首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G M?rdh  B L Vallee 《Biochemistry》1986,25(23):7279-7282
The class I human liver alcohol dehydrogenases (ADHs) catalyze the interconversion of the intermediary alcohols and aldehydes of dopamine metabolism in vitro, whereas those of the class II and class III do not. The individual, homogeneous class I isozymes oxidize (3,4-dihydroxyphenyl)ethanol and (4-hydroxy-3-methoxyphenyl)ethanol (HMPE) and ethanol with kcat/Km values in the range from 16 to 240 mM-1 min-1 and from 16 to 66 mM-1 min-1, respectively. They reduce the corresponding dopamine aldehydes (3,4-dihydroxyphenyl)acetaldehyde and (4-hydroxy-3-methoxyphenyl)acetaldehyde (HMPAL) with kcat/Km values varying from 7800 to 190,000 mM-1 min-1, considerably more efficient than the reduction of acetaldehyde with kcat/Km values from 780 to 4900 mM-1 min-1. For beta 1 gamma 2 ADH, ethanol competes with HMPE oxidation with a Ki of 23 microM. In addition, 1,10-phenanthroline inhibits HMPE oxidation and HMPAL reduction with Ki values of 20 microM and 12 microM, respectively, both quite similar to that for ethanol, Ki = 22 microM. Thus, both ethanol/acetaldehyde and the dopamine intermediates compete for the same site of ADH, a basis for the ethanol-induced in vivo alterations of dopamine metabolism.  相似文献   

2.
Human liver alcohol dehydrogenase [alcohol:NAD+ oxidoreductase, EC 1.1.1.1 (ADH)] catalyzes the stereospecific oxidation of different 3 beta-hydroxy-5 beta-steroids with ranges of Km from 46 to 320 microM and values of kcat from 7.0 to 72 min-1, pH 8.5. Only the class I isozymes containing gamma-subunits, gamma 1 gamma 1, alpha gamma 1, beta 1 gamma 1, gamma 2 gamma 2, and beta 1 gamma 2, catalyze oxidation of these steroids with kcat/Km ratios 4-10-fold greater than those for ethanol. In marked contrast, class I alpha alpha, alpha beta 1, and beta 1 beta 1, class II, and class III isozymes do not oxidize 3 beta-hydroxy-5 beta-steroids though they readily oxidize ethanol. 1,10-Phenanthroline and 4-methylpyrazole competitively inhibit both alcohol dehydrogenase catalyzed ethanol and 3 beta-hydroxy-5 beta-steroid oxidation demonstrating that the catalysis of both types of substrates occurs at the same active site. The gamma-subunit-catalyzed oxidation of 3 beta-hydroxy-5 beta-steroids is the most specific catalytic function described thus far for any human liver alcohol dehydrogenase isozyme: there is no other isozyme that catalyzes this reaction. Testosterone, an allosteric inhibitor of ethanol oxidation specific for gamma-subunit-containing human liver ADH isozymes [M?rdh, G., Falchuk, K. H., Auld, D. S., & Vallee, B. L. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2836-2840], also noncompetitively inhibits gamma-subunit-catalyzed sterol oxidation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
G M?rdh  D S Auld  B L Vallee 《Biochemistry》1987,26(24):7585-7588
Thyroid hormones are potent, instantaneous, and reversible inhibitors of ethanol oxidation catalyzed by isozymes of class I and II human alcohol dehydrogenase (ADH). None of the thyroid hormones inhibits class III ADH. At pH 7.40 the apparent Ki values vary between 55 and 110 microM for triiodothyronine, 35 and greater than 200 microM for thyroxine, and 10 and 23 microM for triiodothyroacetic acid. The inhibition is of a mixed type toward both NAD+ and ethanol. The binding of the thyroid hormone triiodothyronine to beta 1 gamma 1 ADH is mutually exclusive with 1,10-phenanthroline, 4-methylpyrazole, and testosterone, identifying a binding site(s) for the thyroid hormones, which overlap(s) both the 1,10-phenanthroline site near the active site zinc atom and the testosterone binding site, the latter being a regulatory site on the gamma-subunit-containing isozymes and distinct from their catalytic site. The inhibition by thyroid hormones may have implications for regulation of ADH catalysis of ethanol and alcohols in the intermediary metabolism of dopamine, norepinephrine, and serotonin and in steroid metabolism. In concert with other hormonal regulators, e.g., testosterone, the rate of ADH catalysis is capable of being fine tuned in accord with both substrate and modulator concentrations.  相似文献   

