首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of N-source on the interaction between carbon and nitrogen metabolism was evaluated by measuring phosphoenolpyruvate carboxylase (PEPcase; EC 4.1.1.31) activity in callus tissue of maize ( Zea mays L. cv. Prisma) sub-cultured under different N-nutrition conditions: nitrate, ammonium or combinations of both. By comparison with the condition where both salts were supplied (control), nitrate as the sole N-source led to an increase in PEPcase activity. Ammonium alone gave a drastic decrease of tissue growth. Extracts from calli grown on equivalent media supplied with 15N-nitrate or 15N-ammonium were analysed by 15N-NMR. The labelling of amino acids in the NMR spectra showed that when 15NO3 was the unique N-source, 15N mainly accumulated in NδGln, Glu and Ala. With 15NH+4 only the NδGln and γ-aminobutyric acid were labelled. The addition of both gave rise to labelled Gln, Asn, Glu, Asp, Ala, Val and γ-aminobutyric acid independently of the origin of the label. In vivo 31P-NMR allowed the cytoplasmic and vacuolar pH to be measured. The cytoplasmic pH showed an increase of approximately 0.3 units when nitrate was the sole source of nitrogen and a corresponding decrease when ammonium was added alone. Vacuolar pH decreased in both treatments. These results are discussed on the basis of the effect of the N-source on carbon metabolism. A hypothesis of PEPcase activation as due to the increase of cytoplasmic pH upon nitrate uptake is proposed.  相似文献   

2.
Fluxes of mannitol across plasmalemma and tonoplast of excised carrot storage root tissue were measured using compartmental analysis of 14C tracer exchange. Mannitol metabolism and the contribution of [14C]-labelled metabolites to efflux was shown to be small. Similar but less extensive measurements were made on red beet ( Beta vulgaris L.), barley ( Hordeum vulgare L.) and maize ( Zea mays L.) roots. Calculated values of the reflection coefficient for mannitol were close to one, but, despite this, the inflow of mannitol was sufficient to dissipate the mannitol concentration gradient between inside and outside the cells within the time it takes them to adjust vacuolar concentrations. Thus mannitol is not suitable as an osmoticum in osmotic adjustment experiments in these root tissues. Mannitol flows appear to be passive. Permeability to mannitol (about 10−10 m s−1 is greater at the plasmalemma than at the tonoplast in carrot, and this would tend to cause the cytoplasm to swell. The implications for the control of cytoplasmic volume are discussed.  相似文献   

3.
Abscisic acid (ABA) induces a transient stimulation of 86Rb+ from isolated guard cells of Commelina communis L. When ABA is added after 30–50 min of wash-out in the absence of ABA, when tracer is almost entirely vacuolar, its effects on vacuolar release are measured. When ABA is added early in the wash-out (at 2–4 min), when both cytoplasm and vacuole are labelled, the resulting efflux includes both vacuolar and cytoplasmic contributions. Detailed comparison of rates of efflux in the absence of ABA, and in the presence of ABA added early and late in the wash-out, allows the effects of ABA on plasmalemma and tonoplast fluxes to be assessed. Three effects of ABA can be distinguished: these are stimulation of the 86Rb+ flux from vacuole to cytoplasm (by twofold to 6.7-fold); stimulation of the plasmalemma efflux, by up to twofold, a smaller factor than that of the tonoplast effect and variable between experiments; and a doubling of the half-time for cytoplasmic exchange in ABA, taken to reflect an increase in cytoplasmic ion content as ions flood out of the vacuole. Concentrations of ABA of 0.1–0.2 µM and 1–10 µM are equally effective in the stimulation of plasmalemma efflux, but the effects on tonoplast fluxes are both delayed and reduced at low external concentrations of ABA. It is argued that the delay reflects the need for a threshold internal ABA to be reached before the initiation of vacuolar release, and the reduction reflects the sensitivity of the extent of activation of tonoplast ion channels to concentration of internal ABA. It is likely that the plasmalemma change is mediated by external ABA, and could be the result of the modulation of the stretch-activated channel suggested previously.  相似文献   

