首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolism of [2-13C]pyruvate, [1,2-13C]ethanol, and NH4+ in the presence and absence of 7 nM insulin has been followed at 35 degrees C by alternate scan 13C and 31P NMR at 90.5 and 145.8 MHz, respectively, in isolated perfused liver from 16-h fasted rats. With this technique, 31P and 13C NMR spectra are recorded simultaneously so that both phosphate metabolites and 13C-labeled metabolites could be followed, noninvasively, in perfused liver to give a comprehensive view of the response to a variety of stimuli. 13C-labeled glycogen increased synchronously, at a rate of 17 mumol of glucose units/g of liver/h, with the synthesis of 13C-labeled glucose, which also proceeded at a rate of 17 mumol/g of liver/h; glycogenesis was essentially a gluconeogenic process under these conditions and was not affected by the presence of insulin. From the position of the 13C-labeled citrate peak observed in liver, the measurement of Kd for the citrate-Mg complex under our conditions, and the expression relating these quantities to the concentration of free Mg2+, the intracellular level of free Mg2+ is estimated to be 0.46 +/- 0.05 mM in perfused rat liver. After subsequent administration of glucagon, a rapid decrease in glycogen and citrate was seen by 13C NMR and a 44% increase in glycero-3-phosphocholine was seen by 31P NMR; increase in glycero-3-phosphocholine is consistent with stimulation of liver phospholipase activity by glucagon. The co-administration of two different 13C-labeled substrates introduced multiplet structure arising from spin-spin interaction between labeled adjacent carbons into the peaks of several key metabolites. 13C enrichments at specific carbons of citrate, glutamate, glutamine, beta-hydroxybutyrate, and glucose and the distribution of intensity within the multiplets of specific carbons were measured in spectra of perfusates and extracts of the freeze-clamped livers. Within the context of a first order model for fluxes into the Krebs cycle and into glucose, analytical expressions were written that describe the intensity distributions within the several multiplets. In this way, a set of simultaneous equations was generated and solved in general form; when the measured intensity ratios are substituted into these expressions, relative fluxes under the conditions of the experiment can be estimated. Because a redundancy of information is available, checks on self-consistency are built into the estimated fluxes.  相似文献   

2.
Myocardial glycogen metabolism was studied in live guinea pigs by 13C NMR at 20.19 MHz. Open-chest surgery was used to expose the heart, which was then positioned within a solenoidal radio frequency coil for NMR measurements. The time course of myocardial glycogen synthesis during 1-h infusions of 0.5 g of D-[1-13C]glucose (and insulin) into the jugular vein was investigated. The possible turnover of the 13C-labeled glycogen was also studied in vivo by following the labeled glucose infusion with a similar infusion of unlabeled glucose. The degree of 13C enrichment of the C-1 glycogen carbons during these infusions was measured in heart extracts by 1H NMR at 360 MHz. High-quality proton-decoupled 13C NMR spectra of the labeled C-1 carbons of myocardial glycogen in vivo were obtained in 1 min of data accumulation. This time resolution allowed measurement of the time course of glycogenolysis of the 13C-labeled glycogen during anoxia by 13C NMR in vivo. With the solenoidal coil used for 13C NMR, the spin-lattice relaxation time of the labeled C-1 carbons of myocardial glycogen could be measured in vivo. For a comparison, spin-lattice relaxation times of heart glycogen were measured in vitro at 90.55 MHz. Natural abundance 13C NMR studies of the quantitative hydrolysis of extracted heart glycogen in vitro at 90.55 MHz showed that virtually all the carbons in heart glycogen contribute to the 13C NMR signals. The same result was obtained in 13C NMR studies of glycogen hydrolysis in excised guinea pig heart.  相似文献   