4.
Mammalian alcohol dehydrogenase (ADH) constitutes a complex system with different forms and extensive multiplicity (ADH1–ADH6) that catalyze the oxidation and reduction of a wide variety of alcohols and aldehydes. The ADH1 enzymes, the classical liver forms, are involved in several metabolic pathways beside the oxidation of ethanol, e.g. norepinephrine, dopamine, serotonin and bile acid metabolism. This class is also able to further oxidize aldehydes into the corresponding carboxylic acids, i.e. dismutation. ADH2, can be divided into two subgroups, one group consisting of the human enzyme together with a rabbit form and another consisting of the rodent forms. The rodent enzymes almost lack ethanol-oxidizing capacity in contrast to the human form, indicating that rodents are poor model systems for human ethanol metabolism. ADH3 (identical to glutathione-dependent formaldehyde dehydrogenase) is clearly the ancestral ADH form and S-hydroxymethylglutathione is the main physiological substrate, but the enzyme can still oxidize ethanol at high concentrations. ADH4 is solely extrahepatically expressed and is probably involved in first pass metabolism of ethanol beside its role in retinol metabolism. The higher classes, ADH5 and ADH6, have been poorly investigated and their substrate repertoire is unknown. The entire ADH system can be seen as a general detoxifying system for alcohols and aldehydes without generating toxic radicals in contrast to the cytochrome P450 system.  相似文献   

5.
Starch gel electrophoresis of homogenates from human stomach mucosa resolves three alcohol dehydrogenase (ADH) forms: the anodic chi-ADH (class III), the cathodic gamma-ADH (class I), and a new form of slow cathodic mobility that has not been previously characterized. In this work, we describe the purification in three chromatographic steps and the physical and kinetic characterization of this new human alcohol dehydrogenase, which we have named sigma-ADH. The enzyme exhibits the general physicochemical features (Mr, zinc content, subunit Mr, cofactor preference) of all mammalian alcohol dehydrogenases. The kinetic studies show a high Km value (41 mM) and a high kcat value (280 min-1) for ethanol at pH 7.5. The Km decreases as the alcohol increases its chain length. The aldehydes are better substrates than the corresponding alcohols, with m-nitrobenzaldehyde being the best substrate examined. sigma-ADH is strongly inhibited by 4-methylpyrazole, but with a Ki (10 microM) still higher than that for a class I isoenzyme. These properties suggest that sigma-ADH is a class II isoenzyme, different from pi-ADH and similar to that previously described by us in rat stomach. At the high ethanol concentrations in stomach after drinking, sigma-ADH is probably the ADH form with the largest contribution to human gastric ethanol metabolism.  相似文献   

6.
Methods were established for the determination of serotonin (5-HT)(1) metabolites 5-hydroxyindole-3-acetic acid (5-HIAA) and 5-hydroxytryptophol (5-HTOL) in the urine of Syrian golden hamsters (Mesocricetus auratus) and used to study the effect of volitional ethanol consumption on overall 5-HT metabolism in this ethanol-preferring rodent. The basal levels of 5-HIAA and 5-HTOL in 24-h urine of ethanol-naive hamsters were 300 +/- 101 and 4.96 +/- 1. 06 nmol (n = 8), respectively. Given free choice between water and a 15% ethanol solution, these hamsters chose to consume increasing amounts of ethanol. The increase was accompanied by a concomitant decrease in urine 5-HIAA and increase in urine 5-HTOL, indicating that volitional ethanol intake diverted part of the 5-HT metabolic flux from an oxidative into a reductive pathway. In a separate experiment, the amounts of ethanol consumed by and blood ethanol concentrations attained in ethanol-drinking golden hamsters were determined at 5 different time intervals between 6 PM and 7 AM when most feeding activities occurred. Except in the first hour after lights were turned off, ethanol was consumed at a relatively even pace throughout the night (2-3 g/kg/3 h) and blood ethanol levels were maintained at the low mM range which rarely exceeded 2 mM. These results suggest that the biochemical pathway that catalyzes 5-HT metabolism is extremely sensitive to ethanol and can play an important role in mediating the reported clinically beneficial action of a low concentration of ethanol during alcohol detoxification.  相似文献   

