalities. Using high-resolution chromosome microarray analysis (CMA) to screen 108 foetuses with congenital structural abnormalities, we identified additional three foetuses with the MECP2 duplication. Our study indicates that ventriculomegaly, hydrocephalus, agenesis of the corpus callosum, choroid plexus cysts, foetal growth restriction and hydronephrosis might be common ultrasound findings in prenatal foetuses with the MECP2 duplication and provides the first set of prenatal cases with MECP2 duplication, the ultrasonographic phenotype described in these patients will help to recognise the foetuses with possible MECP2 duplication and prompt the appropriate molecular testing.  相似文献   

16.
J Choi  SH Song  CW Bak  SR Sung  TK Yoon  DR Lee  SH Shim 《PloS one》2012,7(8):e43550
Microdeletion of the Azoospermia Factor (AZF) regions in Y chromosome is a well-known genetic cause of male infertility resulting from spermatogenetic impairment. However, the partial deletions of AZFc region related to spermatogenetic impairment are controversial. In this study, we characterized partial deletion of AZFc region in Korean patients with spermatogenetic impairment and assessed whether the DAZ and CDY1 contributes to the phenotype in patients with gr/gr deletions. Total of 377 patients with azoo-/oligozoospermia and 217controls were analyzed using multiplex polymerase chain reaction (PCR), analysis of DAZ-CDY1 sequence family variants (SFVs), and quantitative fluorescent (QF)-PCR. Of the 377 men with impaired spermatogenesis, 59 cases (15.6%) had partial AZFc deletions, including 32 gr/gr (8.5%), 22 b2/b3 (5.8%), four b1/b3 (1.1%) and one b3/b4 (0.3%) deletion. In comparison, 14 of 217 normozoospermic controls (6.5%) had partial AZFc deletions, including five gr/gr (2.3%) and nine b2/b3 (4.1%) deletions. The frequency of gr/gr deletions was significantly higher in the azoo-/oligozoospermic group than in the normozoospermic control group (p = 0.003; OR = 3.933; 95% CI = 1.509–10.250). Concerning Y haplogroup, we observed no significant differences in the frequency of gr/gr deletions between the case and the control groups in the YAP+ lineages, while gr/gr deletion were significantly higher in azoo-/oligozoospermia than normozoospermia in the YAP− lineage (p = 0.004; OR = 6.341; 95% CI = 1.472–27.312). Our data suggested that gr/gr deletion is associated with impaired spermatogenesis in Koreans with YAP− lineage, regardless of the gr/gr subtypes.  相似文献   

17.

Context

The role of CNVs in male infertility is poorly defined, and only those linked to the Y chromosome have been the object of extensive research. Although it has been predicted that the X chromosome is also enriched in spermatogenesis genes, no clinically relevant gene mutations have been identified so far.

Objectives

In order to advance our understanding of the role of X-linked genetic factors in male infertility, we applied high resolution X chromosome specific array-CGH in 199 men with different sperm count followed by the analysis of selected, patient-specific deletions in large groups of cases and normozoospermic controls.

Results

We identified 73 CNVs, among which 55 are novel, providing the largest collection of X-linked CNVs in relation to spermatogenesis. We found 12 patient-specific deletions with potential clinical implication. Cancer Testis Antigen gene family members were the most frequently affected genes, and represent new genetic targets in relationship with altered spermatogenesis. One of the most relevant findings of our study is the significantly higher global burden of deletions in patients compared to controls due to an excessive rate of deletions/person (0.57 versus 0.21, respectively; p = 8.785×10−6) and to a higher mean sequence loss/person (11.79 Kb and 8.13 Kb, respectively; p = 3.435×10−4).

Conclusions

By the analysis of the X chromosome at the highest resolution available to date, in a large group of subjects with known sperm count we observed a deletion burden in relation to spermatogenic impairment and the lack of highly recurrent deletions on the X chromosome. We identified a number of potentially important patient-specific CNVs and candidate spermatogenesis genes, which represent novel targets for future investigations.  相似文献   

18.
Testicular cancer is the most common form of solid cancer in young men. Testicular cancer is represented by testicular germ cell tumors (TGCTs) derived from embryonic stem cells with different degrees of differentiation in about 95% of cases. The development of these tumors is related to the formation of a pool of male germ cells and gametogenesis. Clinical factors that are predisposed to the development of germ-cell tumors include cryptorchidism and testicular microlithiasis, as well as infertility associated with the gr/gr deletion within the AZFс locus. KITLG, SPRY4, and BAK1 genes affect the development of the testes and gametogenesis; mutations and polymorphisms of these genes lead to a significant increase in the risk of the TGCT development. To determine the relationship between gene polymorphisms and the development of TGCTs, we developed a system for detection and studied the allele and genotype frequencies of the KITLG (rs995030, rs1508595), SPRY4 (rs4624820, rs6897876), and BAK1 (rs210138) genes in fertile men, patients with TGCTs, and patients with infertility that have the AZFс deletion. A significant association of rs995030 of the KITLG gene with the development of TGCTs (p = 0.029 for the allele G, p = 0.0124 for the genotype GG) was revealed. Significant differences in the frequencies of the studied polymorphisms in patients with the AZFc deletion and the control group of fertile men were not found. We showed significant differences in the frequencies for the combination of all high-risk polymorphisms in the control group, patients with the AZFc deletion and patients with TGCTs (p (TGCTs-AZF-control) = 0.0207). A fivefold increase in the frequency of the combination of all genotypes in the TGCT group (p = 0.0116; OR = 5.25 [1.44?19.15]) and 3.7-fold increase was identified in patients with the AZFc deletion (p = 0.045; OR = 3.69 [1.11?12.29]) were revealed. The genotyping of patients with infertility caused by the AZFc deletion can be used to identify individuals with an increased risk of TGCTs.  相似文献   

19.

Key message

A male sterile transgenic rice plant TC-19 harboured a novel T-DNA integration in chromosome 8 with two interchromosomal translocations of 6.55 kb chromosome 3 and 29.8 kb chromosome 9 segments.

Abstract

We report a complex Agrobacterium T-DNA integration in rice (Oryza sativa) associated with two interchromosomal translocations. The T-DNA-tagged rice mutant TC-19, which harboured a single copy of the T-DNA, displayed male sterile phenotype in the homozygous condition. Analysis of the junctions between the T-DNA ends and the rice genome by genome walking showed that the right border is flanked by a chromosome 3 sequence and the left border is flanked by a chromosome 9 sequence. Upon further walking on chromosome 3, a chromosome 3/chromosome 8 fusion was detected. Genome walking from the opposite end of the chromosome 8 break point revealed a chromosome 8/chromosome 9 fusion. Our findings revealed that the T-DNA, together with a 6.55-kb region of chromosome 3 and a 29.8-kb region of chromosome 9, was translocated to chromosome 8. Southern blot analysis of the homozygous TC-19 mutant revealed that the native sequences of chromosome 3 and 9 were restored but the disruption of chromosome 8 in the first intron of the gene Os08g0152500 was not restored. The integration of the complex T-DNA in chromosome 8 caused male sterility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号