共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulation of the Na+/K+-ATPase by insulin: Why and how? 总被引:4,自引:0,他引:4
The sodium-potassium ATPase (Na+/K+-ATPase or Na+/K+-pump) is an enzyme present at the surface of all eukaryotic cells, which actively extrudes Na+ from cells in exchange for K+ at a ratio of 3:2, respectively. Its activity also provides the driving force for secondary active transport of solutes such as amino acids, phosphate, vitamins and, in epithelial cells, glucose. The enzyme consists of two subunits ( and ) each expressed in several isoforms. Many hormones regulate Na+/K+ -ATPase activity and in this review we will focus on the effects of insulin. The possible mechanisms whereby insulin controls Na+/K+-ATPase activity are discussed. These are tissue- and isoform-specific, and include reversible covalent modification of catalytic subunits, activation by a rise in intracellular Na+ concentration, altered Na+ sensitivity and changes in subunit gene or protein expression. Given the recent escalation in knowledge of insulin-stimulated signal transduction systems, it is pertinent to ask which intracellular signalling pathways are utilized by insulin in controlling Na+/K+-ATPase activity. Evidence for and against a role for the phosphatidylinositol-3-kinase and mitogen activated protein kinase arms of the insulin-stimulated intracellular signalling networks is suggested. Finally, the clinical relevance of Na+/K+-ATPase control by insulin in diabetes and related disorders is addressed. 相似文献
2.
Marunaka Y Niisato N O'Brodovich H Post M Tanswell AK 《The Journal of membrane biology》1999,168(1):91-101
The aim of the present study was to investigate the roles of Ca2+ and protein tyrosine kinase (PTK) in the insulin action on cell volume in fetal rat (20-day gestational age) type II pneumocytes.
Insulin (100 nm) increased cell volume in the presence of extracellular Ca2+ (1 mm), while cell shrinkage was induced by insulin in the absence of extracellular Ca2+ (<1 nm). This insulin action in a Ca2+-containing solution was completely blocked by co-application of bumetanide (50 μm, an inhibitor of Na+/K+/2Cl− cotransporter) and amiloride (10 μm, an inhibitor of epithelial Na+ channel), but not by the individual application of either bumetanide or amiloride. On the other hand, the insulin action
on cell volume in a Ca2+-free solution was completely blocked by quinine (1 mm, a blocker of Ca2+-activated K+ channel), but not by bumetanide and/or amiloride. These observations suggest that insulin activates an amiloride-sensitive
Na+ channel and a bumetanide-sensitive Na+/K+/2Cl− cotransporter in the presence of 1 mm extracellular Ca2+, that the stimulatory action of insulin on an amiloride-sensitive Na+ channel and a bumetanide-sensitive Na+/K+/2Cl− cotransporter requires Ca2+, and that in a Ca2+-free solution insulin activates a quinine-sensitive K+ channel but not in the presence of 1 mm Ca2+. The insulin action on cell volume in a Ca2+-free solution was almost completely blocked by treatment with BAPTA (10 μm) or thapsigargin (1 μM, an inhibitor of Ca2+-ATPase which depletes the intracellular Ca2+ pool). Further, lavendustin A (10 μm, an inhibitor of receptor type PTK) blocked the insulin action in a Ca2+-free solution. These observations suggest that the stimulatory action of insulin on a quinine-sensitive K+ channel is mediated through PTK activity in a cytosolic Ca2+-dependent manner. Lavendustin A, further, completely blocked the activity of the Na+/K+/2Cl− cotransporter in a Ca2+-free solution, but only partially blocked the activity of the Na+/K+/2Cl− cotransporter in the presence of 1 mm Ca2+. This observation suggests that the activity of the Na+/K+/2Cl− cotransporter is maintained through two different pathways; one is a PTK-dependent, Ca2+-independent pathway and the other is a PTK-independent, Ca2+-dependent pathway. Further, we observed that removal of extracellular Ca2+ caused cell shrinkage by diminishing the activity of the amiloride-sensitive Na+ channel and the bumetanide-sensitive Na+/K+/2Cl− cotransporter, and that removal of extracellular Ca2+ abolished the activity of the quinine-sensitive K+ channel. We conclude that the cell shrinkage induced by removal of extracellular Ca2+ results from diverse effects on the cotransporter and Na+ and K+ channels.
