首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of steroid hydroxylation in rat liver microsomes has been investigated by employing NaIO4, NaClO2, and various organic hydroperoxides as hydroxylating agents and comparing the reaction rates and steroid products formed with those of the NADPH-dependent reaction. Androstenedione, testosterone, progesterone, and 17beta-estradiol were found to act as good substrates. NaIO4 was by far the most effective hydroxylating agent followed by cumene hydroperoxide, NADPH, NaClO2, pregnenolone 17alpha-hydroperoxide, tert-butyl hydroperoxide, and linoleic acid hydroperoxide. Androstenedione was chosen as the model substrate for inducer and inhibitor studies. The steroid was converted to its respective 6beta-, 7alpha, 15-, and 16alpha-hydroxy derivatives when incubated with microsomal fractions fortified with hydroxylating agent. Evidence for cytochrome P-450 involvement in androstenedione hydroxylation included a marked inhibition by substrates and modifiers of cytochrome P-450 and by reagents which convert cytochrome P-450 to cytochrome P-420. The ratios of the steroid products varied according to the type of hydroxylating agent used and were also modified by in vivo phenobarbital pretreatment. It was suggested that multiple forms of cytochrome P-450 exhibiting different affinities for hydroxylating agent are responsible for these different ratios. Horse-radish peroxidase, catalase, and metmyoglobin could not catalyze androstenedione hydroxylation. Addition of NaIO4, NaClO2, cumene hydroperoxide and other organic hydroperoxides to microsomal suspensions resulted in the appearance of a transient spectral change in the difference spectrum characterized by a peak at about 440 nm and a trough at 420 nm. The efficiency of these oxidizing agents in promoting steroid hydroxylation in microsomes appeared to be related to their effectiveness in eliciting the spectral complex. Electron donors, substrates, and modifiers of cytochrome P-450 greatly diminished the magnitude of the spectral change. It is proposed that NaIO4, NaClO2, and organic hydroperoxides promote steroid hydroxylation by forming a transient ferryl ion (compound I) of cytochrome P-450 which may be the common intermediate hydroxylating species involved in hydroxylations catalyzed by cytochrome P-450.  相似文献   

2.
Cytochrome P-450-dependent steroid hormone metabolism was studied in isolated human liver microsomal fractions. 6 beta hydroxylation was shown to be the major route of NADPH-dependent oxidative metabolism (greater than or equal to 75% of total hydroxylated metabolites) with each of three steroid substrates, testosterone, androstenedione, and progesterone. With testosterone, 2 beta and 15 beta hydroxylation also occurred, proceeding at approximately 10% and 3-4% the rate of microsomal 6 beta hydroxylation, respectively, in each of the liver samples examined. Rates for the three steroid 6 beta-hydroxylase activities were highly correlated with each other (r = 0.95-0.97 for 25 individual microsomal preparations), suggesting that a single human liver P-450 enzyme is the principal microsomal 6 beta-hydroxylase catalyst with all three steroid substrates. Steroid 6 beta-hydroxylase rates correlated well with the specific content of human P-450NF (r = 0.69-0.83) and with its associated nifedipine oxidase activity (r = 0.80), but not with the rates for debrisoquine 4-hydroxylase, phenacetin O-deethylase, or S-mephenytoin 4-hydroxylase activities or the specific contents of their respective associated P-450 forms in these same liver microsomes (r less than 0.2). These correlative observations were supported by the selective inhibition of human liver microsomal 6 beta hydroxylation by antibody raised to either human P-450NF or a rat homolog, P-450 PB-2a. Anti-P-450NF also inhibited human microsomal testosterone 2 beta and 15 beta hydroxylation in parallel to the 6 beta-hydroxylation reaction. This antibody also inhibited rat P-450 2a-dependent steroid hormone 6 beta hydroxylation in uninduced adult male rat liver microsomes but not the steroid 2 alpha, 16 alpha, or 7 alpha hydroxylation reactions catalyzed by other rat P-450 forms. Finally, steroid 6 beta hydroxylation catalyzed by either human or rat liver microsomes was selectively inhibited by NADPH-dependent complexation of the macrolide antibiotic triacetyloleandomycin, a reaction that is characteristic of members of the P-450NF gene subfamily (P-450 IIIA subfamily). These observations establish that P-450NF or a closely related enzyme is the major catalyst of steroid hormone 6 beta hydroxylation in human liver microsomes, and furthermore suggest that steroid 6 beta hydroxylation may provide a useful, noninvasive monitor for the monooxygenase activity of this hepatic P-450 form.  相似文献   

