共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutolo MJ Morris KJ Leir SH Caffrey TC Lewandowska MA Hollingsworth MA Harris A 《Matrix biology》2012,31(5):285-289
Non-fibrillar collagen XV is a chondroitin sulfate modified glycoprotein that is associated with the basement membrane zone in many tissues. Its precise functions remain to be fully elucidated though it clearly plays a critical role in the structural integrity of the extracellular matrix. Loss of collagen XV from the basement membrane zone precedes invasion of a number of tumor types and we previously showed that collagen XV functions as a dose-dependent suppressor of tumorigenicity in cervical carcinoma cells. The carboxyl terminus of another non-fibrillar collagen (XVIII) is cleaved to produce endostatin, which has anti-angiogenic effects and thus may act as a tumor suppressor in vivo. Since collagen XV has structural similarity with collagen XVIII, its C-terminal restin domain could confer tumor suppressive functions on the molecule, though our previous data did not support this. We now show that expression of collagen XV enhances the adhesion of cervical carcinoma cells to collagen I in vitro as does the N-terminus and collagenous regions of collagen XV, but not the restin domain. Destruction of a cysteine residue in the collagenous region that is critical for intermolecular interactions of collagen XV abolished the enhanced adhesion to collagen I. Finally, we demonstrate that unlike full length collagen XV, expression of the restin domain alone does not suppress tumorigenicity of cervical carcinoma cells in vivo; hence, this process is dependent on functions and interactions of other parts of the protein. 相似文献
2.
Oligomerization-dependent regulation of motility and morphogenesis by the collagen XVIII NC1/endostatin domain 下载免费PDF全文
Kuo CJ LaMontagne KR Garcia-Cardeña G Ackley BD Kalman D Park S Christofferson R Kamihara J Ding YH Lo KM Gillies S Folkman J Mulligan RC Javaherian K 《The Journal of cell biology》2001,152(6):1233-1246
Collagen XVIII (c18) is a triple helical endothelial/epithelial basement membrane protein whose noncollagenous (NC)1 region trimerizes a COOH-terminal endostatin (ES) domain conserved in vertebrates, Caenorhabditis elegans and Drosophila. Here, the c18 NC1 domain functioned as a motility-inducing factor regulating the extracellular matrix (ECM)-dependent morphogenesis of endothelial and other cell types. This motogenic activity required ES domain oligomerization, was dependent on rac, cdc42, and mitogen-activated protein kinase, and exhibited functional distinction from the archetypal motogenic scatter factors hepatocyte growth factor and macrophage stimulatory protein. The motility-inducing and mitogen-activated protein kinase-stimulating activities of c18 NC1 were blocked by its physiologic cleavage product ES monomer, consistent with a proteolysis-dependent negative feedback mechanism. These data indicate that the collagen XVIII NC1 region encodes a motogen strictly requiring ES domain oligomerization and suggest a previously unsuspected mechanism for ECM regulation of motility and morphogenesis. 相似文献
3.
Novel glycosylated forms of human plasma endostatin and circulating endostatin-related fragments of collagen XV. 总被引:9,自引:0,他引:9
Circulating elongated forms of the angiogenesis inhibitor and potential anti-cancer drug endostatin were isolated from human blood filtrate. Immunoreactive endostatin was identified by a polyclonal rabbit antiserum raised against an N-terminal epitope of the polypeptide and purified by consecutive chromatographic steps and immunoblotting. N- and C-terminal sequence analyses of the isolated molecules revealed different forms of endostatin starting with V(117)HLRPAR. lacking the last and final three residues of the noncollagenous domain 1 (NC-1) of collagen XVIII, respectively. These polypetides are found to be O-glycosylated at T(125) (residue 9) with a glycan structure of the mucin type consisting of galactose N-acetylgalactosamine and N-acetylneuraminic acid residues. Carbohydrate analyses were performed via the semiquantitative HPLC-electrospray ionization mass spectrometry (ESMS) technique after exoglycosidase hydrolysis. Circulating endostatins are present as sialoglycoprotein (22 000 and 21 841 Da +/- 0.02%) and asialoglycoprotein structures (21 710 and 21 549 Da +/- 0.02%), while the two completely deglycosylated forms are obtained only after enzymatic incubation. The described glycosylated endostatins may represent intermediates in the proteolytic pathway of the NC-1 domain of collagen XVIII resulting in bioactive endostatins. Furthermore, immunoreactive endostatin-related C-terminal fragments of human collagen XV are found in the hemofiltrate. These polypeptides exhibit the N-terminal sequences P(66)HLLPPP. and Y(81)EKPALH. of the collagen XV NC-1 domain. ESMS and immunoblotting analyses reveal three glycosylated polypeptides with a molecular mass ranging from 16 to 21 kDa. Due to the high degree of homology between collagen XV and collagen XVIII as well as their analoqous proteolytic processing, functional similarities of collagen XVIII- and XV-related fragments should be revealed in future experiments. 相似文献
4.
