首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Notch signalling pathway regulates proliferation, cell death and cell type specification that is critical for organogenesis. Mouse models carrying mutations in the Notch signalling pathway display defects in development of the placenta, suggesting that this pathway is required for placental development. In particular, Notch1 mutant embryos exhibit abnormal placental morphogenesis and arrest early in development. However, expression of Notch1 gene has not been detected during placental development. Trophoblast stem cells are derived from the precursor of the placenta and express Notch1. We report that Notch1 is also expressed in differentiated trophoblast cells. Under standard differentiation conditions, Notch1 expression ceases by day 6. Furthermore, the activated NOTCH1 intracellular domain is enriched at the nucleolus of trophoblast stem cells and differentiated trophoblast cells. Our results suggest that NOTCH1 is active in both trophoblast stem cells and differentiated trophoblast cells.  相似文献   

2.
FGF10 plays an important role in the morphogenesis of several tissues by control of mesenchymal-to-epithelial signaling. In the pancreas, mesenchymal FGF10 is required to maintain the Pdx1-expressing epithelial progenitor cell population, and in the absence of FGF10 signaling, these cells fail to proliferate. Ectopic expression of FGF10 in the pancreatic epithelium caused increased proliferation of pancreatic progenitor cells and abrogation of pancreatic cell differentiation of all cell types. A hyperplastic pancreas consisting of undifferentiated cells expressing Pdx1, Nkx6.1, and cell adhesion markers normally characterizing early pancreatic progenitor cells resulted. Differentiation was attenuated even as proliferation of the pancreatic cells slowed during late gestation, suggesting that the trophic effect of FGF10 was independent of its effects upon cell differentiation. The FGF10-positive pancreatic cells expressed Notch1 and Notch2, the Notch-ligand genes Jagged1 and Jagged2, as well as the Notch target gene Hes1. This activation of Notch is distinct from the previously recognized mechanism of lateral inhibition. These data suggest that FGF10 signaling serves to integrate cell growth and terminal differentiation at the level of Notch activation, revealing a novel second role of this key signaling system during pancreatic development.  相似文献   

3.
Roles of bHLH genes in neural stem cell differentiation   总被引:29,自引:0,他引:29  
Neural stem cells change their characteristics over time during development: they initially proliferate only and then give rise to neurons first and glial cells later. In the absence of the repressor-type basic helix-loop-helix (bHLH) genes Hes1, Hes3 and Hes5, neural stem cells do not proliferate sufficiently but prematurely differentiate into neurons and become depleted without making the later born cell types such as astrocytes and ependymal cells. Thus, Hes genes are essential for maintenance of neural stem cells to make cells not only in correct numbers but also in full diversity. Hes genes antagonize the activator-type bHLH genes, which include Mash1, Math and Neurogenin. The activator-type bHLH genes promote the neuronal fate determination and induce expression of Notch ligands such as Delta. These ligands activate Notch signaling and upregulate Hes1 and Hes5 expression in neighboring cells, thereby maintaining these cells undifferentiated. Thus, the activator-type and repressor-type bHLH genes regulate each other, allowing only subsets of cells to undergo differentiation while keeping others to stay neural stem cells. This regulation is essential for generation of complex brain structures of appropriate size, shape and cell arrangement.  相似文献   

4.
Recent studies have shown that the pulp of human teeth contains a population of cells with stem cell properties and it has been suggested that these cells originate from pericytes. Molecules of the Notch signaling pathway regulate stem cell fate specification, while Rgs5 represents an excellent marker for pericytes. Pathological conditions such as dental trauma and carious lesion stimulate pulp stem cells to elaborate reparative dentin. Previous studies have shown that genes involved in the Notch pathway are activated in response to pulp injury in rodent and humans. To demonstrate the importance of pericytes as a source of stem cells during dental repair, we have studied Rgs5 and Notch3 mRNA expression by in situ hybridization in developing, adult intact and injured rodent teeth. Furthermore, we have examined the distribution of Notch3 protein in carious and injured human teeth using immunohistochemistry. Overlapping expression patterns of Rgs5 and Notch3 were observed during rodent tooth development as well as immediately after injury. Both genes were expressed in vascular structures during development and in perivascular and single capillary cells of injured teeth. However, the expression patterns of Rgs5 and Notch3 were different during tooth repair, with relatively extensive Rgs5 expression along the pericyte-vascular smooth muscle cell axis in central pulp arterioles. These results show co-expression of Rgs5 and Notch3 in pericytes of developing and injured teeth and furthermore indicate the importance of vascular-derived stem cells during pulp healing.  相似文献   