3.
The pathways of testosterone oxidation catalyzed by purified and membrane-bound forms of rat liver microsomal cytochrome P-450 were examined with an HPLC system capable of resolving 14 potential hydroxylated metabolites of testosterone and androstenedione. Seven pathways of testosterone oxidation, namely the 2 alpha-, 2 beta-, 6 beta-, 15 beta-, 16 alpha-, and 18-hydroxylation of testosterone and 17-oxidation to androstenedione, were sexually differentiated in mature rats (male/female = 7-200 fold) but not in immature rats. Developmental changes in two cytochrome P-450 isozymes largely accounted for this sexual differentiation. The selective expression of cytochrome P-450h in mature male rats largely accounted for the male-specific, postpubertal increase in the rate of testosterone 2 alpha-, 16 alpha, and 17-oxidation, whereas the selective repression of cytochrome P-450p in female rats accounted for the female-specific, postpubertal decline in testosterone 2 beta-, 6 beta-, 15 beta-, and 18-hydroxylase activity. A variety of cytochrome P-450p inducers, when administered to mature female rats, markedly increased (up to 130-fold) the rate of testosterone 2 beta-, 6 beta-, 15 beta-, and 18-hydroxylation. These four pathways of testosterone hydroxylation were catalyzed by partially purified cytochrome P-450p, and were selectively stimulated when liver microsomes from troleandomycin- or erythromycin estolate-induced rats were treated with potassium ferricyanide, which dissociates the complex between cytochrome P-450p and these macrolide antibiotics. Just as the testosterone 2 beta-, 6 beta-, 15 beta-, and 18-hydroxylase activity reflected the levels of cytochrome P-450p in rat liver microsomes, so testosterone 7 alpha-hydroxylase activity reflected the levels of cytochrome P-450a; 16 beta-hydroxylase activity the levels of cytochrome P-450b; and 2 alpha-hydroxylase activity the levels of cytochrome P-450h. It is concluded that the regio- and stereoselective hydroxylation of testosterone provides a functional basis to study simultaneously the regulation of several distinct isozymes of rat liver microsomal cytochrome P-450.  相似文献   

4.
Androgen hydroxylation catalysed by Chinese hamster fibroblast SD1 cells, which stably express cytochrome P-450 form PB-4, the rat P450IIB1 gene product, was assessed and compared to that catalysed by purified cytochrome P-450 PB-4 isolated from rat liver. SD1 cell homogenates catalysed the NADPH-dependent hydroxylation of androstenedione and testosterone with a regioselectivity very similar to that purified by P-450 PB-4 (16 beta-hydroxylation/16 alpha-hydroxylation = 6.0-6.8 for androstenedione; 16 beta/16 alpha = 0.9 for testosterone). Homogenates prepared from the parental cell line V79, which does not express detectable levels of P-450 PB-4 or any other cytochrome P-450, exhibited no androgen 16 beta- or 16 alpha-hydroxylase activity. The hydroxylase activities catalysed by the SD1 cell homogenate were selectively and quantitatively inhibited (greater than 90%) by a monoclonal antibody to P-450 PB-4 at a level of antibody (40 pmol of antibody binding sites/mg of SD1 homogenate) that closely corresponds to the P-450 PB-4 content of the cells (48 pmol of PB-4/mg of SD1 homogenate). Fractionation of cell homogenates into cytosol and microsomes revealed that the P-450 PB-4-mediated activities are associated with the membrane fraction. Although the P-450 PB-4-specific content of the SD1 microsomes was 15% of that present in phenobarbital-induced rat liver microsomes, the P-450 PB-4-dependent androstenedione 16 beta-hydroxylase activity of the SD1 membrane fraction was only 2-3% of that present in the liver microsomes. This activity could be stimulated several-fold, however, by supplementation of SD1 microsomes with purified rat NADPH P-450 reductase. These studies establish that a single P-450 gene product (IIB1) can account for the hydroxylation of androgen substrates at multiple sites, and suggest that SD1 cells can be used to assess the catalytic specificity of P-450 PB-4 with other substrates as well.  相似文献   