4.
The response of maize (Zea mays L.) and Spartina anglica root tips to exposure to sodium chloride concentrations in the range 0 to 500 mM was investigated using 23Na and 31P nuclear magnetic resonance spectroscopy (NMR). Changes in the chemical shift of the pH-dependent 31P-NMR signals from the cytoplasmic and vacuolar orthophosphate pools were correlated with the uptake of sodium, and after allowing for a number of complicating factors we concluded that these chemical shift changes indicated the occurrence of a small cytoplasmic alkalinization (0.1-0.2 pH units) and a larger vacuolar alkalinization (0.6 pH units) in maize root tips exposed to salt concentrations greater than 200 mM. The data were interpreted in terms of the ion transport processes that may be important during salt stress, and we concluded that the vacuolar alkalinization provided evidence for the operation of a tonoplast Na+/H+-antiport with an activity that exceeded the activity of the tonoplast H+ pumps. The intracellular pH values stabilized during prolonged treatment with high salt concentrations, and this observation was linked to the recent demonstration (Y. Nakamura, K. Kasamo, N. Shimosato, M. Sakata, E. Ohta [1992] Plant Cell Physiol 33: 139-149) of the salt-induced activation of the tonoplast H+- ATPase. Sodium vanadate, an inhibitor of the plasmalemma H+- ATPase, stimulated the net uptake of sodium by maize root tips, and this was interpreted in terms of a reduction in active sodium efflux from the tissue. S. anglica root tips accumulated sodium more slowly than did maize, with no change in cytoplasmic pH and a relatively small change (0.3 pH units) in vacuolar pH, and it appears that salt tolerance in Spartina is based in part on its ability to prevent the net influx of sodium chloride.  相似文献   

5.
31P nuclear magnetic resonance (NMR) spectroscopy was used to estimate the amount of inorganic phosphate (Pi) present in the cytoplasm and vacuole of root tips and subapical root segments of pond pine ( Pinus serotina Michx.). In root tips of seedlings grown with 100 mmol m–3P (HP) the cytoplasmic Pi content, on a root volume basis, was ≈ 1·5 μ mol cm–3 and the vacuolar Pi content, on a root volume basis, was ≈ 3·4 μ mol cm–3. In root tips from Pi starved seedlings the cytoplasmic Pi content, on a root volume basis, was ≈ 0·75 μ mol cm–3; vacuolar Pi was too low to be reliably estimated. Similar results were obtained with subapical root segments; the Pi concentration in the cytoplasm was maintained at around 2 mol m–3 while that in the vacuole varied with Pi supply. This work demonstrates for the first time that quantitative measurements of the subcellular compartmentation of Pi can be made in young tissues of a woody species. The results indicate that cytoplasmic Pi levels are maintained across a range of external Pi supplies probably by withdrawing Pi stored in the vacuole.  相似文献   

6.
IN VIVO METHYLATION AND TURNOVER OF RAT BRAIN HISTONES   总被引:3,自引:1,他引:2  
Abstract— The turnover of the different histone components from brain nuclei was studied after the administration of l -[3H]lysine and l -[14C-methyl]methionine to newborn rats. The radioactivities of the different histone subfractions as well as other proteins were determined over a 280-day period. Biphasic type decay curves (3H and 14C) were obtained for total brain histones and all the subfractions. From 6 to 40 days of age the half life of total brain histones was 19 days. After reaching brain maturity the half life was 132 days. The lysine rich histone (F1) was found to turnover the fastest of all the histones, having half lives of 13 and 112 days, respectively. The decay curve for the slightly lysine rich histones (F2a2, F2b) gave half lives of 25 days up to 40 days of age and 189 days after reaching brain maturity. The arginine rich histones (F2a1, F3) gave a half life of 32 days up to 40 days of age, while no turnover was observed after maturity. The turnover rates of the methyl groups and/or methionyl residues did not vary significantly from the turnover rates of the lysyl residues in the F2 and F3 histones. The lysine-rich histones did not contain significant amounts of methionyl residues or methyl groups.
Amino acid analysis of the brain histones revealed that about 3·6 per cent of the lysyl residues in the slightly lysine rich histones were methylated, mainly as ε-N-dimethyllysine. About 13 per cent of the lysyl residues in the arginine rich histones were methylated, mainly as ε-N-monomethyllysine and ε-N-dimethyllysine.  相似文献   