3.
Interventions that stimulate carbohydrate oxidation appear to be beneficial in the setting of myocardial ischemia or infarction. However, the mechanisms underlying this protective effect have not been defined, in part because of our limited understanding of substrate utilization under ischemic conditions. Therefore, we used (1)H and (13)C NMR spectroscopy to investigate substrate oxidation and glycolytic rates in a global low-flow model of myocardial ischemia. Isolated male Sprague-Dawley rat hearts were perfused for 30 min under conditions of normal flow (control) and low-flow ischemia (LFI, 0.3 ml/min) with insulin and (13)C-labeled lactate, pyruvate, palmitate, and glucose at concentrations representative of the physiological fed state. Despite a approximately 50-fold reduction in substrate delivery and oxygen consumption, oxidation of all exogenous substrates plus glycogen occurred during LFI. Oxidative metabolism accounted for 97% of total calculated ATP production in the control group and approximately 30% in the LFI group. For controls, lactate oxidation was the major source of ATP; however, in LFI, this shifted to a combination of oxidative and nonoxidative glycogen metabolism. Interestingly, in the LFI group, anaplerosis relative to citrate synthase increased sevenfold compared with controls. These results demonstrate the importance of oxidative energy metabolism for ATP production, even during very-low-flow ischemia. We believe that the approach described here will be valuable for future investigations into the underlying mechanisms related to the protective effect of increasing cardiac carbohydrate utilization and may ultimately lead to identification of new therapeutic targets for treatment of myocardial ischemia.  相似文献   

4.
S M Cohen 《Biochemistry》1987,26(2):563-572
The metabolism of 13C-labeled substrates was followed by 13C and 31P NMR in perfused liver from the streptozotocin-treated rat model of insulin-dependent diabetes. Comparison was made with perfused liver from untreated littermates, fasted either 24 or 12 h. The major routes of pyruvate metabolism were followed by a 13C NMR approach that provided for the determination of the metabolic fate of several substances simultaneously. The rate of gluconeogenesis was 2-4-fold greater and beta-hydroxybutyrate production was 50% greater in liver from the chronically diabetic rats as compared with the control groups. Large differences in the distribution of 13C label in hepatic alanine were measured between diabetic and control groups. The biosyntheses of 13C-labeled glutathione and N-carbamoylaspartate were monitored in time-resolved 13C NMR spectra of perfused liver. Assignments for the resonances of glutathione and N-carbamoylaspartate were made with the aid of 13C NMR studies of perchloric acid extracts of the freeze-clamped livers. 13C NMR spectroscopy of the perfusates provided a convenient, rapid assay of the rate of oxidation of [2-13C]ethanol, the hepatic output of [2-13C]acetaldehyde, and the accumulation of [2-13C]acetate in the perfusate. By 31P NMR spectroscopy, carbamoyl phosphate was measured in all diabetic livers and an unusual P,P'-diesterified pyrophosphate was observed in one-fourth of the diabetic livers examined. Neither of these phosphorylated metabolites was detected in control liver. Both 13C and 31P NMR were useful in defining changes in hepatic metabolism in experimental diabetes.  相似文献   

5.
Natural-abundance 13C NMR signals from glycogen are observable in situ within the perfused livers of rats. The nuclear magnetic relaxation properties (T1, T2, eta + 1) of glycogen were measured for glycogen in situ and in vitro and were found to be identical. All of the carbon nuclei in glycogen contribute to the high-resolution NMR spectrum, in spite of glycogen's very large molecular weight. The metabolism of glycogen in situ in the perfused rat liver was followed by 13C NMR. Stimulation of the fed rat liver by physiological glucagon levels led to rapid glycogenolysis. Perfusion of the liver with [1-13C]glucose led to net glycolysis, with concomitant scrambling of the label from C1 to C6 due to triosephosphate isomerase activity.  相似文献   

6.
Effects of peripheral venous injection of glucagon and insulin on [1-13C]glucose incorporation into hepatic glycogen of rats were studied by 13C NMR in vivo. Each animal was given a continuous somatostatin infusion and a 100-mg intravenous injection of [1-13C] glucose in NMR experiments or unlabeled glucose in parallel experiments for determination of serum glucose. Insulin administration caused serum glucose to fall below basal levels and accelerated the loss of hepatic [1-13C]glucose; these effects were counteracted by the addition of glucagon. Glucagon administration alone did not affect serum glucose or hepatic [1-13C] glucose but caused the loss of [1-13C]glucose from glycogen and inhibited [1-13C]glucose incorporation into glycogen. Insulin did not alter [1-13C]glucose incorporation into glycogen when given alone or in combination with glucagon. The data are consistent with a model in which liver glycogen synthesis increases linearly with hepatic glucose concentration above a threshold glucose concentration. Insulin did not alter the rate constant or the threshold for synthesis.  相似文献   