Haftek Z Morvan-Dubois G Thisse B Thisse C Garrone R Le Guellec D 《Gene expression patterns : GEP》2003,3(3):351-354
Endostatin, located in the NC1 domain of the collagen XVIII, is believed to inhibit the migration and proliferation of endothelial cells (Fed. Am. Soc. Exp. Biol. J. 15 (2001) 1044) and to play a role in axon guidance in Caenorhabditis elegans (J. Cell Biol. 152 (2001) 1219). Zebrafish is an attractive vertebrate model to determine the role of endostatin and the entire molecule of collagen XVIII during vertebrate development. Therefore, we have investigated the expression pattern of COL18A1 in zebrafish embryos from the segmentation to the hatching period stages. 相似文献
5.
《MABS-AUSTIN》2013,5(2):226-232
We recently described the in vitro and in vivo properties of an engineered homotrimeric antibody made by fusing the N-terminal trimerization region of collagen XVIII NC1 domain to the C-terminus of a scFv fragment [trimerbody (scFv-NC1)3; 110 kDa]. Here, we demonstrated the utility of the N-terminal trimerization region of collagen XV NC1 domain in the engineering of trivalent antibodies. We constructed several scFv-based trimerbodies containing the human type XV trimerization domain and demonstrated that all the purified trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Importantly, type XV trimerbodies demonstrated substantially greater thermal and serum stability and resistance to protease digestion than type XVIII trimerbodies. In summary, the small size, high expression level, solubility and stability of the trimerization domain of type XV collagen make it the ideal choice for engineering homotrimeric antibodies for cancer detection and therapy. 相似文献
6.
ángel M Cuesta David Sánchez-Martín Ana Blanco-Toribio Maider Villate Kelly Enciso-álvarez Ana Alvarez-Cienfuegos Noelia Sainz-Pastor Laura Sanz Francisco J Blanco Luis álvarez-Vallina 《MABS-AUSTIN》2012,4(2):226-232
We recently described the in vitro and in vivo properties of an engineered homotrimeric antibody made by fusing the N-terminal trimerization region of collagen XVIII NC1 domain to the C-terminus of a scFv fragment [trimerbody (scFv-NC1)3; 110 kDa]. Here, we demonstrated the utility of the N-terminal trimerization region of collagen XV NC1 domain in the engineering of trivalent antibodies. We constructed several scFv-based trimerbodies containing the human type XV trimerization domain and demonstrated that all the purified trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Importantly, type XV trimerbodies demonstrated substantially greater thermal and serum stability and resistance to protease digestion than type XVIII trimerbodies. In summary, the small size, high expression level, solubility and stability of the trimerization domain of type XV collagen make it the ideal choice for engineering homotrimeric antibodies for cancer detection and therapy.Key words: antibody engineering, multivalent antibody, collagen XVIII, collagen XV, tumor targeting 相似文献
7.
Crystals of the NC1 domain of human type IV collagen 总被引:1,自引:0,他引:1
M Stubbs L Summers I Mayr M Schneider W Bode R Huber A Ries K Kühn 《Journal of molecular biology》1990,211(4):683-684
Crystals of the non-collagenous C-terminal region (NC1) of type IV collagen have been obtained from human placenta. These crystals diffract to 2.0 A, and belong to space group P22(1)2(1), with cell dimensions a = 81 A, b = 158 A, c = 138 A, alpha = beta = gamma = 90 degrees. The crystals contain one hexamer in the asymmetric unit; they are very stable with respect to X-rays. 相似文献
8.
