首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The correlation between the consumption of amino acids and the production of the polypeptide antibiotic gallidermin by Staphylococcus gallinarum Tü 3928 was investigated by on-line determination of amino acids and pulse experiments. A prolonged production phase together with an increase in gallidermin formation of about 25% was obtained during pulse and fed-batch experiments with the amino acids glutamic acid, glycine, serine and threonine.  相似文献   

2.
Summary The influence of different states of oxygen and alkane substrate supply on the metabolism of Candida maltosa during cultivation on n-alkanes has been investigated. At sufficient oxygen and substrate supply a nearly equimolar ratio between the formation of biomass and alkane oxidation was observed. About 45% of the carbon source utilized was incorporated into the biomass. Strong oxygen limitation decreased protein formation and carbon incorporation into the biomass with a simultaneous increase in CO2 formation, whereas periodic changes of oxygen supply only caused a decrease in carbon incorporation into the biomass and an increase in CO2 formation. During cultivation in the presence of an inert hydrocarbon (pristane) it was found that carbon limitation and oxygen saturation diminished the formation of total and nitrogen-containing biomass, whereas carbon and oxygen limitation reduced the formation of total biomass.Offprint requests to: P. Riege  相似文献   

3.
4.
The methylotrophic yeast Pichia pastoris is a powerful system for production of recombinant proteins, showing high ability to secrete properly folded proteins. A major plus is the strong AOX1 promoter highly induced by methanol. During growth on methanol, however, oxygen readily becomes limiting. In oxygen-limited cultivations of recombinant Pichia pastoris, the methanol concentration had a strong impact on the production of a single-chain antibody fragment (scFv). High methanol concentrations were required to compensate the lack of oxygen and fully induce recombinant protein production, at the same time reducing gratuitous biomass formation due to a lower biomass yield. Product concentrations of 60, 150, and 350 mg/L were obtained with methanol concentrations of 0.3, 1, and 3% (v/v). Moreover, accumulation of a putative product fragment that cannot be removed during affinity purification was prevented at high methanol concentrations. Cell vitality after 100 h was maintained above 98% and 96% of the culture with 0.3% and 3% methanol, respectively. In cultivations supplemented with oxygen, in contrast, methanol concentration between 0.3% and 3% did not influence the product yield of 300-400 mg/L. Thus, efficient recombinant protein production under oxygen-limitation seems to require high methanol concentrations, enabling product concentration as high as otherwise obtained only with expensive supply of pure oxygen.  相似文献   

5.
In order to investigate the impact of high oxygen and carbon dioxide concentrations, Escherichia coli was grown in batch cultivations where the air supply was enriched with either oxygen or carbon dioxide. The effect of elevated concentrations of oxygen and carbon dioxide on stochiometric and kinetic constants was studied this way. The maximum growth rate was significantly reduced, the production of acetic acid and the biomass yield coefficient on glucose increased in cultures with carbon dioxide enriched air, compared to reference cultivations and cultivations with oxygen enriched air. The application of oxygen enriched air was studied in high cell density cultivations of Escherichia coli. Two production processes were chosen to investigate the impact of oxygen enrichment. Biomass concentration, specific growth rate, yield coefficient, respiration, mixed acid fermentation products and the product yield and quality for the recombinant product were investigated. First, a process for the production of biomass was investigated. Exponential growth could proceed for a longer time and higher growth rates could be maintained with oxygen enriched air supply. However, a higher specific oxygen consumption rate per glucose was measured after the start of the oxygen enrichment, indicating higher maintenance and consequently the growth rate and yield coefficient decreased drastically in the end of the process. Second, a process for the production of recombinant human growth hormone (rhGH) was investigated. Although the glucose feed rate and all medium components were doubled, the amount of produced biomass could only be increased by 77% when oxygen enriched air (40% oxygen) supply was applied. This was due to a decreased yield coefficient of biomass per glucose. The total amount of produced product was decreased by almost 50% compared to the control, although less proteolytically degraded variants were produced.  相似文献   