7.
The effect of physiological concentrations of glucagon and insulin on glycogenolysis was studied in the presence and absence of substrates in isolated hepatocytes containing high glycogen. In the absence of substrates glucagon stimulated glycogenolysis at 10?14M concentration, and addition of 100 μunits of insulin partially inhibited glucagon stimulated glycogenolysis (10?14M to 10?11M). However, in the presence of substrates, insulin completely inhibited glucagon stimulated glycogenolysis (10?14M to 10?11M), indicating that molar glucagon and insulin ratios control carbohydrate metabolism in liver. Additional studies showed incorporation of amino acid into protein was linear for only 3 to 4 hr in cells containing low glycogen, whereas in cells containing high glycogen, incorporation was linear for 8 to 10 hr.  相似文献   

8.
A method is presented for the rapid determination of substrate selection in a manner that is not restricted to conditions of metabolic and isotopic steady state. Competition between several substrates can be assessed directly and continuously in a single experiment, allowing the effect of interventions to be studied. It is shown that a single proton-decoupled 13C NMR spectrum of glutamate provides a direct measure of the contribution of exogenous 13C-labeled substrates to acetyl-CoA without measurement of oxygen consumption and that steady-state conditions need not apply. Two sets of experiments were performed: one in which a metabolic steady state but a non-steady-state 13C distribution was achieved and another in which both metabolism and labeling were not at steady state. In the first group, isolated rat hearts were supplied with [1,2-13C]acetate, [3-13C]lactate, and unlabeled glucose. 13C NMR spectra of extracts from hearts perfused under identical conditions for 5 or 30 min were compared. In spite of significant differences in the spectra, the measured contributions of acetate, lactate, and unlabeled sources to acetyl-CoA were the same. In the second set of experiments, the same group of labeled substrates was used in a regional ischemia model in isolated rabbit hearts to show regional differences in substrate utilization under both metabolic and isotopic non steady state. This sensitive probe of substrate selection was also demonstrated in intact hearts where excellent time resolution (3 min) of substrate selection was feasible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Ordered synthesis and mobilization of glycogen in the perfused heart   总被引:1,自引:0,他引:1  
The molecular order of synthesis and mobilization of glycogen in the perfused heart was studied by 13C NMR. By varying the glucose isotopomer ([1-13C]glucose or [2-13C]glucose) supplied to the heart, glycogen synthesized at different times during the perfusion was labeled at different carbon sites. Subsequently, the in situ mobilization of glycogen during ischemia was observed by detection of labeled lactate derived from glycolysis of the glucosyl monomers. When [1-13C]glucose was given initially in the perfusion and [2-13C]glucose was given second, [2-13C]lactate was detected first during ischemia and [3-13C]lactate second. This result, and the equivalent result when the glucose labels were given in the reverse order, demonstrates that glycogen synthesis and mobilization are ordered in the heart, where glycogen is found morphologically only as beta particles. Previous studies of glycogen synthesis and mobilization in liver and adipocytes [Devos, P., & Hers, H.-G. (1979) Eur. J. Biochem. 99, 161-167; Devos, P., & Hers, H.-G. (1980) Biochem. Biophys. Res. Commun. 95, 1031-1036] have suggested that the organization of beta particles into alpha particles was partially responsible for ordered synthesis and mobilization. The observations reported here for cardiac glycogen suggest that another mechanism is responsible. In addition to examining the ordered synthesis and mobilization of cardiac glycogen, we have selectively monitored the NMR properties of 13C-labeled glycogen synthesized early in the perfusion during further glycogen synthesis from a second, differently labeled substrate. During synthesis from the second labeled glucose monomer, the glycogen resonance from the first label decreased in integrated intensity and increased in line width.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
High-field 13C surface coil nuclear magnetic resonance has been employed to investigate glucose and glycogen metabolism in rat liver in vivo. Natural abundance and isotopically enriched proton-decoupled 13C NMR experiments were conducted at 90.56 MHz on a standard commercial spectrometer utilizing a laboratory-built high-sensitivity double-resonance coaxial coil probe. At variance with a previous preliminary report, natural abundance spectra of the liver in vivo from a rat fed ad libitum reveal resonances of substantial intensity from hepatic glycogen with approximately 10 min of signal averaging. The response of hepatic glycogen levels to an intravenous injection of the hormone glucagon was continuously monitored through the glycogen C-1 carbon resonance intensity; this revealed an average 60% depletion of hepatic glycogen stores in vivo within approximately 1 h. In a complementary study utilizing fasted rats, 100 mg of D-[1-13C]glucose (90% enriched) was administered via a peripheral vein injection and continuously monitored by 13C NMR with 3-min time resolution as it was incorporated into hepatic glycogen. The C-1 carbon resonances of hepatic glucose and glycogen are well-resolved in vivo enabling the time course for the relative change in concentration for both metabolites to be established simultaneously. The 13C label incorporated into the glycogen pool reaches a steady-state level in approximately 40 min.  相似文献   