Received: 2 September 1998/Revised: 30 November 1998 相似文献
3.
《生物化学与生物物理学报:生物膜》1986,858(2):301-308
The effects of changes in secretory concentrations of K+, Cl− and Na+ on transmembrane potential difference (PD) and resistance were compared for secreting fundus and resting fundus of Rana pipiens. In the resting fundus experiments histamine was present, and SCN and omeprazole gave similar results. Increase of K+ from 4 to 80 mM, decrease of Cl− from 160 to 16 mM and decrease of Na+ from 156 to 15.6 mM gave, respectively, 10 min after the change, in the secreting fundus ΔPD = 7.6, 10.0 and −2.2 mV and in the resting fundus ΔPD = 4.3, 14.4 and 0 mV. With cimetidine and no histamine, increase of K+ from 4 to 80 mM gave a ΔPD which decreased to near zero after exposure to cimetidine for at least 30 min. For the same K+ change, replacement of cimetidine with SCN or omeprazole and without histamine maintained ΔPD near zero and subsequent addition of histamine with inhibitor present gave a ΔPD of about 12 mV. The change in ΔPD was attributed to histamine increasing the secretory membrane area, which results in an increase in K+ conductance. Increase in ΔPD in the resting fundus compared to the secreting fundus for a decrease from 160 to 16 mM Cl− may be due to relatively little Cl− entering the lumina from cells in the resting fundus, which would result in a greater change of the ratio intracellular Cl−/luminal Cl− in the resting fundus than in the secreting fundus for the decrease in Cl− studied. 相似文献
4.
5.
This work presents a detailed kinetic study that shows the coupling between the E2→E1 transition and Rb+ deocclusion stimulated by Na+ in pig-kidney purified Na,K-ATPase. Using rapid mixing techniques, we measured in parallel experiments the decrease in concentration of occluded Rb+ and the increase in eosin fluorescence (the formation of E1) as a function of time. The E2→E1 transition and Rb+ deocclusion are described by the sum of two exponential functions with equal amplitudes, whose rate coefficients decreased with increasing [Rb+]. The rate coefficient values of the E2→E1 transition were very similar to those of Rb+-deocclusion, indicating that both processes are simultaneous. Our results suggest that, when ATP is absent, the mechanism of Na+-stimulated Rb+ deocclusion would require the release of at least one Rb+ ion through the extracellular access prior to the E2→E1 transition. Using vanadate to stabilize E2, we measured occluded Rb+ in equilibrium conditions. Results show that, while Mg2 + decreases the affinity for Rb+, addition of vanadate offsets this effect, increasing the affinity for Rb+. In transient experiments, we investigated the exchange of Rb+ between the E2-vanadate complex and the medium. Results show that, in the absence of ATP, vanadate prevents the E2→E1 transition caused by Na+ without significantly affecting the rate of Rb+ deocclusion. On the other hand, we found the first evidence of a very low rate of Rb+ occlusion in the enzyme–vanadate complex, suggesting that this complex would require a change to an open conformation in order to bind and occlude Rb+. 相似文献
6.
7.