7.
Alcohol metabolism in vivo cannot be explained solely by the action of the classical alcohol dehydrogenase, Class I ADH (ADH1). Over the past three decades, attempts to identify the metabolizing enzymes responsible for the ADH1-independent pathway have focused on the microsomal ethanol oxidizing system (MEOS) and catalase, but have failed to clarify their roles in systemic alcohol metabolism. In this study, we used Adh3-null mutant mice to demonstrate that Class III ADH (ADH3), a ubiquitous enzyme of ancient origin, contributes to alcohol metabolism in vivo dose-dependently resulting in a diminution of acute alcohol intoxication. Although the ethanol oxidation activity of ADH3 in vitro is low due to its very high Km, it was found to exhibit a markedly enhanced catalytic efficiency (kcat/Km) toward ethanol when the solution hydrophobicity of the reaction medium was increased with a hydrophobic substance. Confocal laser scanning microscopy with Nile red as a hydrophobic probe revealed a cytoplasmic solution of mouse liver cells to be much more hydrophobic than the buffer solution used for in vitro experiments. So, the in vivo contribution of high-Km ADH3 to alcohol metabolism is likely to involve activation in a hydrophobic solution. Thus, the present study demonstrated that ADH3 plays an important role in systemic ethanol metabolism at higher levels of blood ethanol through activation by cytoplasmic solution hydrophobicity.  相似文献   

8.
Human liver alcohol dehydrogenase (ADH) catalyzes the oxidation of 3,3-dimethylallyl alcohol, the intermediary alcohol of the shunt pathway of mevalonate metabolism. ADH isozymes differ in their activities toward this alcohol in the order gamma 1 gamma 1 greater than gamma 2 gamma 2 approximately alfa alfa greater pi pi approximately beta 2 beta 2 approximately beta 1 beta 1 much greater than chi chi; kcat/Km values are 1.4 x 10(8), 1.9 x 10(7), 1.4 x 10(7), 5.6 x 10(6), 3.6 x 10(6), 1.6 x 10(6) and 2.5 x 10(3) M-1 min-1, respectively. The intermediary alcohols geraniol and farnesol of the proposed branch pathways of mevalonate metabolism are also oxidized by these isozymes with similar relative efficiencies. The genetic determinants of ADH isozymes may contribute to the observed differences in serum cholesterol levels among and within various populations.  相似文献   

9.
Occurrence and Distribution of 5-Hydroxytryptophol in the Rat   总被引:2,自引:1,他引:1  
Abstract: The distribution of the serotonin metabolites 5-hydroxytryptophol (5-HTOL) and 5-hydroxyindoleacetic acid (5-HIAA) was determined in the rat by a sensitive and specific gas chromatography-mass spectrometric assay. 5-HTOL occurred in all tissues assayed, with highest concentrations in small intestine (mean ± S.E.M. = 193 ± 13 mg/g), lung (78.8 ± 13.2 mg/g), and liver (64.1 ± 4.9 mg/g). Brain 5-HTOL concentrations (9.80 ± 0.36 mg/g) were only 1% of brain 5-HIAA levels. Conjugated 5-HTOL accounted for a significant fraction of the total 5-HTOL concentrations in all tissues and varied from 20% in heart to 70% in kidney. In plasma and urine, 5-HTOL occurred almost completely in conjugated form. Except for liver, 5-HIAA concentrations were substantially greater than 5-HTOL in all tissues, plasma, and urine. Highest 5-HIAA concentrations occurred in brain (787 ± 28 mg/g), lung (744 ± 52 mg/g), and small intestine (424 ± 35 mg/g). 5-HTOL concentrations in plasma and urine were about 25% of the respective 5-HIAA levels. It is concluded that significant biotransformation of serotonin to 5-HTOL in the rat occurs in the intestine, liver, and lung while in brain formation of 5-HTOL represents a minor pathway of serotonin metabolism.  相似文献   