11.
Gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy were used to study the metabolism of deuterated n-alkanes (C6 to C12) and 1-13C-labeled n-hexane by a highly enriched sulfate-reducing bacterial culture. All substrates were activated via fumarate addition to form the corresponding alkylsuccinic acid derivatives as transient metabolites. Formation of d14-hexylsuccinic acid in cell extracts from exogenously added, fully deuterated n-hexane confirmed that this reaction was the initial step in anaerobic alkane metabolism. Analysis of resting cell suspensions amended with 1-13C-labeled n-hexane confirmed that addition of the fumarate occurred at the C-2 carbon of the parent substrate. Subsequent metabolism of hexylsuccinic acid resulted in the formation of 4-methyloctanoic acid, and 3-hydroxy-4-methyloctanoic acid was tentatively identified. We also found that 13C nuclei from 1-13C-labeled n-hexane became incorporated into the succinyl portion of the initial metabolite in a manner that indicated that 13C-labeled fumarate was formed and recycled during alkane metabolism. Collectively, the findings obtained with a sulfate-reducing culture using isotopically labeled alkanes augment and support the previously proposed pathway (H. Wilkes, R. Rabus, T. Fischer, A. Armstroff, A. Behrends, and F. Widdel, Arch. Microbiol. 177:235-243, 2002) for metabolism of deuterated n-hexane by a denitrifying bacterium.  相似文献   

12.
1. Control of glycogen metabolism by various substrates and hormones was studied in ruminant liver using isolated hepatocytes from fed sheep. 2. In these cells glucose appeared uneffective to stimulate glycogen synthesis whereas fructose and propionate activated glycogen synthase owing to (i) a decrease in phosphorylase a activity and (ii) changes in the intracellular concentrations of glucose 6-phosphate and adenine nucleotides. 3. The activation of hepatic glycogenolysis by glucagon and alpha 1-adrenergic agents was associated with increased phosphorylase a and decreased glycogen synthase activities. 4. The simultaneous changes in these two enzyme activities suggest that in sheep liver, activation of phosphorylase a is not a prerequisite step for synthase inactivation. 5. In sheep hepatocytes, in the presence of propionate and after a lag period, insulin activated glycogen synthase without affecting phosphorylase a. 6. This latter result suggests that the direct activation of glycogen synthase by insulin is mediated by a glycogen synthase-specific kinase or phosphatase. Insulin also antagonized glucagon effect on glycogen synthesis by counteracting the rise of cAMP.  相似文献   

13.
13C nuclear magnetic resonance (13C-NMR) was used to investigate the metabolism of citrate plus glucose and pyruvate plus glucose by nongrowing cells of Lactococcus lactis subsp. lactis 19B under anaerobic conditions. The metabolism of citrate plus glucose during growth was also monitored directly by in vivo NMR. Although pyruvate is a common intermediate metabolite in the metabolic pathways of both citrate and glucose, the origin of the carbon atoms in the fermentation products was determined by using selectively labeled substrates, e.g., [2,4-13C]citrate, [3-13C]pyruvate, and [2-13C]glucose. The presence of an additional substrate caused a considerable stimulation in the rates of substrate utilization, and the pattern of end products was changed. Acetate plus acetoin and butanediol represented more than 80% (molar basis) of the end products of the metabolism of citrate (or pyruvate) alone, but when glucose was also added, 80% of the citrate (or pyruvate) was converted to lactate. This result can be explained by the activation of lactate dehydrogenase by fructose 1,6-bisphosphate, an intermediate in glucose metabolism. The effect of different concentrations of glucose on the metabolism of citrate by dilute cell suspensions was also probed by using analytical methods other than NMR. Pyruvate dehydrogenase (but not pyruvate formate-lyase) was active in the conversion of pyruvate to acetyl coenzyme A. α-Acetolactate was detected as an intermediate metabolite of citrate or pyruvate metabolism, and the labeling pattern of the end products agrees with the α-acetolactate pathway. It was demonstrated that the contribution of the acetyl coenzyme A pathway for the synthesis of diacetyl, should it exist, is lower than 10%. Evidence for the presence of internal carbon reserves in L. lactis is presented.  相似文献   