6.
Baker's-yeast-mediated reductions of ketones hold great potential for the industrial production of enantiopure alcohols. In this article we describe the stoichiometry and kinetics of asymmetric ketone reduction by cell suspensions of bakers' yeast (Saccharomyces cerevisiae). A system for quantitative analysis of 3-oxo ester reduction was developed and allowed construction of full mass and redox balances as well as determination of the influence of different process parameters on aerobic ketone reduction. The nature of the electron donor (ethanol or glucose) and its specific consumption rate by the biomass (0-1 mol.kg dw(-1).h(-1)) affected the overall stoichiometry and rate of the process and the final enantiomeric excess of the product. Excess glucose as the electron donor, i.e. a very high consumption rate of glucose, resulted in a high rate of alcoholic fermentation, oxygen consumption, and biomass formation and therefore causing low efficiency of glucose utilization. Controlled supply of the electron donor at the highest rates applied prevented alcoholic fermentation but still resulted in biomass formation and a high oxygen requirement, while low rates resulted in a more efficient use of the electron donor. Low supply rates of ethanol resulted in biomass decrease while low supply rates of glucose provided the most efficient strategy for electron donor provision and yielded a high enantiomeric excess of ethyl (S)-3-hydroxybutanoate. In contrast to batchwise conversions with excess glucose as the electron donor, this strategy prevented by-product formation and biomass increase, and resulted in a low oxygen requirement.  相似文献   

7.
Twenty-four Hansenula polymorpha transformants were passaged and stabilised in glucose medium and screened in glycerol medium for recombinant phytase in shaken test tubes. The cultivations were performed under either limited or non-limited oxygen supply. Maximum oxygen transfer capacities of test tubes were assessed by sulfite oxidation. Oxygen-limited glucose cultures resulted in a partially anaerobic metabolism and formation of 4.1 g ethanol l(-1), which was subsequently aerobically metabolised. Non-limited oxygen supply led to overflow metabolism and to accumulation of 2.1 g acetic acid l(-1), reducing the biomass yield. The use of glycerol in the screening main cultures prevented by-product formation irrespective of oxygen supply. Preculturing in glucose medium under non-limited oxygen supply resulted in a 20-h lag phase of the screening main culture. This lag phase was not observed when preculturing was performed under oxygen limitation. Phytase activity was on average 25% higher in cultures passaged, stabilised and screened under limited oxygen supply than in cultures under non-limited oxygen supply.  相似文献   

8.
不同供Zn水平下HCO3-对小麦幼苗生长和活性氧代谢的影响   总被引:1,自引:0,他引:1  
采用营养液培养法,研究了不同pH条件下高浓度HCO3- (10 mmol/L) 在缺Zn和正常供Zn时对小麦幼苗生长,尤其是对活性氧自由基代谢的影响.结果表明,在酸性或碱性营养液中,HCO3- 在缺Zn时均显著降低小麦根系生长量,正常供Zn时HCO3-对后者的影响则不明显.缺Zn条件下,HCO3- 在pH为6的营养液中使小麦根系和叶片中活性氧产生速率分别上升9.9%和3.9%,在pH为8的营养液中分别上升10.9%和5.7%;正常供Zn时HCO3-虽使根系和叶片中活性氧产生速率增加,但幅度有所降低.缺Zn时HCO3-大幅度降低小麦根系中POD、CAT、SOD 3种保护酶的活性,而正常供Zn在一定程度上则能缓解HCO3-对小麦根系组织中膜脂的过氧化作用.正常供Zn与缺Zn相比,后者显著增加小麦根系和叶片中的自氧化速率.  相似文献   

9.
The effects of oxygenation in cultures of Bacillus circulans BL32 on transglutaminase (TGase) production and cell sporulation were studied by varying the agitation speed and the volume of aeration. Kinetics of cultivations has been studied in batch systems using a 2 L bioreactor, and the efficiency of agitation and aeration was evaluated through the oxygen volumetric mass transfer coefficient (kLa). It was adopted a two-stage aeration rate control strategy: first stage to induce biomass formation, followed by a second stage, in which cell sporulation was stimulated. A correlation of TGase production, spores formation, and oxygen concentration was established. Under the best conditions (500 rpm; 2 vvm air flow, followed by no air supply during stationary phase; kLa of 33.7 h−1), TGase production reached a volumetric production of 589 U/L after 50 h of cultivation and the enzyme yield was 906 U/g cells. These values are 61% higher than that obtained in shaker cultures and TGase productivity increased 82%, when kLa varied from 4.4 to 33.7 h−1. The maximal cell concentration increased four times in relation to shaker cultures and the cultivation time for the highest TGase activity was reduced from 192 h to just 50 h. These results show the importance of bioprocess design for the production of microbial TGase, especially concerning the oxygen supply of cultures and the induction of cell sporulation.  相似文献   