10.
The effect of phorbol myristate acetate (PMA) on pulmonary removal of [14C]serotonin (5-[14C]HT) and metabolism of [3H]benzoyl-phenylalanyl-alanyl-proline (BPAP), a synthetic substrate for angiotensin-converting enzyme (ACE), was evaluated in isolated rabbit lungs perfused in situ with Krebs-albumin. Metabolic functions were assessed before, during, and after perfusion with 80 nM PMA (n = 11), or PMA plus 133 microM papaverine (n = 10) or PMA diluent (dimethyl sulfoxide, n = 11). Organ kinetic parameters (apparent Vmax, Km) were calculated by use of indicator-dilution techniques and by a mathematical model of whole-organ metabolism. PMA treatment resulted in a significant decline in Vmax for BPAP metabolism (from 52 +/- 4 to 30 +/- 4 nmol/s) and 5-HT removal (from 2.1 +/- 0.2 to 1.1 +/- 0.1 nmol/s). Km for BPAP was not significantly altered, whereas Km for 5-HT removal was higher after treatment (before treatment, 1.1 +/- 0.1 microM; after treatment, 2.3 +/- 0.6 microM). Coperfusion with papaverine, which attenuated the pressor response to PMA, abolished PMA-induced changes in Vmax for BPAP metabolism and in Km for 5-HT removal but left PMA-induced changes in Vmax for 5-HT removal intact. We conclude that PMA alters endothelial metabolic function by both hemodynamic and biochemical mechanisms that are independent of circulating blood cells. Pulmonary capacity for BPAP metabolism may largely reflect perfused surface area, and capacity for 5-HT removal may be more sensitive to frank endothelial cell dysfunction in this model.  相似文献   

11.
A pentosan polysulphate [a fully sulphated (1-4)-beta-D-xylopyranose with a single laterally positioned 4-O-methyl-alpha-D-glucuronic acid] has been shown to inhibit the anticoagulant activity of high-affinity heparin as observed in plasma and when using purified enzyme and inhibitor. The activity was shown to be concentration-dependent with an apparent Ki of approx. 2 microM. The antiheparin property was not shown by a number of other anionic carbohydrates when tested. The rate of thrombin inhibition at 0.33 microM-heparin was reduced from 7.1 X 10(8) M-1 X min-1 in the absence of pentosan polysulphate to 2.3 X 10(8) M-1 X min-1 at 2 microM-pentosan polysulphate and to 0.3 X 10(8)M-1 X min-1 at 20 microM. Using the random bireactant model of heparin action [Griffiths (1982) J. Biol. Chem. 257, 13899-13902] it was observed that the pentosan polysulphate had no effect on the Km for antithrombin III (150 nM) but increased the Km for thrombin from 25 nM to 450 nM. A reduction in the inhibition rate by 17.3-fold predicted by substitution of these values into the general two-substrate reaction-rate equation was confirmed experimentally.  相似文献   