7.
Proline is one of the major solutes accumulated upon salt stress in leaves, stem and roots of the subantarctic Brassicaceae Pringlea antiscorbutica R. Br. (Kerguelen cabbage). Using in vivo 13C-NMR techniques, it was possible for the first time to visualize the subcellular compartmentation of proline between cytoplasmic and vacuolar compartments in Pringlea leaves. We observed that this osmolyte accumulated at a 2–3 times higher concentration in the cytoplasm than in the vacuole.  相似文献   

8.
The vacuolar membrane (tonoplast) of plant cells contains two functionally and physically distinct phosphohydrolases, which catalyse electrogenic H+ -translocation: An ATPase (tp-ATPase; EC 3.6.1.3) and an inorganic pyrophosphatase (tp-PPase; 3.6.1.1). Neither enzyme belongs to the F0F1– or E1E2-categories of primary cation pumps, but instead belong to a third and fourth category of enzyme, respectively. Research priorities for the tp-ATPase are studies directed at understanding the roles of the 70 and 60 kDa subunits in catalysis and regulation; the involvement of the 16 kDa subunit in transmembrane H+ conduction; and investigations of F0F1- like structure/function partitioning. In the longer term, comparisons of sequence homology between the N,N'- dicyclohexylcarbodiimide -binding (16 kDa) proteins from different sources may enable elucidation of the evolutionary relationship of the tp-ATPase with other putative third-category H+– translocases. The tp-PPase, on the other hand, represents an exciting but largely unexplored biochemical entity, which necessitates a reconsideration of accepted views concerning the involvement of inorganic pyrophosphate (PPi) in transmembrane energy conservation. Just why the tonoplast should be endowed with two H+-translocases is a problem that can only be approached once consideration is given to the paramount question of H+/PPi stoichiometry. Once the stoichiometry is known, it should be possible to establish the physiological poise of the tp-PPase, and hence to speculate on its role in the metabolism of plant cells.  相似文献   

9.
Understanding the regulatory properties of the activities of the V-type adenosine triphosphatase (ATPase) on tonoplast membranes is important in determining the mechanisms by which this enzyme controls cytoplasmic and vacuolar pH. The possible existence of a regulatory site for adenine nucleotides was examined by comparing the effects of ADP, adenylylimidodiphosphate (AMP-PNP) and 3'- o -(4-benzoyl) benzoyladenine 5'-triphosphate (BzATP) to those of the 2',3'-dialdehyde derivative of AMP (oAMP) and ATP by using highly purified tonoplast vesicles from maize ( Zea mays L. cv. FRB 73) roots. The addition of either AMP-PNP or BzATP reversibly inhibited the initial rate of proton transport catalyzed by the H+-ATPase in a concentration-dependent manner. Less than 20 μ M AMP-PNP or 50 μ M BzATP was sufficient to inhibit half the initial rate of proton transport in the presence of 2 m M ATP and an excess of Mg. Both analogs increased the Km for ATP and reduced the maximum enzyme velocity. The presence of ADP also inhibited proton transport. The characteristics of ADP-induced inhibition were similar to those of BzATP and AMP-PNP. The addition of the periodated derivative of AMP (oAMP) irreversibly inhibited the ATPase in a concentration and time-dependent manner similar to that reported previously (Chow et al. 1992, Plant Physiology 98: 44–52). Irreversible inhibition by oAMP reduced the maximum velocity of the tonoplast ATPase and was prevented by the addition of ATP. The presence of ADP, AMP-PNP or BzATP had no effect on irreversible inhibition by oAMP. The effects of ADP, AMP-PNP and BzATP on the kinetics of ATP utilization and the lack of protection against inhibition by oAMP argue in favor of at least two types of nucleotide binding sites on the V-type ATPase from maize root tonoplast membranes.  相似文献   

10.
Abstract. The chloroplasts of two species of the Crassulaceae and their F1 hybrid were compared by electron microscopy. The two species had contrasting leaf tissue δ13C values of −25°/ ( Sedum greggii ) and −13°/ ( Cremnophila linguifolia ), and the F1 hybrid had a value of − 18°/. S. greggii had a mean of 8.9 thylakoids per granum in contrast to C. linguifolia which had a mean of only 3.8 thylakoids per granum. The F1 hybrid had a mean of 6.4 thylakoids per granum. Crystaloids were observed in S. greggii and the hybrid but not in C. linguifolia  相似文献   