5.
Dental tissue-derived mesenchymal stem cells have been proposed as an alternative source for mesenchymal stem cells. Here, we investigated the differentiation ability toward insulin producing cells (IPCs) of human dental pulp stem cells (hDPSCs) and human periodontal ligament stem cells (hPDLSCs). These cells expressed mesenchymal stem cell surface markers and were able to differentiate toward osteogenic and adipogenic lineages. Upon 3 step-IPCs induction, hDPSCs exhibited more colony number than hPDLSCs. The mRNA upregulation of pancreatic endoderm/islet markers was noted. However, the significant increase was noted only for PDX-1, NGN-3, and INSULIN mRNA expression of hDPSCs. The hDPSCs-derived IPCs expressed PRO-INSULIN and released C-PEPTIDE upon glucose stimulation in dose-dependent manner. After IPCs induction, the Notch target, HES-1 and HEY-1, mRNA expression was markedly noted. Notch inhibition during the last induction step or throughout the protocol disturbed the ability of C-PEPTIDE release upon glucose stimulation. The results suggested that hDPSCs had better differentiation potential toward IPCs than hPDLSCs. In addition, the Notch signalling might involve in the differentiation regulation of hDPSCs into IPCs.  相似文献   

6.
Notch signaling involves the processes that govern cell proliferation, cell fate decision, cell differentiation and stem cell maintenance. Due to its fundamental role in stem cells, it has been speculated during the recent years that Notch family may have critical functions in cancer stem cells or cancer cells with a stem cell phenotype, therefore playing an important role in the process of oncogenesis. In this study, expression of Notch family in KYSE70, KYSE140 and KYSE450 squamous esophageal cancer cell lines and virus transformed squamous esophageal epithelial cell line Het-1A was examined by quantitative RT-PCR. Compared to the Het-1A cells, higher levels of Nocth1 and Notch3 expression in the cancer cell lines were identified. Due to the finding that NOTCH3 mainly mediates squamous cell differentiation, NOTCH1 expression was further studied in these cell lines. By Western blot analyses, the KYSE70 cell line which derived from a poorly differentiated tumor highly expressed Notch1, and the Notch1 expression in this cell line was hypoxia inducible, while the KYSE450 cell line which derived from a well differentiated tumor was always negative for Notch1, even in hypoxia. Additional studies demonstrated that the KYSE70 cell line was more 5-FU resistant than the KYSE450 cell line and such 5-FU resistance is correlated to Notch1 expression verified by Notch1 knockdown experiments. In clinical samples, Notch1 protein expression was detected in the basal cells of human esophagus epithelia, and its expression in squamous cell carcinomas was significantly associated with higher pathological grade and shorter overall survival. We conclude that Notch1 expression is associated with cell aggressiveness and 5-FU drug resistance in human esophageal squamous cell carcinoma cell lines in vitro and is significantly associated with a poor survival in human esophageal squamous cell carcinomas.  相似文献   

7.
The Notch/Notch-ligand pathway regulates cell fate decisions and patterning in various tissues. Several of its components are expressed in the developing lung, suggesting that this pathway is important for airway cellular patterning. Fringe proteins, which modulate Notch signaling, are crucial for defining morphogenic borders in several organs. Their role in controlling cellular differentiation along anterior-posterior axis of the airways is unknown. Herein, we report the temporal-spatial expression patterns of Lunatic fringe (Lfng) and Notch-regulated basic helix-loop-helix factors, Hes1 and Mash-1, during murine lung development. Lfng was only expressed during early development in epithelial cells lining the larger airways. Those epithelial cells also expressed Hes1, but at later gestation Hes1 expression was confined to epithelium lining the terminal bronchioles. Mash-1 displayed a very characteristic expression pattern. It followed neural crest migration in the early lung, whereas at later stages Mash-1 was expressed in lung neuroendocrine cells. To clarify whether Lfng influences airway cell differentiation, Lfng was overexpressed in distal epithelial cells of the developing mouse lung. Overexpression of Lfng did not affect spatial or temporal expression of Hes1 and Mash-1. Neuroendocrine CGRP and protein gene product 9.5 expression was not altered by Lfng overexpression. Expression of proximal ciliated (beta-tubulin IV), nonciliated (CCSP), and distal epithelial cell (SP-C, T1alpha) markers also was not influenced by Lfng excess. Overexpression of Lfng had no effect on mesenchymal cell marker (alpha-sma, vWF, PECAM-1) expression. Collectively, the data suggest that Lunatic fringe does not play a significant role in determining cell fate in fetal airway epithelium.  相似文献   