14.
A 2D-NMR method based on zero-quantum filtered (ZQF-) TOtal Correlation SpectroscopY (TOCSY) was applied to measure 13C-enrichments in complex mixtures of 13C-labeled metabolites generated in carbon-labeling experiments. Using ZQF-TOCSY, more than 30 13C-enrichments could be potentially measured from the analysis of a biomass hydrolyzate prepared from Escherichia coli cells grown on a mixture of 20% [U-13C]-glucose and 80% [1-13C]-glucose, without need for separation of metabolites. The method is applicable to biomass hydrolyzates, cell extracts, and other complex biological samples. It is also applicable to any combination of labeled substrates and provides a basis for examining non-steady-state conditions.  相似文献   

15.
We investigated the carbon metabolism of three strains of Fibrobacter succinogenes and one strain of Fibrobacter intestinalis. The four strains produced the same amounts of the metabolites succinate, acetate, and formate in approximately the same ratio (3.7/1/0.3). The four strains similarly stored glycogen during all growth phases, and the glycogen-to-protein ratio was close to 0.6 during the exponential growth phase. 13C nuclear magnetic resonance (NMR) analysis of [1-13C]glucose utilization by resting cells of the four strains revealed a reversal of glycolysis at the triose phosphate level and the same metabolic pathways. Glycogen futile cycling was demonstrated by 13C NMR by following the simultaneous metabolism of labeled [13C]glycogen and exogenous unlabeled glucose. The isotopic dilutions of the CH2 of succinate and the CH3 of acetate when the resting cells were metabolizing [1-13C]glucose and unlabeled glycogen were precisely quantified by using 13C-filtered spin-echo difference 1H NMR spectroscopy. The measured isotopic dilutions were not the same for succinate and acetate; in the case of succinate, the dilutions reflected only the contribution of glycogen futile cycling, while in the case of acetate, another mechanism was also involved. Results obtained in complementary experiments are consistent with reversal of the succinate synthesis pathway. Our results indicated that for all of the strains, from 12 to 16% of the glucose entering the metabolic pathway originated from prestored glycogen. Although genetically diverse, the four Fibrobacter strains studied had very similar carbon metabolism characteristics.  相似文献   

16.
The demonstration of pharmacodynamic efficacy of novel chemical entities represents a formidable challenge in the early exploration of synthetic lead classes. Here, we demonstrate a technique to validate the biological efficacy of novel antagonists of the human glucagon receptor (hGCGR) in the surgically removed perfused liver prior to the optimization of the pharmacokinetic properties of the compounds. The technique involves the direct observation by (13)C NMR of the biosynthesis of [(13)C]glycogen from [(13)C]pyruvate via the gluconeogenic pathway. The rapid breakdown of [(13)C]glycogen (glycogenolysis) following the addition of 50 pM exogenous glucagon is then monitored in real time in the perfused liver by (13)C NMR. The concentration-dependent inhibition of glucagon-mediated glycogenolysis is demonstrated for both the peptidyl glucagon receptor antagonist 1 and structurally diverse synthetic antagonists 2-7. Perfused livers were obtained from a transgenic mouse strain that exclusively expresses the functional human glucagon receptor, conferring human relevance to the activity observed with glucagon receptor antagonists. This technique does not provide adequate quantitative precision for the comparative ranking of active compounds, but does afford physiological evidence of efficacy in the early development of a chemical series of antagonists.  相似文献   