5.
The catalytic properties of the testis microsomal P-450, termed P-450sccII, have been studied in a refined assay system which consists of P-450sccII (13 nmol of P-450 heme/mg of protein) and its reductase has been purified extensively from pig testis. The results indicated that P-450sccII was highly active in catalyzing hydroxylation of 11 beta-hydroxyprogesterone at the 17 alpha-position to give 21-deoxycortisol and cleavage of 17 alpha-hydroxyprogesterone at the 17-20 bond to give androstenedione with turnover numbers of 25 and 30 mol/min X mol of P-450, respectively. In contrast, many physiologically important corticosteroids we tested were found to be poor substrates for both the hydroxylase and lyase reactions. The possible reason for the importance of these substrate specificity of P-450sccII in production of both corticosteroids and androgens in the endocrine tissues is discussed. P-450sccII also catalyzed conversion of testosterone to androstenedione, but 18O experiments failed to show incorporation of atmospheric oxygen into the androstenedione formed. However, this does not preclude the possibility that the P-450-bound intermediate gem-diol stereoselectively dehydrates to give the nonlabeled ketosteroid. In addition to these steroid-oxidizing activities, P-450sccII revealed considerable specificities toward various xenobiotics, suggesting that P-450sccII and liver microsomal P-450 are basically similar as regards enzymatic functions and activities.  相似文献   

6.
Rat hepatic cytochrome P-450 form 3 (testosterone 7 alpha-hydroxylase; P-450 gene IIA1) and P-450 form RLM2 (testosterone 15 alpha-hydroxylase; P-450 gene IIA2) are 88% identical in primary structure, yet they hydroxylate testosterone with distinct and apparently unrelated regioselectivities. In this study, androstenedione and progesterone were used to assess the regioselectivity and stereospecificity of these two P-450 enzymes towards other steroid substrates. Although P-450 RLM2 exhibited low 7 alpha-hydroxylase activity with testosterone or progesterone as substrate (turnover number less than or equal to 1-2 nmol of metabolite/min per nmol of P-450), it did catalyse androstenedione 7 alpha-hydroxylation at a high rate (21 min-1) which exceeded that of P-450 3 (7 min-1). However, whereas P-450 3 exhibited a high specificity for hydroxylation of these steroids at the 7 alpha position (95-97% of total activity), P-450 RLM2 actively metabolized these compounds at four or more major sites including the nearby C-15 position, which dominated in the case of testosterone and progesterone. The observation that androstenedione is actively 7 alpha-hydroxylated by purified P-450 RLM2 suggested that this P-450 enzyme might make significant contributions to microsomal androstenedione 7 alpha-hydroxylation, an activity that was previously reported to be associated with immunoreactive P-450 3. Antibody inhibition experiments were therefore carried out in liver microsomes using polyclonal anti-(P-450 3) antibodies which cross-react with P-450 RLM2, and using a monoclonal antibody that is reactive with and inhibitory towards P-450 3 but not P-450 RLM2. P-450 3 was thus shown to catalyse only around 35% of the total androstenedione 7 alpha-hydroxylase activity in uninduced adult male rat liver microsomes, with the balance attributed to P-450 RLM2. The P-450-3-dependent 7 alpha-hydroxylase activity was increased to approximately 65% of the total in phenobarbital-induced adult male microsomes, and to greater than 90% of the total in untreated adult female rat liver microsomes. These observations are consistent with the inducibility of P-450 3 by phenobarbital and with the absence of P-450 RLM2 from adult female rat liver respectively. These findings establish that P-450 RLM2 and P-450 3 can both contribute significantly to microsomal androstenedione 7 alpha-hydroxylation, thus demonstrating that the 7 alpha-hydroxylation of this androgen does not serve as a specific catalytic monitor for microsomal P-450 3.  相似文献   