8.
The role of the Notch signaling members Notch1, Notch2 and Rbpj in exocrine pancreatic development is not well defined. We therefore analyzed conditional pancreas-specific Rbpj and combined Notch1/Notch2 knockout mice using Ptf1a(+/Cre(ex1)) mice crossed with floxed Rbpj or Notch1/Notch2 mice. Mice were analyzed at different embryonic stages for pancreatic exocrine and endocrine development. The absence of Rbpj in pancreatic progenitor cells impaired exocrine pancreas development up to embryonic day 18.5 and led to premature differentiation of pancreatic progenitors into endocrine cells. In Rbpj-deficient pancreata, amylase-expressing acini and islets formed during late embryonic and postnatal development, suggesting an essential role of Rbpj in early but not late development. Contrary to this severe phenotype, the concomitant inactivation of Notch1 and Notch2 only moderately disturbed the proliferation of pancreatic epithelial cells during early embryonic development, and did not inhibit pancreatic development. Our results show that, in contrast to Rbpj, Notch1 and Notch2 are not essential for pancreatogenesis. These data favor a Notch-independent role of Rbpj in the development of the exocrine pancreas. Furthermore, our findings suggest that in late stages of pancreatic development exocrine cell differentiation and maintenance are independent of Rbpj.  相似文献   

9.
10.
Endocrine differentiation in the early embryonic pancreas is regulated by Notch signaling. Activated Notch signaling maintains pancreatic progenitor cells in an undifferentiated state, whereas suppression of Notch leads to endocrine cell differentiation. Yet it is not known what mechanism is employed to inactivate Notch in a correct number of precursor cells to balance progenitor proliferation and differentiation. We report that an established Notch modifier, Manic Fringe (Mfng), is expressed in the putative endocrine progenitors, but not in exocrine pancreatic tissues, during early islet differentiation. Using chicken embryonic endoderm as an assaying system, we found that ectopic Mfng expression is sufficient to induce endodermal cells to differentiate towards an endocrine fate. This endocrine-inducing activity depends on inactivation of Notch. Furthermore, ectopic Mfng expression induces the expression of basic helix-loop-helix gene, Ngn3, and two zinc finger genes, cMyt1 and cMyt3. These results suggest that Mfng-mediated repression of Notch signaling could serve as a trigger for endocrine islet differentiation.  相似文献   

11.
The evolutionarily conserved Notch-mediated intercellular signaling pathway is essential for proper embryonic development of many tissues and organs. Recent data suggest that Notch receptors and their membrane-bound ligands Delta and Serrate are involved in both patterning and cell fate determination during odontogenesis. It remains, however, uncertain if Notch signaling is important for tooth homeostasis and regeneration. Here we report on the expression of Notch receptors and the Delta1 ligand in dental pulp of normal and injured adult rat teeth. Notch receptors were absent from normal adult dental tissues, whereas expression was upregulated after injury. In injured teeth, Notch2 was expressed in mesenchymal cells of the pulp both close to the site of injury (i.e., in the dental crown) and at a distance from it (i.e., in the dental roots), Notch3 expression was mainly associated with vascular structures, while Notch1 expression was restricted to few pulpal cells close to the lesion. None of them was expressed in odontoblasts. Expression of Delta1 was upregulated in odontoblasts of the injured teeth, as well as in vascular structures. These results demonstrate the reactivation of the Notch signaling pathway during wound healing and, furthermore, highlight the similarity between developmental and regenerative processes.  相似文献   