Jacqueline A. Wirz Sergei P. Boudko Thomas F. LerchMichael S. Chapman Hans Peter Bächinger 《Matrix biology》2011,30(1):9-15
Correct folding of the collagen triple helix requires a self-association step which selects and binds α-chains into trimers. Here we report the crystal structure of the trimerization domain of human type XV collagen. The trimerization domain of type XV collagen contains three monomers each composed of four β-sheets and an α-helix. The hydrophobic core of the trimer is devoid of solvent molecules and is shaped by β-sheet planes from each monomer. The trimerization domain is extremely stable and forms at picomolar concentrations. It is found that the trimerization domain of type XV collagen is structurally similar to that of type XVIII, despite only 32% sequence identity. High structural conservation indicates that the multiplexin trimerization domain represents a three dimensional fold that allows for sequence variability while retaining structural integrity necessary for tight and efficient trimerization. 相似文献
9.
The NC1/endostatin domain of Caenorhabditis elegans type XVIII collagen affects cell migration and axon guidance 下载免费PDF全文
Ackley BD Crew JR Elamaa H Pihlajaniemi T Kuo CJ Kramer JM 《The Journal of cell biology》2001,152(6):1219-1232
Type XVIII collagen is a homotrimeric basement membrane molecule of unknown function, whose COOH-terminal NC1 domain contains endostatin (ES), a potent antiangiogenic agent. The Caenorhabditis elegans collagen XVIII homologue, cle-1, encodes three developmentally regulated protein isoforms expressed predominantly in neurons. The CLE-1 protein is found in low amounts in all basement membranes but accumulates at high levels in the nervous system. Deletion of the cle-1 NC1 domain results in viable fertile animals that display multiple cell migration and axon guidance defects. Particular defects can be rescued by ectopic expression of the NC1 domain, which is shown to be capable of forming trimers. In contrast, expression of monomeric ES does not rescue but dominantly causes cell and axon migration defects that phenocopy the NC1 deletion, suggesting that ES inhibits the promigratory activity of the NC1 domain. These results indicate that the cle-1 NC1/ES domain regulates cell and axon migrations in C. elegans. 相似文献
10.
Javaherian K Park SY Pickl WF LaMontagne KR Sjin RT Gillies S Lo KM 《The Journal of biological chemistry》2002,277(47):45211-45218
We have shown previously that the oligomeric endostatin domain of collagen XVIII (NC1) functioned as a motility-inducing factor regulating the extracellular matrix-dependent morphogenesis of endothelial cells. This motogenic activity gave rise to structures resembling filipodia and lamellipodia and was dependent on Rac, Cdc42, and mitogen-activated protein kinase. Here, we demonstrate that these properties of endostatin are primarily mediated by laminin in the basement membrane and heparan sulfates on the cell surface. The sites of interaction between laminin and oligomeric endostain include the N-terminal regions of all three laminin chains (amino acids 204-1243 of the alpha chain, 932-1161 of the beta chain, and 150-965 of the gamma chain). A monoclonal antibody that blocks the interactions between endostatin and laminin was utilized to inhibit the motogenic activity of endostatin. In parallel, we have engineered selective point mutations and produced recombinant forms that lack binding to heparan sulfates on the cell surface. Our data are consistent with a model of endostatin with two binding sites: one mainly to laminin in the basement membrane and the other to heparan sulfates on the cell surface. The two binding domains on endostatin appear to be separate with the possibility of some overlap between the two sites. 相似文献
11.