12.
Class I isoenzymes of alcohol dehydrogenase (ADH) were isolated by chromatography of human liver homogenates on DEAE-cellulose, 4-[3-[N-(6-aminocaproyl)-amino]propyl]pyrazole--Sepharose and CM-cellulose. Eight isoenzymes of different subunit composition (alpha gamma 2, gamma 2 gamma 2, alpha gamma 1, alpha beta 1, beta 1 gamma 2, gamma 1 gamma 1, beta 1 gamma 1, and beta 1 beta 1) were purified, and their activities were measured at pH 10.0 by using ethanol, ethylene glycol, methanol, benzyl alcohol, octanol, cyclohexanol, and 16-hydroxyhexadecanoic acid as substrates. Values of Km and kcat for all the isoenzymes, except beta 1 beta 1-ADH, were similar for the oxidation of ethanol but varied markedly for other alcohols. The kcat values for beta 1 beta 1-ADH were invariant (approximately 10 min-1) and much lower (5-15-fold) than those for any other class I isoenzyme studied. Km values for methanol and ethylene glycol were from 5- to 100-fold greater than those for ethanol, depending on the isoenzyme, while those for benzyl alcohol, octanol, and 16-hydroxyhexadecanoic acid were usually 100-1000-fold lower than those for ethanol. The homodimer beta 1 beta 1 had the lowest kcat/Km value for all alcohols studied except methanol and ethylene glycol; kcat values were relatively constant for all isoenzymes acting on all alcohols, and, hence, specificity was manifested principally in the value of Km. Values of Km and kcat/Km revealed for all enzymes examined that the short chain alcohols are the poorest while alcohols with bulky substituents are much better substrates. The experimental values of the kinetic parameters for heterodimers deviate from the calculated average of those of their parent homodimers and, hence, cannot be predicted from the behavior of the latter. Thus, the specificities of both the hetero- and homodimeric isoenzymes of ADH toward a given substrate are characteristics of each. Ethanol proved to be one of the "poorest" substrates examined for all class I isoenzymes which are the predominant forms of the human enzyme. On the basis of kinetic criteria, none of the isoenzymes of class I studied oxidized ethanol in a manner that would indicate an enzymatic preference for that alcohol.  相似文献   

13.
Two extracellular feruloyl esterases (FAE-I and FAE-II) produced by the anaerobic fungus Neocallimastix strain MC-2 which cleave ferulic acid from O-(5-O-[(E)-feruloyl]-alpha-L- arabinofuranosyl)-(1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose (FAXX) were purified. The molecular masses of FAE-I and FAE-II were 69 and 24 kDa, respectively, under both denaturing and nondenaturing conditions. Apparent Km and maximum rate of hydrolysis with FAXX were 31.9 microM and 2.9 mumol min-1 mg-1 for FAE-I and 9.6 microM and 11.4 mumol min-1 mg-1 for FAE-II. FAE-II was specific for FAXX, but FAE-I hydrolyzed FAXX and PAXX, the equivalent p-coumaroyl ester, at a maximum rate of metabolism ratio of 3:1.  相似文献   

14.
Cytochromes P450 of the 4A family metabolize a variety of fatty acids, prostaglandins, and eicosanoids mainly at the terminal carbon (omega-hydroxylation) and, to a lesser extent, at the penultimate carbon [(omega-1)-hydroxylation]. In the present study, cytochrome P4504A5 (4A5) has been successfully expressed in Escherichia coli, with an average yield of enzyme of approximately 80 nmol/liter of cells. Spectroscopic characterization of the purified enzyme, using electron paramagnetic resonance and absolute and substrate-perturbed optical difference spectroscopy, showed that the heme of resting 4A5 is primarily low spin, but is converted primarily to high spin by substrate binding. The kcat and Km values for laurate omega-hydroxylation were 41 min-1 and 8.5 microM, respectively, in the absence of cytochrome b5, and 138 min-1 and 38 microM, respectively, in the presence of cytochrome b5. Hydroxylation of palmitate was dependent on the presence of cytochrome b5; kcat and Km values were 48 min-1 and 122 microM, respectively. Hydroxylation of arachidonic acid was barely detectable and was unchanged by the addition of cytochrome b5.  相似文献   