12.
13.
14.
Retinal progenitor cells are believed to display altered proliferation and differentiation during retinal development, suggesting that retinal progenitor cell populations are not homogeneous. However, the composition of progenitor cell populations is not known, due in part to the lack of known surface markers identifying distinct stages of retinal progenitor cells. We found a dramatic change in the expression profile of the cell surface antigens c-kit and stage-specific embryonic antigen-1 (SSEA-1) in retinal progenitor cells during development. While SSEA-1 was expressed early in development, c-kit expression peaked in late stage progenitor cells. The identification of these developmental markers enabled us to characterize distinct sub-populations of retinal progenitor cells. Progenitor cell subpopulations expressing either SSEA-1, c-kit, or both showed different proliferation and differentiation abilities. Although SSEA-1-positive cells were augmented by beta-catenin signaling, c-kit-positive cells were positively regulated by Notch signaling. Taken together, our data suggest that c-kit and SSEA-1 can be used to spatiotemporally differentiate retinal progenitor populations that have intrinsically distinct characteristics. Prolonged expression of c-kit by a retrovirus resulted in the promotion of proliferation and the appearance of nestin-positive cells in the presence of the c-kit ligand, stem cell factor (SCF). This suggests a role for c-kit, Notch, and the beta-catenin signaling network in retinal development.  相似文献   

15.
16.
Notch signaling regulates cell fate decisions in a variety of adult and embryonic tissues, and represents a characteristic feature of exocrine pancreatic cancer. In developing mouse pancreas, targeted inactivation of Notch pathway components has defined a role for Notch in regulating early endocrine differentiation, but has been less informative with respect to a possible role for Notch in regulating subsequent exocrine differentiation events. Here, we show that activated Notch and Notch target genes actively repress completion of an acinar cell differentiation program in developing mouse and zebrafish pancreas. In developing mouse pancreas, the Notch target gene Hes1 is co-expressed with Ptf1-P48 in exocrine precursor cells, but not in differentiated amylase-positive acinar cells. Using lentiviral delivery systems to induce ectopic Notch pathway activation in explant cultures of E10.5 mouse dorsal pancreatic buds, we found that both Hes1 and Notch1-IC repress acinar cell differentiation, but not Ptf1-P48 expression, in a cell-autonomous manner. Ectopic Notch activation also delays acinar cell differentiation in developing zebrafish pancreas. Further evidence of a role for endogenous Notch in regulating exocrine pancreatic differentiation was provided by examination of zebrafish embryos with homozygous mindbomb mutations, in which Notch signaling is disrupted. mindbomb-deficient embryos display accelerated differentiation of exocrine pancreas relative to wild-type clutchmate controls. A similar phenotype was induced by expression of a dominant-negative Suppressor of Hairless [Su(H)] construct, confirming that Notch actively represses acinar cell differentiation during zebrafish pancreatic development. Using transient transfection assays involving a Ptf1-responsive reporter gene, we further demonstrate that Notch and Notch/Su(H) target genes directly inhibit Ptf1 activity, independent of changes in expression of Ptf1 component proteins. These results define a normal inhibitory role for Notch in the regulation of exocrine pancreatic differentiation.  相似文献   

17.
Notch signaling plays a pivotal role in the regulation of vertebrate neurogenesis. However, in vitro experiments suggest that Notch1 may also be involved in the regulation of later stages of brain development. We have addressed putative roles in the central nervous system by examining the expression of Notch signaling cascade components in the postnatal mouse brain. In situ mRNA hybridization revealed that Notch1 is associated with cells in the subventricular zone, the dentate gyrus and the rostromigratory stream, all regions of continued neurogenesis in the postnatal brain. In addition, Notch1 is expressed at low levels throughout the cortex and olfactory bulb and shows striking expression in the cerebellar Purkinje cell layer. The Notch ligands, including Delta-like1 and 3 and Jagged1 and Jagged2, show distinct expression patterns in the developing and adult brain overlapping that of Notch1. In addition, the downstream targets of the Notch signaling cascade Hes1, Hes3, Hes5 and the intrinsic Notch regulatory proteins Numb and Numblike also show active signaling in distinct brain regions. Hes5 coincides with the majority of Notch1 expression and can be detected in the cerebral cortex, cerebellum and putative germinal zones. Hes3, on the other hand, shows a restricted expression in cerebellar Purkinje cells. The distribution of Notch1 and its putative ligands suggest distinct roles in specific subsets of cells in the postnatal brain including putative stem cells and differentiated neurons.  相似文献   