11.
Effects of pH on proton transport by vacuolar pumps from maize roots   总被引:1,自引:0,他引:1  
Protons pumps of the tonoplast may be involved in the regulation of cytosolic pH, but the effects of pH on the coupled activities of these transporters are poorly understood. The effects of pH on the activities of the H+-translocating pyrophosphatase (PPiase) and vacuolar-type H+-translocating adenosine triphosphatase (H+-ATPase) from maize ( Zea mays L. cv. FRB 73) root membranes were assessed by model that simultaneously considers proton transport by the pump and those processes that reduce net transport. The addition of either pyrophosphate or ATP to either microsomal or tonoplast membranes generated a pH gradient. The pH gradient generated in the presence of both substrates was not the sum of the gradients produced by the two substrates added separately. When membranes were separated by sucrose density gradient centrifugation, pyrophosphate (PPi)-dependent proton transport was associated with light density membranes having tonoplast H+-ATPase activity. These results indicate that some portion of the PPiase was located on the same membrane system as the tonoplast ATPase; however, tonoplast vesicles may be heterogeneous, differing slightly in the ratio of ATP- to PPi-dependent transport. Proton transport by both the PPiase and ATPase had maximal activity at pH 7.0 to 8.0 Decreases in proton transport by the ATPase at pH above the optimum were associated with increases in the processes that reduce net transport. Such an association was not observed at pH values below the optimum. These results are discussed in terms of in situ regulation of cytoplasmic pH by the two pumps.  相似文献   

12.
31 P nuclear magnetic resonance spectroscope (NMR) was used to study the response of Phacelia tanacetifolia seeds to dark and light conditions during the first 72 h of incubation. Changes in the chemical shifts (δ) of the pH-dependent 31P-NMR signals from the vacuolar and the cytoplasmic orthophosphate pools were correlated with the different incubation conditions. In the dark (favorable to germination), the cytoplasmic pH remained nearly constant over the whole period considered, while the vacuolar pH shitted to more acidic values after the 24th h of incubation. In the light (inhibiting germination), the values of cytoplasmic pH tended to become more acidic than in the dark after the 24th h of incubation, while the vacuolar pH remained practically constant. When seed germination was inhibited in the dark by butyric acid (BA). a permeant weak acid, the values of cytoplasmic and vacuolar pH were similar to those of the ungerminated seeds incubated in the light. When, vice versa, seed germination was promoted in the light by fusicoccin (FC), the values of cytoplasmic and vacuolar pH were similar to those of the dark-germinated seeds. A progressive augmentation of P, metabolism occurred both in the dark and in the light up to the 24th h of incubation. Subsequently, light blocked any further evolution of this parameter. Treatment with butyric acid in the dark again mimicked the effect of light, while FC reversed the negative effect of light. The data show that in Phacelia tanacetifolia seeds germination is linked to a more alkaline cytoplasmic pH. The finding that the light-dependent metabolic inhibition occurs after an early activation of metabolism, i.e. after the first 24 h. suggests that the effects of light on the cytoplasmic and vacuolar pH depend on the early metabolic processes involved in the control of the homeostasis of cell pH and/or on the inhibition of the reactivation of the transport mechanisms.  相似文献   

13.
Apical root meristems and segments of root elongation zone were sampled from 4- to 5-day-old Zea mays L. seedlings. The vacuolar ATPase and pyrophosphatase, the tonoplast marker enzymes, and the tonoplast -, -, and -aquaporins were visualized by means of indirect immunofluorescent microscopy with the use of the respective antibodies. Following cell plasmolysis (700 mM mannitol, 2.5 h), the vacuolar ATPase and pyrophosphatase were detected in cell wall pores where plasmodesmata remained detached from the plasmolyzed protoplasts. This finding provides further evidence for existence of the vacuolar symplast in the elongation zone of maize root, which may ensure intercellular continuity of plant tissues. The pulsed NMR method was used to study the self-diffusion of water molecules. The diffusive decay in the root elongation zone was nonexponential, and it was transformed to three exponential terms with characteristic coefficients of self-diffusion; two of these coefficients (D 2 and D 3) characterize the water self-diffusion in the cytoplasmic and vacuolar symplasts of root, respectively. The root apical meristem was also investigated with NMR technique by virtue of paramagnetic doping of the apoplast. This approach allowed selective studying of water diffusion within the symplast compartments. Partial dehydration with PEG-6000, 12 and 20%, for 2.5 h and chemical stressors (ABA and salicylic acid, 0.1 mM, 24 h) were applied to modify water permeability of plasmodesmata and tonoplast aquaporins. The transcellular water permeability increased in the root meristem under the action of all stress factors. In the root elongation zone exposed to partial dehydration, the water exchange in the apoplast became the dominant component. Other stress factors affected water relations in different manners. ABA elevated the water permeability of the vacuolar symplast, in contrast to salicylic acid that decreased water conductance of both the cytoplasmic and vacuolar symplasts.  相似文献   