10.
Lantibiotics, a group of lanthionine-containing peptides, display their antibiotic activity by combining different killing mechanisms within one molecule. The prototype lantibiotic nisin was shown to possess both inhibition of peptidoglycan synthesis and pore formation in bacterial membranes by interacting with lipid II. Gallidermin, which shares the lipid II binding motif with nisin but has a shorter molecular length, differed from nisin in pore formation in several strains of bacteria. To simulate the mode of action, we applied cyclic voltammetry and quartz crystal microbalance to correlate pore formation with lipid II binding kinetics of gallidermin in model membranes. The inability of gallidermin to form pores in DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) (C18/1) and DPoPC (1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine) (C16/1) membranes was related to the membrane thickness. For a better simulation of bacterial membrane characteristics, two different phospholipids with branched fatty acids were incorporated into the DPoPC matrix. Phospholipids with methyl branches in the middle of the fatty acid chains favored a lipid II–independent DPoPC permeabilization by gallidermin, while long-branched phospholipids in which the branch is placed near the hydrophilic region induced an identical lipid II–dependent pore formation of gallidermin and nisin. Obviously, the branched lipids altered lipid packing and reduced the membrane thickness. Therefore, the duality of gallidermin activity (pore formation and inhibition of the cell wall synthesis) seems to be balanced by the bacterial membrane composition.  相似文献   

11.
A scale-up strategy into 200 l pilot-scale for the production of the antibiotic gallidermin by Staphylococcus gallinarum Tü 3928 was developed. Large-scale fermentations were simulated by consecutive liquid cultures of smaller scale. Afterwards, optimised cultivation conditions were transferred to pilot-scale. Best results were achieved by addition of Maltose during the late production phase leading to a final concentration of 330 mg gallidermin per litre. Compared to the concentrations found in a non-pulsed pilot-scale fermentations this is an increase of 20–30%.  相似文献   

12.
The productivity of a cell culture for the production of a secondary metabolite is defined by three factors: specific growth rate, specific product formation rate, and biomass concentration during production. The effect of scaling-up from shake flask to bioreactor on growth and production and the effect of increasing the biomass concentration were investigated for the production of ajmalicine by Catharanthus roseus cell suspensions. Growth of biomass was not affected by the type of culture vessel. Growth, carbohydrate storage, glucose and oxygen consumption, and the carbon dioxide production could be predicted rather well by a structured model with the internal phosphate and the external glucose concentration as the controlling factors. The production of ajmalicine on production medium in a shake flask was not reproduced in a bioreactor. The production could be restored by creating a gas regime in the bioreactor comparable to that in a shake flask. Increasing the biomass concentration both in a shake flask and in a stirred fermenter decreased the ajmalicine production rate. This effect could be removed partly by controlling the oxygen concentration in the more dense culture at 85% air saturation.  相似文献   

13.
Nowadays, chemical production of 1,4-butanediol is supplemented by biotechnological processes using a genetically modified Escherichia coli strain, which is an industrial showcase of successful application of metabolic engineering. However, large scale bioprocess performance can be affected by presence of physical and chemical gradients in bioreactors which are a consequence of imperfect mixing and limited oxygen transfer. Hence, upscaling comes along with local and time dependent fluctuations of cultivation conditions. This study emphasizes on scale-up related effects of microbial 1,4-butanediol production by comprehensive bioprocess characterization in lab scale. Due to metabolic network constraints 1,4-butanediol formation takes place under oxygen limited microaerobic conditions, which can be hardly realized in large scale bioreactor. The purpose of this study was to assess the extent to which substrate and oxygen availability influence the productivity. It was found, that the substrate specific product yield and the production rate are higher under substrate excess than under substrate limitation. Furthermore, the level of oxygen supply within microaerobic conditions revealed strong effects on product and by-product formation. Under strong oxygen deprivation nearly 30% of the consumed carbon is converted into 1,4-butanediol, whereas an increase in oxygen supply results in 1,4-butanediol reduction of 77%. Strikingly, increasing oxygen availability leads to strong increase of main by-product acetate as well as doubled carbon dioxide formation. The study provides clear evidence that scale-up of microaerobic bioprocesses constitute a substantial challenge. Although oxygen is strictly required for product formation, the data give clear evidence that terms of anaerobic and especially aerobic conditions strongly interfere with 1,4-butanediol production.  相似文献   