18.
Notch signaling is essential for the appropriate differentiation of many cell types during development and, furthermore, is implicated in a variety of human diseases. Previous studies have shown that although the Notch1, -2, and -3 receptors are expressed in developing and injured rodent teeth, Notch2 expression was predominant after a lesion. To pursue the role of the Notch pathway in tooth development and disease, we have analyzed the expression of the Notch2 protein in embryonic and adult wounded human teeth. During the earlier stages of tooth development, the Notch2 protein was expressed in the epithelium, but was absent from proliferating cells of the inner enamel epithelium. At more advanced stages, Notch2 was expressed in the enamel-producing ameloblasts, while it was absent in mesenchyme-derived odontoblasts that synthesize the dentin matrix. Although Notch2 was not expressed in the pulp of adult intact teeth, it was reexpressed during dentin repair processes in odontoblasts and subodontoblastic cells. Transforming growth factor beta-1, which stimulates odontoblast differentiation and hard tissue formation after dental injury, downregulated Notch2 expression in cultured human dental slices, in vitro. These observations are consistent with the notion that Notch signaling is an important element in dental physiological and pathogenic conditions.  相似文献   

19.
Notch signaling is involved in cell lineage specification in many developing organs. In mice there are four known Notch receptor genes (Notch1–4) and five ligands genes (Dll1, 3, 4 and Jagged1 and 2). Notch2 is essential for development of placenta, an organ that mediates feto-maternal nutrient and gas exchange as well as maternal adaptations to pregnancy. However the role of other Notch receptors and ligands in placentation is not known. In order to gain better insight into the role of Notch signaling in mouse placenta we thoroughly analyzed mRNA expression of all Notch receptors and ligands in all trophoblast cell types from the embryonic day (E) 7.5 to E12.5, the period during which all of the substructures of the placenta develop. Here we show that Notch receptors and ligands are specifically and dynamically expressed in multiple cell layers of developing placenta. We found that the Notch2 receptor and Jagged1 and Jagged2 ligand genes are complementarily expressed in trophoblast cells of the chorion and its later derivatives in the labyrinth. Dll4 and Notch2 expression complement each other in the ectoplacental cone, while Dll1 and Notch2 are expressed in an ectoplacental cone derivative, the junctional zone. Moreover Dll4 and Notch2 are expressed at the ectoplacental cone–decidua interface at early stages of placentation. Additionally we show that Notch2 is dynamically expressed in all trophoblast giant cell subtypes, which is consistent with previous reports. Overall these expression pattern results suggest that Notch signaling may play several diverse roles during placenta development.  相似文献   

20.
T cells differentiate from bone marrow-derived stem cells by expressing developmental stage-specific genes. We here searched arrays of genes that are highly expressed in mature CD4-CD8+ (CD8 single-positive (SP)) T cells but little in CD4+CD8+ (double-positive (DP)) cells by cDNA subtraction. Lunatic fringe (Lfng), a modulator of Notch signaling, was identified to be little expressed in DP cells and highly expressed in CD8SP T cell as well as in CD4-CD8- (double-negative (DN)) and mature CD4+CD8- (CD4SP) T cells. Thus, we examined whether such change of expression of Lfng plays a role in T cell development. We found that overexpression of Lfng in Jurkat T cells strengthened Notch signaling by reporter gene assay, indicating that Lfng is a positive regulator for Notch signaling in T cells. The enforced expression of Lfng in thymocytes enhanced the development of immature CD8SP cells but decreased mature CD4SP and CD8SP cells. In contrast, the down-regulation of Lfng in thymocytes suppressed DP cells development due to the defective transition from CD44+CD25- stage to subsequent stage in DN cells. The overexpression of Lfng in fetal liver-derived hemopoietic stem cells enhanced T cell development, whereas its down-regulation suppressed it. These results suggested that the physiological high expression of Lfng in DN cells contributes to enhance T cell differentiation through strengthening Notch signaling. Shutting down the expression of Lfng in DP cells may have a physiological role in promoting DP cells differentiation toward mature SP cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号