14.
Abstract Methanosphaera stadtmanae , a member of the Methanobacteriales reduces methanol, but not CO2 with H2 or 2-propanol to produce methane. In cell-free extracts of M. stadtmanae the activities of several enzymes involved in electron transfer were measured. The activities of an F420-nonreactive hydrogenase, NADP+: F420 oxidoreductase, NADP+-dependent 2-propanol dehydrogenase, and a methyl viologen dependent F420 dehydrogenase were observed. Based on the presence of these particular enzyme activities, their cofactor requirements and the absence of F420-dependent hydrogenase activity, a model of the electron transport pathway through the coenzyme F420 to provide electrons for biosynthesis, was formulated.  相似文献   

15.
Hypoxic pretreatment is known to induce anoxia tolerance in plant species sensitive to oxygen deprivation. However, we still do not have detailed information on changes in cytoplasmic and vacuolar pH (pHcyt and pHvac) in plants under low-oxygen availability (hypoxia) and under anoxia. To investigate this, we have studied the influence of hypoxia and anoxia on pHcyt and pHvac, glucose-6-phosphate (Glc-6-P) and nucleotide triphosphate (NTP) contents in rice ( Oryza sativa L.) root tips in comparison with those of wheat ( Triticum aestivum L.) with in vivo 31P-nuclear magnetic resonance. Both cereals responded to hypoxia similarly, by rapid cytoplasmic acidification (from pH 7.6–7.7 to 7.1), which was followed by slow partial recovery (0.3 units after 6 h). Anoxia led to a dramatic pHcyt drop in tissues of both species (from pH 7.6–7.7 to less than 7.0) and partial recovery took place in rice only. In wheat, the acidification continued to pH 6.8 after 6 h of exposure. In both plants, NTP content followed the dynamics of pHcyt. There was a strong correlation between NTP content and cytoplasmic H+ activity ([H+]cyt= 10−pHcyt) for both hypoxic and anoxic conditions. Glc-6-P content increased in rice under anoxia and hypoxia. In wheat, Glc-6-P was not detectable under anoxia but increased under hypoxia. In this study, rice root tips were shown to behave as anoxia tolerant tissues. Our results suggest that the initial cytoplasmic acidification and subsequent pHcyt are differently regulated in anoxia tolerant and intolerant plants and depend on the external oxygen concentration.  相似文献   

16.
Abstract Sucrose density fractionation of yeast membranes revealed two major and two minor peaks of 45Ca2+ transport activity which all co-migrate with marker enzymes of the endoplasmic reticulum, Golgi and membranes associated with these compartments as well as with ATPase activity measured when all other known ATPase are inhibited. Co-migration of 45Ca2+ transport and ATPase activities was also found after removal of plasma membranes by concanavalin A treatment. SDS-PAGE at pH 6.3 shows the Ca2+-dependent formation of acyl phosphate polypeptides of about 110 and 200 kDa. It is concluded that several compartments or sub-compartments of yeast are equipped with Ca2+-ATPase(s). It is proposed that these compartments are derived from the protein secretory apparatus of yeast.  相似文献   

