首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The induction of vascular endothelial growth factor (VEGF) is an essential feature of tumor angiogenesis. Hypoxia is a potent stimulator of VEGF expression, and hypoxia-inducible factor-1 (HIF-1) is considered to be critical for this induction. However, we have previously demonstrated that induction of VEGF by hypoxia was preserved when HIF-1alpha was silenced. We sought to better define the molecular basis of this HIF-1-independent regulation. In colon cancer cells, hypoxia stimulated multiple K-ras effector pathways including phosphatidylinositol 3-kinase. VEGF promoter deletion studies identified a novel promoter region between -418 and -223 bp that was responsive to hypoxia in a PI3K/Rho/ROCK-dependent manner. Electrophoretic mobility shift assays identified a fragment between -300 and -251 bp that demonstrated a unique shift only in hypoxic conditions. Inhibition of PI3K or ROCK blocked the formation of this complex. A binding site for c-Myc, a target of ROCK, was identified at -271 bp. A role for c-Myc in the hypoxic induction of VEGF was demonstrated by site-directed mutagenesis of the VEGF promoter and silencing of c-Myc by small interfering RNA. Collectively, these findings suggest an alternative mechanism for the hypoxic induction of VEGF in colon cancer that does not depend upon HIF-1alpha but instead requires the activation of PI3K/Rho/ROCK and c-Myc.  相似文献   

3.
4.
5.
6.
7.
8.
We have previously demonstrated the roles of RhoA, Rac1, and Cdc42 in hypoxia-driven angiogenesis. However, the role of oncogenes in hypoxia signaling is poorly understood. Given the importance of Rho proteins in the hypoxic response, we hypothesized that Rho family members could act as mediators of hypoxic signal transduction. We investigated the cross-talk between hypoxia and oncogene-driven signal transduction pathways and explored the role of Rac1 on hypoxia-induced hypoxia-inducible factor (HIF)-1α and VEGF expression. Since the phosphatidylinositol 3'-kinase (PI3K) pathway is involved in signal transduction of many oncogenes, we explored the role of PI3K on Rac1-mediated expression of HIF-1α and VEGF in hypoxia. We showed that LY-294002, a PI3K inhibitor, suppressed HIF-1α and VEGF induction under hypoxic conditions by up to 50%. Activation of Rac1 resulted in an upregulation of hypoxia-induced HIF-1α expression, which was blocked by LY-294002. These data suggested that Rac1 is an intermediate in the PI3K-mediated induction of HIF-1α. Interestingly, there was a significant downregulation of the tumor suppressor genes p53 and von Hippel-Lindau tumor suppressor (VHL) in cells expressing a constitutively active form of Rac1. Rac1-mediated inhibition of p53 and VHL could therefore be implicated in the upregulation of HIF-1α expression.  相似文献   

9.
10.
Increased expression of vascular endothelial growth factor (VEGF) contributes to the growth of many tumors by increasing angiogenesis. Although hypoxia is a potent inducer of VEGF, we previously showed that epidermal growth factor receptor amplification and loss of PTEN, both of which can increase phosphatidylinositol-3-kinase (PI3K) activity, increase VEGF expression. Using both adenoviral vectors and a cell line permanently expressing constitutively active myristoylated Akt (myrAkt), we show that activation of Akt, which is downstream of PI3K, increases VEGF expression in vitro and increases angiogenesis in a Matrigel plug assay. Transient transfection experiments using reporter constructs containing the VEGF promoter showed that up-regulation of VEGF by Akt is mediated through Sp1 binding sites located in the proximal promoter. Small interfering RNA directed against Sp1 prevented the induction of VEGF mRNA in response to myrAkt but not to hypoxia. Expression of myrAkt is associated with increased phosphorylation of Sp1 and its increased binding to a probe corresponding to the -88/-66 promoter region. In conclusion, our results indicate that Sp1 is required for transactivation of the VEGF by Akt. Others have proposed that the PI3K/Akt pathway can increase VEGF expression via the hypoxia-inducible factor 1 (HIF-1); however, our results suggest an alternative mechanism can also operate.  相似文献   

11.
12.
13.
Mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways are pivotal and intensively studied signaling pathways in hypoxic conditions. However, the roles of MAPK and PI3K in the regulation of hypoxia-induced atrial natriuretic peptide (ANP) secretion are not well understood. The purpose of the present study was to investigate the mechanism by which the MAPK/ERK (extracellular signal-regulated kinase) and PI3K signaling pathways regulate the acute hypoxia-induced ANP secretion in isolated beating rabbit atria. An acute hypoxic perfused beating rabbit atrial model was used. The ANP levels in the atrial perfusates were measured by radioimmunoassay, and the hypoxia-inducible factor-1α (HIF-1α) mRNA and protein levels in the atrial tissue were determined by RT-PCR and Western blot. Acute hypoxia significantly increased ANP secretion and HIF-1α mRNA and protein levels. Hypoxia-induced ANP secretion was markedly attenuated by the HIF-1α inhibitors, rotenone (0.5 μmol/L) and CAY10585 (10 μmol/L), concomitantly with downregulation of the hypoxia-induced HIF-1α mRNA and protein levels. PD098059 (30 μmol/L) and LY294002 (30 μmol/L), inhibitors of MAPK and PI3K, markedly abolished the hypoxia-induced ANP secretion and atrial HIF-1α mRNA and protein levels. The hypoxia-suppressed atrial dynamics were significantly attenuated by PD098059 and LY294002. Acute hypoxia in isolated perfused beating rabbit atria, markedly increased ANP secretion through HIF-1α upregulation, which was regulated by the MAPK/ERK and PI3K pathways. ANP appears to be part of the protective program regulated by HIF-1α in the response to acute hypoxic conditions.  相似文献   

14.
15.
The phosphoinositide 3-kinase (PI3K)/Akt pathway is commonly activated in cancer; therefore, we investigated its role in hypoxia-inducible factor-1alpha (HIF-1alpha) regulation. Inhibition of PI3K in U87MG glioblastoma cells, which have activated PI3K/Akt activity secondary to phosphatase and tensin homologue deleted on chromosome 10 (PTEN) mutation, with LY294002 blunted the induction of HIF-1alpha protein and its targets vascular endothelial growth factor and glut1 mRNA in response to hypoxia. Introduction of wild-type PTEN into these cells also blunted HIF-1alpha induction in response to hypoxia and decreased HIF-1alpha accumulation in the presence of the proteasomal inhibitor MG132. Akt small interfering RNA (siRNA) also decreased HIF-1alpha induction under hypoxia and its accumulation in normoxia in the presence of dimethyloxallyl glycine, a prolyl hydroxylase inhibitor that prevents HIF-1alpha degradation. Metabolic labeling studies showed that Akt siRNA decreased HIF-1alpha translation in normoxia in the presence of dimethyloxallyl glycine and in hypoxia. Inhibition of mammalian target of rapamycin (mTOR) with rapamycin (10-100 nmol/L) had no significant effect on HIF-1alpha induction in a variety of cell lines, a finding that was confirmed using mTOR siRNA. Furthermore, neither mTOR siRNA nor rapamycin decreased HIF-1alpha translation as determined by metabolic labeling studies. Therefore, our results indicate that Akt can augment HIF-1alpha expression by increasing its translation under both normoxic and hypoxic conditions; however, the pathway we are investigating seems to be rapamycin insensitive and mTOR independent. These observations, which were made on cells grown in standard tissue culture medium (10% serum), were confirmed in PC3 prostate carcinoma cells. We did find that rapamycin could decrease HIF-1alpha expression when cells were cultured in low serum, but this seems to represent a different pathway.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号