7.
The hydroxylation of prostaglandin (PG) E1, PGE2, and PGA1 was investigated in a reconstituted rabbit liver microsomal enzyme system containing phenobarbital-inducible isozyme 2 or 5,6-benzoflavone-inducible isoenzyme 4 of P-450, NADPH-cytochrome P-450 reductase, phosphatidylcholine, and NADPH. Significant metabolism of prostaglandins by isozyme 2 occurred only in the presence of cytochrome b5. Under these conditions, PGE1 hydroxylation was linear with time (up to 45 min) and protein concentration, and maximal rates were obtained with a 1:1:2 molar ratio of reductase: cytochrome b5:P-450LM2. Moreover, P-450LM2 catalyzed the conversion of PGE1, PGE2, and PGA1 to the respective 19- and 20-hydroxy metabolites in a ratio of about 5:1, and displayed comparable activities toward the three prostaglandins based on the total products formed in 60 min. Apocytochrome b5 or ferriheme could not substitute for intact cytochrome b5, while reconstitution of apocytochrome b5 with ferriheme led to activities similar to those obtained with the native cytochrome. Isozyme 4 of P-450 differed markedly from isozyme 2 in that it catalyzed prostaglandin hydroxylation at substantial rates in the absence of cytochrome b5, was regiospecific for position 19 of all three prostaglandins, and had an order of activity of PGA1 greater than PGE1 greater than PGE2. P-450LM4 preparations from untreated and induced animals had similar activities with PGE1 and PGE2, respectively. Addition of cytochrome b5 resulted in a 20 to 30% increase in the rate of PGE1 hydroxylation and an appreciably greater enhancement in the extent of all the P-450LM4-catalyzed reactions, the stimulation being greatest with PGE2 (3-fold) and least with PGA1 (1.6-fold). Cytochrome b5 was thus required for maximal metabolism of all three prostaglandins, but did not alter the regiospecificity or the order of activity of P-450 isozyme 4 with the individual substrates. In the presence of cytochrome b5, the prostaglandin hydroxylase activities of isozyme 4 were two to six times higher than those of isozyme 2.  相似文献   

8.
We describe the isolation of cytochrome P-4501 alpha from chick-kidney mitochondria. Although, gel permeation HPLC yielded 41% of the total amount of P-450 present in cholate-solubilized hemeproteins, it produced a highly purified mixture from which the P-4501 alpha could be purified to homogeneity in a final detergent-free state by a single-step application of hydrophobic interaction HPLC using hydroxypropyl silica. The purified P-4501 alpha traveled as a single band in SDS gel electrophoresis with an apparent Mr = 57,000. The absolute spectrum of the P-4501 alpha (Fe3+) form gave a lambda max at 403 nm. This characteristic lends support to the anomalous high-spin heme electron paramagnetic resonance spectrum and the heme structure of P-4501 alpha which we have previously reported (Ghazarian et al. (1980) J. Biol. Chem. 255, 8275-8281; Pedersen et al. (1976) J. Biol. Chem. 251, 3933-3941). In reconstitution experiments with ferredoxin-dependent NADPH-cytochrome c (P-450) reductase complexes, P-4501 alpha catalyzed the hydroxylation of 25-hydroxy-9,10-secocholesta-5,7,10(19)-trien-3 beta-ol at the C-1 position exclusively with a turnover number of 0.03 min-1. This number is identical to that obtained from measurements of the catalytic activity in intact mitochondria, indicating that only one major species of cytochrome P-450 occurs in chick-kidney mitochondria. The complete responsiveness of cytochrome P-450 concentrations in intact mitochondria to the vitamin D status of chicks provided additional evidence that the major cytochrome P-450 species present in renal mitochondria is uniquely associated with vitamin D metabolism.  相似文献   

9.
The hydroxylyzable steroid 17-hydroxyprogesterone as well as the nonhydroxylyzable steroid androst-4-ene-3,17-dione induce Type I spectral change in cytochrome P-450, the oxygen activating component of the C-21 hydroxylase system. The data presented show quantitative relationship between the Type I spectral change and (1) the steroid-dependent NADPH oxidation; (2) the steroid-dependent increase in the steady-state level of P-450·CO and (3) the rate of C-21 hydroxylation in the case of 17-hydroxyprogesterone. The results indicate that the Type I spectral change is a reflection of the amount of the cytochrome activated for redox reactions and is independent of steroid hydroxylation.  相似文献   