14.
利用尾气分析仪对发酵过程的尾气中的O2、CO2含量进行实时检测,建立了裂殖弧菌发酵生产DHA过程中的呼吸参数在线检测方法,实现了裂殖壶菌补料分批发酵过程及双阶段供氧控制发酵过程中的呼吸参数在线检测分析。通过呼吸参数在线检测分析,从氧消耗机制方面解释了双阶段氧传递控制工艺能获得较高生物量、油脂和DHA含量的原因,从而为该工艺过程提供了理论指导。根据发酵过程中菌体生长不同时期的呼吸参数的变化情况,建立了基于呼吸商变化的在线补料控制方法,设计了一种基于RQ-Stat的补料工艺。RQ-Stat补料方式最终获得的油脂含量、DHA产量和产率比间歇式补料工艺分别提高了11.58%、12.19%和11.40%。  相似文献   

15.
Lantibiotics such as gallidermin are lanthionine-containing polypeptide antibiotics produced by gram-positive bacteria that might become relevant for the treatment of various infectious diseases. So far, self-toxicity has prevented the isolation of efficient overproducing strains, thus hampering their thorough investigation and preventing their exploitation in fields other than the food area. We wanted to investigate the effect of lantibiotic precursor peptides on the producing strains in order to evaluate novel strategies for the overproduction of these promising peptides. In this study, gallidermin was chosen as a representative example of the type A lantibiotics. A Staphylococcus gallinarum Tü3928 mutant, whose gene for the extracellular pregallidermin protease GdmP was replaced by a kanamycin-resistance gene, was constructed. Mass spectrometry (MS) analysis indicated that this mutant produced fully posttranslationally modified gallidermin precursors with truncated versions of the leader peptide, but not the entire leader as predicted from the gdmA sequence. In filter-on-plate assays, these truncated pregallidermins showed no toxicity against Staphylococcus gallinarum Tü3928 up to a concentration of 8 g/liter (corresponding to approximately 2.35 mM), while gallidermin produced clear inhibitory zones at concentrations as low as 0.25 g/liter (0.12 mM). We showed that the lack of toxicity is due entirely to the presence of the truncated leader, since MS as well as bioassay analysis showed that the peptides resulting from tryptic cleavage of pregallidermins and gallidermin produced by S. gallinarum Tü3928 had identical masses and approximately the same specific activity. This demonstrates that even a shortened leader sequence is sufficient to prevent the toxicity of mature gallidermin. In nonoptimized fermentations, the gdmP mutant produced pregallidermin to a 50%-higher molar titer, suggesting that the absence of self-toxicity has a beneficial effect on gallidermin production and giving a first confirmation of the suitability of the overproduction strategy.  相似文献   

16.
Lantibiotics such as gallidermin are lanthionine-containing polypeptide antibiotics produced by gram-positive bacteria that might become relevant for the treatment of various infectious diseases. So far, self-toxicity has prevented the isolation of efficient overproducing strains, thus hampering their thorough investigation and preventing their exploitation in fields other than the food area. We wanted to investigate the effect of lantibiotic precursor peptides on the producing strains in order to evaluate novel strategies for the overproduction of these promising peptides. In this study, gallidermin was chosen as a representative example of the type A lantibiotics. A Staphylococcus gallinarum Tü3928 mutant, whose gene for the extracellular pregallidermin protease GdmP was replaced by a kanamycin-resistance gene, was constructed. Mass spectrometry (MS) analysis indicated that this mutant produced fully posttranslationally modified gallidermin precursors with truncated versions of the leader peptide, but not the entire leader as predicted from the gdmA sequence. In filter-on-plate assays, these truncated pregallidermins showed no toxicity against Staphylococcus gallinarum Tü3928 up to a concentration of 8 g/liter (corresponding to approximately 2.35 mM), while gallidermin produced clear inhibitory zones at concentrations as low as 0.25 g/liter (0.12 mM). We showed that the lack of toxicity is due entirely to the presence of the truncated leader, since MS as well as bioassay analysis showed that the peptides resulting from tryptic cleavage of pregallidermins and gallidermin produced by S. gallinarum Tü3928 had identical masses and approximately the same specific activity. This demonstrates that even a shortened leader sequence is sufficient to prevent the toxicity of mature gallidermin. In nonoptimized fermentations, the gdmP mutant produced pregallidermin to a 50%-higher molar titer, suggesting that the absence of self-toxicity has a beneficial effect on gallidermin production and giving a first confirmation of the suitability of the overproduction strategy.  相似文献   