17.
Abstract— Desheathed rat dorsal root ganglia were incubated in a medium containing amino-oxyacetic acid and [3H]GABA. Under these conditions, [3H]GABA is taken up exclusively by the satellite glial cells in the ganglia. Efflux of [3H]GABA from the tissue was measured after passing the ganglia through a series of wash solutions. The spontaneous efflux of radioactivity, mostly [3H]GABA, was more rapid in the absence of amino-oxyacetic acid in the incubation and wash media.
Raising the potassium concentration in the wash media caused an increase in the efflux of [3H]GABA. This increase was sigmoidally related to the potassium concentration in the wash media, reaching a maximum at 64 m m -K+. The releasing effect of K+ was inhibited by removing calcium from the media. Reducing the calcium and raising the magnesium concentration in the wash solutions inhibited the increased efflux of [3H]GABA due to 64 m m -K+ by 48 per cent, while 5 mM-La3+ and diphenylhydantoin (0·005 and 0·5 m m ) had no effect on this increase.
Only a small increase in the efflux of [14C]glutamate was produced by 64 m m -K+ and it had no effect upon the effluxes of [3H]glycine, [3H]alanine or [3H]leucine. The efflux of lactate dehydrogenase was similarly unaffected by 64 mM-K+. The results suggest that glial cells in spinal ganglia can respond to depolarizing concentrations of potassium by releasing GABA in a calcium-dependent process.  相似文献   

18.
High resolution [31P] nuclear magnetic resonance (NMR) spectroscopy was used to investigate the changes in phosphate metabolism and intracellular pH in intact root segments of relatively osmotic stress sensitive species maize (Zea mays L) and insensitive species pearl millet (Pennisetron americanum (L) Leeke) exposed to hyper osmotic shock. The results were used to understand the adaptive mechanism of the two species. The hyper osmotic shock resulted in large build-up of phosphocholine and decrease in glucose 6-phosphate (G-6P) and UDPG levels in both the crops. The osmotic shock produced a large vacuolar alkalinization and decrease in pH across tonoplast membrane in maize roots. However, the roots of pearl millet were able to adapt to the stress and maintained pH gradient across tonoplast with marginal vacuolar alkalinization. This may be attributed to the sustained activity of primary tonoplast pumps and increased activity of H+-ATPase that normally maintain pH gradient across tonoplast.  相似文献   

19.
Succinic semialdehyde dehydrogenase (SSADH) catalyzes the NADP-dependent oxidation of succinic semialdehyde to succinate, the final step of the GABA shunt pathway. SSADH deficiency in humans is associated with excessive elevation of GABA and γ-hydroxybutyrate (GHB). Recent studies of SSADH-null mice show that elevated GABA and GHB are accompanied by reduced glutamine, a known precursor of the neurotransmitters glutamate and GABA. In this study, cerebral metabolism was investigated in urethane-anesthetized SSADH-null and wild-type 17-day-old mice by intraperitoneal infusion of [1,6-13C2]glucose or [2-13C]acetate for different periods. Cortical extracts were prepared and measured using high-resolution 1H-[13C] NMR spectroscopy. Compared with wild-type, levels of GABA, GHB, aspartate, and alanine were significantly higher in SSADH-null cortex, whereas glutamate, glutamine, and taurine were lower. 13C Labeling from [1,6-13C2]glucose, which is metabolized in neurons and glia, was significantly lower (expressed as μmol of 13C incorporated per gram of brain tissue) for glutamate-(C4,C3), glutamine-C4, succinate-(C3/2), and aspartate-C3 in SSADH-null cortex, whereas Ala-C3 was higher and GABA-C2 unchanged. 13C Labeling from [2-13C]acetate, a glial substrate, was lower mainly in glutamine-C4 and glutamate-(C4,C3). GHB was labeled by both substrates in SSADH-null mice consistent with GABA as precursor. Our findings indicate that SSADH deficiency is associated with major alterations in glutamate and glutamine metabolism in glia and neurons with surprisingly lesser effects on GABA synthesis.  相似文献   

20.
Vitamin D3 at low concentration (10−9 M) inhibited the growth of Phaseolus vulgaris L. (cv. Contrancha) roots in vitro as measured by elongation (14 h) and [3H]-leucine incorporation into protein (2 h), and increased their labelling with 45Ca2+ (2 h). Cycloheximide and puromycin (50 u.M) blocked vitamin D3 stimulation of root 45Ca2+ labelling, indicating that it is mediated by de novo protein synthesis. The calcium ionophore X-537A (10−5JW) induced similar changes both in root elongation and 45Ca2+ uptake (14 h). This may indicate that the inhibitory effects of the sterol on root growth are mediated by changes in Ca2+ fluxes. However, this interpretation should be further strengthened by additional studies as the ionophore may have acted on root growth, affecting physiological processes other than Ca2+ transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号