10.
Rat hepatic cytochrome P-450 isoenzyme 2c, purified to homogeneity from uninduced, adult rat liver (Waxman, D.J., Ko, A., and Walsh, C. (1983) J. Biol. Chem. 258, 11937-11947), was shown to exhibit a unique NH2-terminal amino acid sequence as well as distinctive peptide maps and immunochemical properties when compared to seven other purified rat liver P-450 isoenzymes. P-450 2c was an efficient monooxygenase catalyst with several xenobiotic substrates; P-450 2c also catalyzed 16 alpha- and 2 alpha-hydroxylations of testosterone, androst-4-ene-3,17-dione and progesterone (total turnover = 7-9 min-1 P-450(-1) at 25 microM steroid substrate) with the ratio of 2 alpha to 16 alpha hydroxylation varying from less than or equal to 0.02 to 1.6 depending on the steroid's C-17 substituent. Six different microsomal steroid hydroxylase activities characteristic of purified P-450 2c and sensitive to specific inhibition by anti-P-450 2c antibody were induced at puberty in male but not female rat liver. Microsomal steroid hydroxylations catalyzed by other P-450 isoenzymes exhibited age and sex dependencies distinct from those of the P-450 2c-mediated activities. Immunochemical analyses confirmed that this sex dependence and developmental induction reflected alterations in P-450 2c polypeptide levels. Attempts to chromatographically detect P-450 2c in either immature male or adult female microsomes were unsuccessful and led to purification of P-450 2d (female), a catalytically distinct and female-specific form. Peptide mapping and immunochemical analyses suggested significant structural homologies between the two sex-specific isoenzymes, P-450 2c and P-450 2d (female). A significant suppression of P-450 2c levels (up to 70-80%) was observed upon administration of several classical P-450 inducers. These studies establish that P-450 2c corresponds to the male-specific and developmentally-induced steroid 16 alpha-hydroxylase of rat liver and suggest that the expression of P-450 2c versus P-450 2d (female) may provide a biochemical basis for the sex differences characteristic of rat liver xenobiotic metabolism.  相似文献   

11.
Incubation of iodosylbenzene and [125I]iodobenzene with cytochrome P-450 (P-450) leads to the formation of [125I]iodosylbenzene (Burka, L.T., Thorsen, A., and Guengerich, F.P. (1980) J. Am. Chem. Soc. 102, 7615-7616), but to date it has not been possible to observe directly the oxidation of organic halides in NADPH-supported P-450 reactions because of the intrinsic instability of haloso compounds. 4-tert-Butyl-2,5-bis[1-hydroxy-1-(trifluoromethyl)- 2,2,2-trifluoroethyl]iodobenzene (RI) and the corresponding bromine analog (RBr) were utilized as model compounds because their oxidized derivatives (iodinane and brominane) are relatively stable. Several model metalloporphyrins efficiently oxidized RI to the iodinane in the presence of iodosylbenzene. Rates of reduction of Mn(V) = O tetraphenylporphin chloride by RI were considerably faster than for several other organic halides. NADPH-fortified rat liver microsomes oxidized RI to the iodinane, identified by its chromatographic retention time and characteristic UV spectrum. Purified P-450 enzymes also catalyzed the oxidation of RI to the iodinane; more selectivity among individual proteins was seen when the reaction was supported by NADPH and NADPH-P-450 reductase than by iodosylbenzene. Free thiol groups in P-450 and NADPH-P-450 reductase could be oxidized by iodosylbenzene, the iodinane or brominane, or by incubation with NADPH and RI or other organic halides. These results provide evidence that P-450 can oxidize organic halogen atoms. Iodo compounds are definitely oxidized, even though the apparent oxidation-reduction potential differences seem unfavorable. The halogen order seen for the reaction is a function of the oxidation potential. Organic bromine compounds are probably also oxidized by P-450, although the rates are much slower. Chloroperoxidase did not oxidize RI to the iodinane but horseradish peroxidase did so at a lower rate; in this case the iodinane is postulated to form via electron abstraction without oxygen transfer.  相似文献   

12.
In this report we provide data, for the first time, demonstrating the conversion of the heme moiety of certain cytochrome P-450 and P-420 preparations, to biliverdin, catalyzed by heme oxygenase. We have used purified preparations of cytochromes P-450c, P-450b, P-450/P-420c, or P-450/P-420b as substrates in a heme oxygenase assay system reconstituted with heme oxygenase isoforms, HO-2 or HO-1, NADPH-cytochrome c (P-450) reductase, biliverdin reductase, NADPH, and Emulgen 911. With cytochrome P-450b or P-450/P-420b preparations, a near quantitative conversion of degraded heme to bile pigments was observed. In the case of cytochrome P-450/P-420c approximately 70% of the degraded heme was accounted for as bilirubin but only cytochrome P-420c was appreciably degraded. The role of heme oxygenase in this reaction was supported by the following observations: (i) bilirubin formation was not observed when heme oxygenase was omitted from the assay system; (ii) the rate of degradation of the heme moiety was at least threefold greater with heme oxygenase and NADPH-cytochrome c (P-450) reductase than that observed with reductase alone; and (iii) the presence of Zn- or Sn-protoporphyrins (2 microM), known competitive inhibitors of heme oxygenase, resulted in 70-90% inhibition of bilirubin formation.  相似文献   