15.
Homogeneous class II alcohol dehydrogenase (pi-ADH) has been isolated from human liver homogenates by chromatography on DE-52 cellulose, 4-[3-[N-(6-amino-caproyl)amino]propyl]pyrazole-Sepharose, SP-Sephadex C-50, and agarose-hexane-AMP, yielding an enzyme that has a significantly higher specific activity and is markedly more stable than that isolated by an earlier procedure. pi-ADH is composed of two identical 40 000-dalton subunits, contains 4 mol of zinc/dimer, and is readily inhibited by metal-chelating agents. The purified enzyme binds two molecules of coenzyme per dimer, exhibits an absorption maximum at 280 nm, epsilon 280 = 57 000, and exhibits an isoelectric point of 8.6. The class II isozyme catalyzes the oxidation of a variety of alcohols with Km values ranging from 7 microM to 560 mM and with kcat values from 32 min-1 to 600 min-1 and demonstrates a preference for hydrophobic substrates. The kcat/Km ratio for ethanol oxidation exhibits a pH maximum at 10.4.  相似文献   

16.
Two extracellular feruloyl esterases (FAE-I and FAE-II) produced by the anaerobic fungus Neocallimastix strain MC-2 which cleave ferulic acid from O-(5-O-[(E)-feruloyl]-alpha-L- arabinofuranosyl)-(1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose (FAXX) were purified. The molecular masses of FAE-I and FAE-II were 69 and 24 kDa, respectively, under both denaturing and nondenaturing conditions. Apparent Km and maximum rate of hydrolysis with FAXX were 31.9 microM and 2.9 mumol min-1 mg-1 for FAE-I and 9.6 microM and 11.4 mumol min-1 mg-1 for FAE-II. FAE-II was specific for FAXX, but FAE-I hydrolyzed FAXX and PAXX, the equivalent p-coumaroyl ester, at a maximum rate of metabolism ratio of 3:1.  相似文献   

17.
The apparent deuterium isotope effects on Vmax/Km (D(V/K] of ethanol oxidation in two deermouse strains (one having and one lacking hepatic alcohol dehydrogenase (ADH] were used to calculate flux through the ADH, microsomal ethanol-oxidizing system (MEOS), and catalase pathways. In vitro, D(V/K) values were 3.22 for ADH, 1.13 for MEOS, and 1.83 for catalase under physiological conditions of pH, temperature, and ionic strength. In vivo, in deermice lacking ADH (ADH-), D(V/K) was 1.20 +/- 0.09 (mean +/- S.E.) at 7.0 +/- 0.5 mM blood ethanol and 1.08 +/- 0.10 at 57.8 +/- 10.2 mM blood ethanol, consistent with ethanol oxidation principally by MEOS. Pretreatment of ADH- animals with the catalase inhibitor 3-amino-1,2,4-triazole did not significantly change D(V/K). ADH+ deermice exhibited D(V/K) values of 1.87 +/- 0.06 (untreated), 1.71 +/- 0.13 (pretreated with 3-amino-1,2,4-triazole), and 1.24 +/- 0.13 (after the ADH inhibitor, 4-methylpyrazole) at 5-7 mM blood ethanol levels. At elevated blood ethanol concentrations (58.1 +/- 2.4 mM), a D(V/K) of 1.37 +/- 0.21 was measured in the ADH+ strain. For measured D(V/K) values to accurately reflect pathway contributions, initial reaction conditions are essential. These were shown to exist by the following criteria: negligible fractional conversion of substrate to product and no measurable back reaction in deermice having a reversible enzyme (ADH). Thus, calculations from D(V/K) indicate that, even when ADH is present, non-ADH pathways (mostly MEOS) participate significantly in ethanol metabolism at all concentrations tested and play a major role at high levels.  相似文献   