17.
13C NMR studies of glycogen turnover in the perfused rat liver   总被引:5,自引:0,他引:5  
To assess whether hepatic glycogen is actively turning over under conditions which promote net glycogen synthesis we perfused livers from 24-h fasted rats with 20 mM D-[1-13C]glucose, 10 mM L-[3-13C]alanine, 10 mM L-[3-13C]lactate, and 1 microM insulin for 90 min followed by a 75-min "chase" period with perfusate of the same composition containing either 13C-enriched or unlabeled substrates. The peak height of the C-1 resonance of the glucosyl subunits in glycogen was monitored, in real time, using 13C NMR techniques. During the initial 90 min the peak height of the C-1 resonance of glycogen increased at almost a constant rate reflecting a near linear increase in net glycogen synthesis, which persisted for a further 75 min if 13C-enriched substrates were present during the "chase" period. However, when the perfusate was switched to the unenriched substrates, the peak height of the C-1 resonance of glycogen declined in a nearly linear manner reflecting active glycogenolysis during a time of net glycogen synthesis. By comparing the slopes of the curve describing the time course of the net [1-13C] glucose incorporation into glycogen with the rate of net loss of 13C label from the C-1 resonance of glycogen during the "chase" period we estimated the relative rate of glycogen breakdown to be 60% of the net glycogen synthetic rate. Whether this same phenomenon occurs to such an appreciable extent in vivo remains to be determined.  相似文献   

18.
NMR spectroscopy and gas chromatography-mass spectrometry (GCMS) have both been used to study cardiac metabolism using substrates labeled with the stable isotope carbon-13. 13C-NMR studies of substrate oxidation are based on the assumption that the 13C-enrichment of glutamate reflects that of 2-ketoglutarate (2-KG). This assumption appears reasonable; however, it has not been thoroughly validated. The higher sensitivity of GCMS enables the direct determination of 13C-enrichment of 2-KG and other tricarboxylic acid (TCA) cycle intermediates. Therefore, using extracts from normal and diabetic hearts perfused with physiological concentrations of unlabeled glucose and 13C-labeled substrates, [3-13C](lactate + pyruvate) and [U-13C]palmitate, we compared the mass isotopomer distribution (MID) of citrate, 2-KG, succinate and malate measured directly by GCMS with that extrapolated from 13C-NMR glutamate isotopomer analysis. A significant correlation between the absolute molar percent enrichments (MPE) of the various mass isotopomers of glutamate determined by 13C-NMR and 2-KG determined by GCMS was observed for all sixteen-heart samples. This correlation was improved if the contribution from unlabeled 2-KG was removed (i.e. relative MPE) indicating that 13C-NMR under estimated the unlabeled fraction. We attribute this discrepancy in the measurement of unlabeled 2-KG to the fact that GCMS measures M0 directly, while the NMR analysis calculates it by difference, since unlabeled glutamate is not detected by 13C-NMR spectroscopy. Despite the differences between the two methods, 13C-MID of glutamate determined by NMR provides a simple and reliable indicator of fluxes of 13C-enriched substrates through the TCA cycle. It is also clear that MID analysis of TCA cycle intermediates by GCMS is a sensitive and direct approach to assess substrate selection for citrate synthesis as well as a potential indicator of sites and extent of anaplerosis and/or compartmentation. This study demonstrates that the alliance of NMR and GCMS represents a powerful approach for investigating the control and regulation of cardiac carbon metabolism.  相似文献   

19.
1?C labeling experiments performed with kernel cultures showed that developing maize endosperm is more efficient than other non-photosynthetic tissues such as sunflower and maize embryos at converting maternally supplied substrates into biomass. To characterize the metabolic fluxes in endosperm, maize kernels were labeled to isotopic steady state using 13C-labeled glucose. The resultant labeling in free metabolites and biomass was analyzed by NMR and GC-MS. After taking into account the labeling of substrates supplied by the metabolically active cob, the fluxes through central metabolism were quantified by computer-aided modeling. The flux map indicates that 51-69% of the ATP produced is used for biomass synthesis and up to 47% is expended in substrate cycling. These findings point to potential engineering targets for improving yield and increasing oil contents by, respectively, reducing substrate cycling and increasing the commitment of plastidic carbon into fatty acid synthesis at the level of pyruvate kinase.  相似文献   

20.
Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号