13.
The treatment of male rats with Hg2+ resulted in significant alterations in heme and hemoprotein metabolism in the adrenal gland which, in turn, were reflected in abnormal steroidogenic activities and steroid output. Twenty-four hours after the administration of 30 mumol of HgCl2/kg (sc) the mitochondrial heme and cytochrome P-450 concentrations increased by approximately 50%. Also, Hg2+ treatment stimulated a porphyrinogenic response which included an 11-fold increase in the activity of delta-aminolevulinate synthetase. The increase in mitochondrial cytochrome P-450 content was reflected in elevated steroid 11 beta-hydroxylase and cholesterol side-chain cleavage activities. In contrast, Hg2+ treatment resulted in decreased concentrations of microsomal cytochrome P-450 (-75%) and heme (-45%). Similarly, the reduction in the microsomal cytochrome P-450 content was accompanied by reduced steroid 21 alpha-hydroxylase and benzo[alpha]pyrene hydroxylase activities. The mechanisms responsible for the loss of the microsomal cytochrome P-450 content appeared to involve a selective impairment of formation of the holocytochrome as well as an enhanced rate of heme degradation. This suggestion is made on the basis of findings that (a) the decrease in the microsomal cytochrome P-450 content was accompanied by a sevenfold increase in the activity of adrenal heme oxygenase, (b) no decrease in apocytochrome P-450 could be detected in sodium dodecyl sulfate-gel electrophoresis of the solubilized microsomal fractions stained for heme, and (c) the concentration of adrenal microsomal cytochrome b5 was significantly increased in the Hg2+-treated animals. It is suggested that Hg2+ directly caused a defect in adrenal steroid biosynthesis by inhibiting the activity of 21 alpha-hydroxylase. The apparent physiological consequences of this effect included lowered plasma levels of corticosterone and elevated concentrations of progesterone and dehydroepiandrosterone. This abnormal plasma steroid profile is indicative of a 21 alpha-hydroxylase impairment.  相似文献   