17.
基于途径分析的L-异亮氨酸发酵溶氧控制研究   总被引:4,自引:0,他引:4  
利用途径分析方法对黄色短杆菌(Brevibacterium flavum)TC-21 生产L-异亮氨酸的途径进行了分析,确定了黄色短杆菌TC-21生产L-异亮氨酸的最佳途径的通量分布,根据途径分析的结果,TCA循环的代谢流量对L-异亮氨酸产量有明显影响,而TCA循环与发酵过程中的溶氧密切相关,因此可以通过控制溶氧来提高L-异亮氨酸产量。在发酵过程的不同阶段,根据菌体生长和产酸的需求,改变TCA代谢流量,可以有效提高产酸率。实验证明,通过溶氧分阶段控制发酵生产L-异亮氨酸,比溶氧恒定控制方式发酵产率提高了15.77%。实验结果说明,用途径分析的结果指导发酵过程中的溶氧可以大幅度提高L-异亮氨酸的产量。  相似文献   

18.
The effects of oxygen supply within the range 20.8–50% (using pure oxygen and air), on cell cultures of Panax ginseng were investigated in a balloon-type bubble bioreactor (5 L capacity, containing 4 L Murashige and Skoog medium, supplemented with 7.0 mg L−1 indolebutyric acid, 0.5 mg L−1 kinetin and 30 g L−1 sucrose). A 40% oxygen supply was found to be optimal for the production of both cell mass and saponin yielding values of 12.8 g (DW) L−1, 4.5 mg (g DW)−1 on day 25, respectively. Low (20.8%, 30%) and high (50%) oxygen concentration supplies were unfavorable to cell growth and saponin accumulation. The results indicate that oxygen supplementation to bioreactor-based ginseng cultures was beneficial for biomass accumulation and saponin production.  相似文献   

19.
The gas environment is solid-substrate fermentations of rice significantly affected levels of biomass and enzyme formation by a fungal species screened for high amylase production. Constant oxygen and carbon dioxide partial pressures were maintained at various levels in fermentations by Aspergillus oryzae. Control of the gas phase was maintained by a “static” aeration system admitting oxygen on demand and stripping excess carbon dioxide during fermentation. Constant water vapor pressures were also maintained by means of saturated salt solutions. High Oxygen pressures stimulated amylase productivity significantly. On the other hand, amylase production was severely inhibited at high carbon dioxide pressures. While relatively insensitive to oxygen pressure, maximum biomass productivities were obtained at an intermediate carbon dioxide pressure. High oxygen transfer rates were obtained at elevated oxygen pressures, suggesting, in view of the stimulatory effect of oxygen on amylase production, a stringent oxygen requirement for enzyme synthesis. Solid-substrate fermentations were highly advantageous as compared with submerged cultures in similar gas environments. Not only were amylase productivities significantly higher, but the enzyme was highly concentration in the aqueous phase of the semisolid substrate particles and could be extracted in a small volume of liquid. Results of this work suggest that biomass and product formation in microbial processes may be amenable to control by the gas environment. This is believed to offer an interesting potential for optimizing selected industrial fermentation processes with respect to productivity and energy consumption.  相似文献   

20.
供氧对产丙三醇假丝酵母科丙三醇发酵研究   总被引:2,自引:0,他引:2  
研究了产丙三醇假丝酵母(Candida glycerolgenesis)产丙三醇及副产物与氧供给的关系。摇瓶试验发现其它营养条件一定,玉米浆添加量决定酵母量。在0.4%的玉米浆和装液比0.08时产丙醇最高,副产物乙醇、乙酸和乙酸乙酯最小,玉米浆和装液比影响丙三醇和副产物的形成。在5L的反应器中以搅拌转速控制供氧水平,菌体生长阶段比耗氧速率为28mg/(g.h),在发酵阶段比耗氧速率16mg/(g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号