Identification and characterization of novel endogenous proteolytic forms of the human angiogenesis inhibitors restin and endostatin 总被引:4,自引:0,他引:4
Restin and endostatin are C-terminal fragments of the noncollagenous domains of collagen XV and collagen XVIII exhibiting high sequence homology. Both polypeptides are distinguished by strong anti-angiogenic activity in vivo restricting the growth of solid tumors and metastasis. They are therefore currently being tested in clinical trials as anti-cancer drugs. We present the identification of new endogenous variants of both angiogenesis inhibitors isolated from a human hemofiltrate peptide library. Using an immunological screening approach with time-resolved rare earth metal fluorometry, immunoreactive compounds were purified chromatographically and characterized by mass spectrometry. We discovered four novel proteolytic products of restin as well as four variants of endostatin. Two endostatin products were characterized as short internal fragments (R176-L215 and R176-S219) of the entire molecule containing the recently identified beta1 integrin receptor binding site, which plays a major role in endothelial cell migration and angiogenesis. Two additional forms contain mucin-type O-glycosylations. The O-glycosylated variants possess an oligosaccharide unit consisting of one N-acetylgalactosamine (GalNAc), one N-acetylneuraminic acid (NANA) and two galactose residues (Gal) occurring as sialo-(V117-S311-GalNAc-Gal2-NANA) and asialoglycopeptides (V117-S311-GalNAc-Gal2). The four restin variants (R(I)-R(IV)) were identified with identical C- but different N-termini and no posttranslational modification (R(I): P66-A254, R(II): P75-A254, R(III): Y81-A254 and R(IV): A89-A254). Following a differential peptide mass fingerprint approach by reflector mode MALDI-TOFMS, the disulfide patterns of these circulating restins were determined as Cys1-Cys4 and Cys2-Cys3. These endogenous circulating collagen fragments will help to understand the physiological processing of the therapeutic proteins. 相似文献
12.
Brittingham R Uitto J Fertala A 《Biochemical and biophysical research communications》2006,343(3):692-699
Anchoring functions of collagen VII depend on its ability to form homotypic fibrils and to bind to other macromolecules to form heterotypic complexes. Biosensor-based binding assays were employed to analyze the kinetics of the NC1 domain-mediated binding of collagen VII to laminin 5, collagen IV, and collagen I. We showed that collagen VII interacts with laminin 5 and collagen IV with a Kd value of 10(-9) M. In contrast, the NC1-mediated binding to collagen I was weak with a Kd value of 10(-6) M. Binding assays also showed that the NC1 domain utilizes the same region to bind to both laminin 5 and collagen IV. We postulate that the ability of the NC1 domains to bind with high affinities to laminin 5 and collagen IV facilitates stabilization of the structure of the basement membrane itself and that the NC1-collagen I interaction may be less important for stabilization of the dermal-epidermal junction. 相似文献
13.
From a study to understand the mechanism of covalent interaction between collagen types II and IX, we present experimental evidence for a previously unrecognized molecular site of cross-linking. The location relative to previously defined cross-linking sites predicts a specific manner of interaction and folding of collagen IX on the surface of nascent collagen II fibrils. The initial evidence came from Western blot analysis of type IX collagen extracted by pepsin from fetal human cartilage, which showed a molecular species that had properties indicating an adduct between the alpha1(II) chain and the C-terminal domain (COL1) of type IX collagen. A similar component was isolated from bovine cartilage in sufficient quantity to confirm this identity by N-terminal sequence analysis. Using an antibody that recognized the putative cross-linking sequence at the C terminus of the alpha1(IX) chain, cross-linked peptides were isolated by immunoaffinity chromatography from proteolytic digests of human cartilage collagen. They were characterized by immunochemistry, N-terminal sequence analysis, and mass spectrometry. The results establish a link between a lysine near the C terminus (in the NC1 domain) of alpha1(IX) and the known cross-linking lysine at residue 930 of the alpha1(II) triple helix. This cross-link is speculated to form early in the process of interaction between collagen IX molecules and collagen II polymers. A model of molecular folding and further cross-linking is predicted that can spatially accommodate the formation of all six known cross-linking interactions to the collagen IX molecule on a fibril surface. Of particular biological significance, this model can accommodate potential interfibrillar as well as intrafibrillar links between the collagen IX molecules themselves, so providing a mechanism whereby collagen IX could stabilize a collagen fibril network. 相似文献
14.