14.
Hydrocarbon oxidations catalyzed by methane monooxygenase purified to high specific activity from the type II methanotroph Methylosinus trichosporium OB3b were compared to the same reactions catalyzed by methane monooxygenase from the type I methanotroph Methylococcus capsulatus Bath and liver microsomal cytochrome P-450. The two methane monooxygenases produced nearly identical product distributions, in accord with physical studies of the enzymes which have shown them to be very similar. The products obtained from the oxidation of a series of deuterated substrates by the M. trichosporium methane monooxygenase were very similar to those reported for the same reaction catalyzed by liver microsomal cytochrome P-450, suggesting that the enzymes use similar mechanisms. However, differences in the product distributions and other aspects of the reactions indicated the mechanisms are not identical. Methane monooxygenase epoxidized propene in D2O and d6-propene in H2O without exchange of substrate protons or deuterons with solvent, in contrast to cytochrome P-450 (Groves, J. T., Avaria-Neisser, G. E., Fish, K. M., Imachi, M., and Kuczkowski, R. L. (1986) J. Am. Chem. Soc. 108, 3837-3838), suggesting that the mechanism of epoxidation of olefins by methane monooxygenase differs at least in part from that of cytochrome P-450. Hydroxylation of alkanes by methane monooxygenase revealed close similarities to hydroxylations by cytochrome P-450. Allylic hydroxylation of 3,3,6,6-d4-cyclohexene occurred with approximately 20% allylic rearrangement in the case of methane monooxygenase, whereas 33% was reported for this reaction catalyzed by cytochrome P-450 (Groves, J. T., and Subramanian, D. V. (1984) J. Am. Chem. Soc. 106, 2177-2181). Similarly, hydroxylation of exo,exo,exo,exo-2,3,5,6-d4-norbornane by methane monooxygenase occurred with epimerization, but to a lesser extent than reported for cytochrome P-450 (Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J. (1978) Biochem. Biophys. Res. Commun. 81, 154-160). A large intramolecular isotope effect, kH,exo/kD,exo greater than or equal to 5.5, was calculated for this reaction. However, the intermolecular kinetic isotope effect on Vm for methane oxidation was small, suggesting that steps other than C-H bond breakage were rate limiting in the overall enzymatic reaction. Similar isotope effects have been observed for cytochrome P-450. These observations indicate a stepwise mechanism of hydroxylation for methane monooxygenase analogous to that proposed for cytochrome P-450.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The regioselectivity and stereoselectivity of androgen hydroxylations catalyzed by five isozymes of cytochrome P-450 purified from phenobarbital-induced rat liver were studied in a reconstituted monooxygenase system using testosterone (T) and androst-4-ene-3,17-dione (delta 4-A) as substrates. P-450 PB-3, an isozyme exhibiting low catalytic activity with many xenobiotic substrates, catalyzed efficient (turnover = 15.7 to 18.5 min-1 P-450-1 at 25 microM substrate) and highly stereoselective B-ring hydroxylations of both steroid substrates, with the corresponding 7 alpha- and 6 alpha-hydroxy alcohols formed in ratios of approximately 20 to 30:1, respectively. P-450 PB-2c metabolized testosterone to a mixture of 16 alpha OH-T, 2 alpha OH-T, and delta 4-A (product ratio = 1.0/0.78/0.33; turnover = 10.2 min-1 P-450-1). PB-2c is present in significantly larger amounts in mature male rats as compared to immature males, and probably catalyzes the male-specific testosterone 16 alpha-hydroxylase activity known to be induced at puberty and subject to endocrine control. P-450 PB-4, the major phenobarbital-induced isozyme in rat liver, catalyzed efficient D-ring hydroxylations, yielding 16 beta OH- delta 4-A as the predominant product with delta 4-A as substrate (turnover = 12.0 min-1 P-450-1) and a mixture of 16 beta OH-T, 16 alpha OH-T, and delta 4-A (the latter compound presumably formed via 17 alpha hydroxylation) with testosterone as substrate (turnover = 5.2 min-1 P-450-1). P-450 isozymes PB-1 and PB-5 hydroxylated both steroids with essentially the same regioselectivity as PB-4 but at only 5 to 10% the catalytic rate. Cytochrome b5 stimulated most of these steroid hydroxylations up to 2-fold with no change in regio- or stereoselectivity. The identification of specific steroid metabolites as diagnostic of particular P-450 isozymes should be useful for the assessment of isozymic contributions to microsomal activities and, in addition, facilitate comparisons of P-450 isozymes isolated in different laboratories.  相似文献   

16.
Liver microsomal steroid 5-alpha-reduction is catalyzed by a NADPH-dependent enzyme system. The requirement of NADPH-cytochrome P-450 reductase to shuttle reduction equivalents from NADPH to steroid 5-alpha-reductase was investigated using an inhibitory antibody against NADPH-cytochrome P-450 reductase. This antibody preparation inhibited cytochrome c reduction in microsomes from female rat liver with an I50 of 0.75 mg antibody/mg of microsomal protein. Benzphetamine N-demethylation and testosterone 6-beta-hydroxylation, two cytochrome P-450-mediated oxidative reactions, were inhibited by the antibody. On the other hand, testosterone 5-alpha-reductase was not affected by the antibody. These results suggest that NADPH-cytochrome P-450 reductase is not an obligatory component of the liver microsomal steroid 5-alpha-reduction.  相似文献   

17.
For clarification of the effects of steroid concentration on steroidogenesis of adrenal microsomes, the kinetic parameters, Km and kcat, were determined in the steady-state for progesterone and 17 alpha-hydroxyprogesterone metabolism catalyzed by P-450C21 and P-450(17 alpha lyase) in guinea pig adrenal microsomes. At a high concentration of progesterone, it was equally metabolized by P-450C21 and P-450(17 alpha lyase), while at a low concentration, it was hydroxylated at 17 alpha-position with twice higher rate than at 21-position. 17 alpha-Hydroxyprogesterone is apparently metabolized preferentially by P-450C21 at any concentration. Although the productions of deoxycortisol and androstenedione from 17 alpha-hydroxyprogesterone were strongly inhibited by progesterone, androstenedione formation from progesterone was not inhibited by a high concentration of progesterone. The addition of liposomal P-450C21 to the reaction medium containing adrenal microsomes caused a decrease in the concentration of 17 alpha-hydroxyprogesterone released into the medium in the steady state reaction, but this had no effect on the activity of androstenedione formation from high concentrations of progesterone. It thus follows that androstenedione is produced by successive monooxygenase reactions without the release of 17 alpha-hydroxyprogesterone from P-450(17 alpha lyase) at a high concentration of progesterone, which is the condition of the adrenal microsomes in vivo.  相似文献   