18.
1. Transglutaminase (EC 2.3.2.13) was purified from rat liver. 2. The enzyme was stable at 25 degrees C in the pH range of 6.0-9.0, with the optimum at pH 9.0. 3. The enzyme was inactivated after incubation for 20, 4 and 1 min at 44 degrees C, 52 degrees C, and 60 degrees C, respectively. 4. Activation energies were 30.4 kcal/mol for denaturation and 19.9 kcal/mol for substrate conversion to products. 5. The enzyme was inactivated by sulfhydryl modification with hydroxymercuribenzoate (99.1%) and N-ethylmalemide (78.5%). 6. Calcium, required for the activity, was replaced to a lesser extent, by Mg2+, Sr2+, Zn2+ and Mn2+ (31.8, 27.0, 24.6 and 3.5%). 7. Steady-state kinetics showed: Vmax = 10 microM-min-1, Km = 0.05 mM (N-dimethylated casein), kcat = 31.9 min-1 kcat/Km = 560 min-1 mM-1.  相似文献   

19.
D E Ehmann  A M Gehring  C T Walsh 《Biochemistry》1999,38(19):6171-6177
A key step in fungal biosynthesis of lysine, enzymatic reduction of alpha-aminoadipate at C6 to the semialdehyde, requires two gene products in Saccharomyces cerevisiae, Lys2 and Lys5. Here, we show that the 31-kDa Lys5 is a specific posttranslational modification catalyst, using coenzyme A (CoASH) as a cosubstrate to phosphopantetheinylate Ser880 of the 155-kDa Lys2 and activate it for catalysis. Lys2 was subcloned from S. cerevisiae and expressed in and purified from Escherichia coli as a full-length 155-kDa enzyme, as a 105-kDa adenylation/peptidyl carrier protein (A/PCP) fragment (residues 1-924), and as a 14-kDa PCP fragment (residues 809-924). The apo-PCP fragment was covalently modified to phosphopantetheinylated holo-PCP by pure Lys5 and CoASH with a Km of 1 microM and kcat of 3 min-1 for both the PCP and CoASH substrates. The adenylation domain of the A/PCP fragment activated S-carboxymethyl-L-cysteine (kcat/Km = 840 mM-1 min-1) at 16% the efficiency of L-alpha-aminoadipate in [32P]PPi/ATP exchange assays. The holo form of the A/PCP 105-kDa fragment of Lys2 covalently aminoacylated itself with [35S]S-carboxymethyl-L-cysteine. Addition of NADPH discharged the covalent acyl-S-PCP Lys2, consistent with a reductive cleavage of the acyl-S-enzyme intermediate. These results identify the Lys5/Lys2 pair as a two-component system in which Lys5 covalently primes Lys2, allowing alpha-aminoadipate reductase activity by holo-Lys2 with catalytic cycles of autoaminoacylation and reductive cleavage. This is a novel mechanism for a fungal enzyme essential for amino acid metabolism.  相似文献   

20.
4-Hydroxyalkenals, natural cytotoxic products of lipid peroxidation, are substrates for human alcohol dehydrogenases (ADH). Class I and II ADHs reduce aliphatic 4-hydroxyalkenals with chain lengths of from 5 to 15 carbons at pH 7 with kcat and Km values comparable to simple aliphatic aldehydes of the same chain length. Class II is particularly effective in the reduction with kcat values as high as 3300 min-1 for 4-hydroxyundecenal. Class III ADH is essentially inactive toward all of these substrates. The class I and II isozymes also catalyze the oxidation of the 4-hydroxy group at pH 10. However, during the reaction, an NAD(+)-dependent irreversible partial inactivation of the alpha beta 1 isozyme is observed which is attributed, with the aid of computer graphics modeling, to selective modification of the alpha subunit. Both ethanol and 1,10-phenanthroline, known to compete with conventional substrates, instantaneously, reversibly, and competitively inhibit 4-hydroxyalkenal reduction and oxidation, indicating that 4-hydroxyalkenals bind at the same site as do conventional substates. The fact that the class II enzyme pi pi-ADH so far is found only in the liver and that the 4-hydroxyalkenals are the best substrates known for this isozyme suggest that it may play a significant role in cellular defenses in the conversion of the cytotoxic aldehydes to the less reactive alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号