Lack of collagen XVIII accelerates cutaneous wound healing, while overexpression of its endostatin domain leads to delayed healing 总被引:1,自引:0,他引:1
Lotta Seppinen Raija Sormunen Ylermi Soini Harri Elamaa Ritva Heljasvaara Taina Pihlajaniemi 《Matrix biology》2008,27(6):535-546
Endostatin, the C-terminal fragment of collagen XVIII, is known to suppress tumour growth and angiogenesis by inhibiting endothelial cell proliferation and migration. We have previously shown that endostatin and its precursor are important for the structural organization of basement membranes (BM). The aim of this study was to investigate cutaneous wound healing in mice overexpressing endostatin in keratinocytes (ES-tg) and in mice lacking collagen XVIII (Col18a1(-/-)). Excisional wounds were made on the dorsal skin of mice, the wound areas were measured and the wounds were collected for further analyses after 3, 6 or 14 days. The healing of the wounds was delayed in the ES-tg mice and accelerated in the Col18a1(-/-) mice, and the vascularisation rate was accelerated in the Col18a1(-/-) mice, but not affected in the ES-tg mice. Abnormal capillaries with swollen endothelial cells and narrowed lumens were observed in the wounds of the ES-tg mice. In these mice also the formation of the epidermal BM was delayed, and the structure of the epidermal and capillary BMs was more disorganised. Moreover, detachment of the epidermis from the granulation tissue was observed in half (n=10) of the 6-day-old ES-tg wounds, but in none of the controls, suggesting an increased fragility of the epidermal-dermal junction in the presence of an excess of endostatin. 相似文献
15.
Cloning, expression, and in vitro activity of human endostatin. 总被引:57,自引:0,他引:57
M Dhanabal R Volk R Ramchandran M Simons V P Sukhatme 《Biochemical and biophysical research communications》1999,258(2):345-352
Endostatin, a 20 kDa C-terminal fragment of collagen XVIII, is a specific inhibitor of endothelial cell proliferation and angiogenesis. In the present study, we have expressed human endostatin in a yeast expression system (10 mg/L). The recombinant protein was expressed in a soluble form and purified to homogeneity. It specifically inhibited the proliferation and migration of endothelial cells. In addition, we report for the first time that endostatin caused G1 arrest of endothelial cells. Also, we show that endostatin treatment resulted in apoptosis of HUVE and HMVE cells and that all of these effects do not occur in nonendothelial cells. Collectively, these findings demonstrate the expression of a biologically active form of human endostatin in yeast and provide important mechanistic insight into endostatin action on endothelial cells. 相似文献
16.
Pihlajamaa T Lankinen H Ylöstalo J Valmu L Jäälinoja J Zaucke F Spitznagel L Gösling S Puustinen A Mörgelin M Peränen J Maurer P Ala-Kokko L Kilpelaïnen I 《The Journal of biological chemistry》2004,279(23):24265-24273
The N-terminal NC4 domain of collagen IX is a globular structure projecting away from the surface of the cartilage collagen fibril. Several interactions have been suggested for this domain, reflecting its location and its characteristic high isoelectric point. In an attempt to characterize the NC4 domain in more detail, we set up a prokaryotic expression system to produce the domain. The purified 27.5-kDa product was analyzed for its glycosaminoglycan-binding potential by surface plasmon resonance and solid-state assays. The results show that the NC4 domain of collagen IX specifically binds heparin with a K(d) of 0.6 microm, and the full-length recombinant collagen IX has an even stronger interaction with heparin, with an apparent K(d) of 3.6 nm. The heparin-binding site of the NC4 domain was located in the extreme N terminus, containing a heparin-binding consensus sequence, whereas electron microscopy suggested the presence of at least three additional heparin-binding sites on full-length collagen IX. The NC4 domain was also shown to bind cartilage oligomeric matrix protein. This interaction and the association of cartilage oligomeric matrix protein with other regions of collagen IX were found to be heparin-competitive. Circular dichroism analyses of the NC4 domain indicated the presence of stabilizing disulfide bonds and a thermal denaturation point of about 80 degrees C. The pattern of disulfide bond formation within the NC4 domain was identified by tryptic peptide mass mapping of the NC4 in native and reduced states. A similar pattern was demonstrated for the NC4 domain of full-length recombinant collagen IX. 相似文献
17.
The mechanisms of chain selection and assembly of fibril-associated collagens with interrupted triple helices (FACITs) must differ from that of fibrillar collagens, since they lack the characteristic C-propeptide. We analyzed two carboxyl-terminal noncollagenous domains, NC2 and NC1, of collagen XIX as potential trimerization units and found that NC2 forms a stable trimer and substantially stabilizes a collagen triple helix attached to either end. In contrast, the NC1 domain requires formation of an adjacent collagen triple helix to form interchain disulfide bridges. The NC2 domain of collagen XIX and probably of other FACITs is responsible for chain selection and trimerization. 相似文献
18.