18.
Experimental hepatomas induced with 5,9-dimethyldibenzo[c,g]carbazole in female XVIInc/Z mice display a strong microsomal steroid 15 alpha-hydroxylation activity. A cytochrome P-450 isoenzyme (cytochrome P-450tu), specific for this activity, has been isolated by an HPLC derived method using various Fractogel TSK and hydroxyapatite supports. On SDS polyacrylamide gel electrophoresis the purified protein appeared as one major band with an apparent Mr of 50,000. Its specific cytochrome P-450 content was 7.55 nmol/mg protein. As deduced from the visible spectrum, the heme iron of the isolated P-450tu was to 72% in the high-spin state. The CO-bound reduced form showed an absorption maximum at 450 nm. In addition to the stereospecific 15 alpha-hydroxylation of progesterone (2.3 min-1) and testosterone (2.5 min-1), the enzyme catalyzed also 7-ethoxycoumarin O-deethylation, benzphetamine N-demethylation and aniline 4-hydroxylation. Its N-terminal amino-acid sequence (21 residues) was identical to that of cytochrome P-450(15) alpha, isolated by Harada and Negishi from liver microsomes of 129/J mice. P-450tu differed from P-450(15) alpha by its higher molecular weight, its 40-times lower steroid 15 alpha-hydroxylation and its 4-times higher benzphetamine N-demethylation.  相似文献   

19.
The reconstitution of the steroid 11 beta-hydroxylase system based on the homogeneous proteins isolated from bovine adrenocortical mitochondria, cytochrome P-450 (P-450 (11 beta), 19-20.5 nmol of heme P-450 per 1 mg of protein), adrenodoxin (Adx) and adrenodoxin reductase (AR) was carried out. The reconstitution of the multienzyme system requires the presence of a non-ionic detergent due to the high hydrophobicity of P-450 (11 beta). Low concentrations of Tween 20 (below 0.015% or 115 microM) stimulate the reaction of steroid 11 beta-hydroxylation by improving the hemoprotein solubility. With a further increase in the detergent concentration, the reaction is inhibited due to the inactivation of the cytochrome and its impaired interaction with Adx. The electron transfer activity of adrenodoxin reductase and the dienzyme AR-Adx complex does not change within the Tween 20 concentration range of 0-0.4%. In solutions with the optimal concentration of Tween 20 (0.010-0.015%), the concentrations of AR and Adx providing for the half-maximum hydroxylation activity are 9 nM for AR and 280 nM for Adx. It was shown that in a reconstituted 11 beta-hydroxylase system, 75% of the reducing equivalents are involved in the formation of oxygen radicals, whereas 25%--in hydroxylation. 74% of the radical species are, in their turn, formed in the active site of the hemoprotein, while 26%--in the Fe2S2 center of adrenodoxin. The radical formation process predominates over the 11 beta-hydroxylation within a wide range of Adx/cytochrome ratios, i.e., 1.0-100. The hydroxylation substrate induces a 4-fold increase in the electron transfer rate by stimulating the enzymatic reduction of P-450 (11 beta), but only 35% of the additional reduced equivalents are consumed by the 11 beta-hydroxylation and 65%--by the oxygen radical formation.  相似文献   

20.
Rat liver cytochrome P-450 mediates a novel reaction between equimolar quantities of dissolved oxygen and organic hydroperoxides. The reaction shares some of the properties of both NADPH-O2 dependent hydroxylation and NADPH-O2 independent peroxidase reactions, but does not require either NADPH, phosphatidylcholine, or any substrates other than hydroperoxide and oxygen. It proceeds at a rate approximately 100 times faster than other well known P-450 hydroxylation reactions. Monitoring the rate of O2 consumption in this novel reaction may be a simple and rapid means for studying the kinetics of cytochrome P-450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号