Five independent hybrids producing monoclonal antibodies to human plasma fibronectin have been obtained by fusing P3/X63-Ag8 myeloma cells with immune mouse splenocytes. The specificity of these monoclonal antibodies (MABs) for fibronectin was demonstrated by three independent tests: binding to the purified soluble molecule, immunofluorescence staining of insoluble extracellular matrices produced by endothelial cells in vitro, immunostaining of fibronectin tryptic peptides after separation on SDS-PAGE and transfer to nitrocellulose sheets. Two antibodies (MAB 29 and 52) recognized selectively human fibronectin while the others (MAB 5, 30 and 59) reacted also with plasma fibronectin from calf, hamster and chicken. Four distinct epitopes were recognized by the MABs studied. MAB 5, 30, 52 and 59 reacted with distinct antigenic sites, while MAB 29 and 52 bind to the same site. Antigenic fragments were identified by immunostaining of fibronectin tryptic peptides. MAB 5 reacted with a collagen binding fragment with a molecular weight of 120 K. In addition, each of the MAB 29, 30, 52 and 59 reacted with peptides with a molecular weight of 40 K that bind to gelatin. Since these antibodies do not inhibit fibronectin-collagen interaction, it is concluded that their corresponding epitopes are clustered in a region close, but not coincident, to the collagen binding site of fibronectin. 相似文献
19.
Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. 总被引:26,自引:0,他引:26 下载免费PDF全文
The C-terminal domain NC1 of mouse collagen XVIII (38 kDa) and the shorter mouse and human endostatins (22 kDa) were prepared in recombinant form from transfected mammalian cells. The NC1 domain aggregated non-covalently into a globular trimer which was partially cleaved by endogenous proteolysis into several monomers (25-32 kDa) related to endostatin. Endostatins were obtained in a highly soluble, monomeric form and showed a single N-terminal sequence which, together with other data, indicated a compact folding. Endostatins and NC1 showed a comparable binding activity for the microfibrillar fibulin-1 and fibulin-2, and for heparin. Domain NC1, however, was a distinctly stronger ligand than endostatin for sulfatides and the basement membrane proteins laminin-1 and perlecan. Immunological assays demonstrated endostatin epitopes on several tissue components (22-38 kDa) and in serum (120-300 ng/ml), the latter representing the smaller variants. The data indicated that the NC1 domain consists of an N-terminal association region (approximately 50 residues), a central protease-sensitive hinge region (approximately 70 residues) and a C-terminal stable endostatin domain (approximately 180 residues). They also demonstrated that proteolytic release of endostatin can occur through several pathways, which may lead to a switch from a matrix-associated to a more soluble endocrine form. 相似文献
20.
Gabusi E Manferdini C Grassi F Piacentini A Cattini L Filardo G Lambertini E Piva R Zini N Facchini A Lisignoli G 《Journal of cellular physiology》2012,227(8):3151-3161
Fluctuation in extracellular calcium (Ca(2+)) concentration occurs during bone remodeling. Free ionized Ca(2+) plays a critical role in regulating osteoblast functions. We analyzed the effects of different concentrations of free ionized Ca(2+) (0.5, 1.3, and 2.6 mM) on human osteoblasts and we evaluated osteoblastic phenotype (marker expression and cell morphology) and functions (osteogenic differentiation, cell proliferation, and cell signaling). Our data show human osteoblasts that chronically stimulated with 0.5, 1.3, or 2.6 mM Ca(2+) significantly increase intracellular content of alkaline phosphatase, collagen type I, osteocalcin, and bone sialoprotein, whereas collagen type XV was down-modulated and RUNX2 expression was not affected. We also found a Ca(2+) concentration-dependent increase in osteogenic differentiation and cell proliferation, associated to an increase of signaling protein PLCβ1 and p-ERK. Human osteoblast morphology was affected by Ca(2+) as seen by the presence of numerous nucleoli, cells in mitosis, cell junctions, and an increased number of vacuoles. In conclusion, our data show a clear phenotypical and functional effect of extracellular Ca(2+) on human osteoblasts and support the hypothesis of a direct role of this cation in the bone remodeling processes. 相似文献