Ulrika Lind Magnus Alm Rosenblad Anna-Lisa Wrange Kristina S. Sundell Per R. Jonsson Carl André Jonathan Havenhand Anders Blomberg 《PloS one》2013,8(10)
The euryhaline bay barnacle Balanus improvisus has one of the broadest salinity tolerances of any barnacle species. It is able to complete its life cycle in salinities close to freshwater (3 PSU) up to fully marine conditions (35 PSU) and is regarded as one of few truly brackish-water species. Na+/K+ ATPase (NAK) has been shown to be important for osmoregulation when marine organisms are challenged by changing salinities, and we therefore cloned and examined the expression of different NAKs from B. improvisus. We found two main gene variants, NAK1 and NAK2, which were approximately 70% identical at the protein level. The NAK1 mRNA existed in a long and short variant with the encoded proteins differing only by 27 N-terminal amino acids. This N-terminal stretch was coded for by a separate exon, and the two variants of NAK1 mRNAs appeared to be created by alternative splicing. We furthermore showed that the two NAK1 isoforms were differentially expressed in different life stages and in various tissues of adult barnacle, i.e the long isoform was predominant in cyprids and in adult cirri. In barnacle cyprid larvae that were exposed to a combination of different salinities and pCO2 levels, the expression of the long NAK1 mRNA increased relative to the short in low salinities. We suggest that the alternatively spliced long variant of the Nak1 protein might be of importance for osmoregulation in B. improvisus in low salinity conditions. 相似文献
8.
9.
Abstract We have carried out B3LYP hybrid density functional studies of complexes formed by cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine cytosine-tetrads with Li+, Na+ and K+ ions to determine their structures and interaction energies. The conformations studied have been restricted to a hydrogen bond pattern closely related to the tetrads observed in experimental nucleic acid structures. A comparison of the alkali metal ion/tetrad complexes with the tetrads without cations indicates that alkali metal ions modulate the tetrad structures significantly and that even the hydrogen bond pattern may change. Guanine-tetrad cation complexes show the strongest interaction energy compared to other tetrads that occur less frequently in experimental structures. The most stable G-tetrad/metal ion structure adopts a nearly planar geometry that is especially suitable for tetraplex formation, which requires approximately parallel tetrad planes. In the cytosine-tetrad there is a very large central cavity suitable for cation recognition, but the complexes adopt a non-planar structure unsuitable for stacking, except possibly for ions with very large radii. Uracil and thymine tetrads show a significant different characteristics which may contribute to the differences between DNA and RNA. 相似文献
10.
《生物化学与生物物理学报:生物膜》1987,897(3):445-452
The effects of changes in secretory concentrations of K+, Na+ and HCO3− on transmucosal potential difference (PD) and resistance in Cl−-free (SO42−) solutions were compared for secreting fundus and resting fundus of Rana pipiens. In the resting fundus experiments, histamine was not present in the nutrient solution and cimetidine was primarily used to obtain acid inhibition. Increase of K+ from 4 to 80 mM, decrease of Na+ from 156 to 15.6 mM and decrease of HCO3− from 25 to 5 mM gave, 10 min after the change, in the secreting fundus Δ PD values of 39.7, −11.9 and 3.2 mV, respectively. In the resting fundus, 1.5 to 2 h after the addition of cimetidine, the same changes in secretory ion concentration gave Δ PD values of 12.2, −5.6 and 1.5 mV, respectively. Replacement of cimetidine with SCN and without histamine yielded a Δ PD somewhat lower than that in cimetidine, namely 9 mV for a K+ change from 4 to 80 mM. Subsequent addition of histamine with SCN present gave a Δ PD of about 21 mV. The change in PD was attributed to histamine increasing the secretory membrane area, leading to an increase in K+ conductance. Another possibility is that histamine increases the K+ conductance per se. 相似文献
11.
12.
Xiu L. Chen Nicklaus L. J. E. Wee Kum C. Hiong Jasmine L. Y. Ong You R. Chng Biyun Ching Wai P. Wong Shit F. Chew Yuen K. Ip 《PloS one》2013,8(12)
The swamp eel, Monopterus albus, can survive in high concentrations of ammonia (>75 mmol l−1) and accumulate ammonia to high concentrations in its brain (∼4.5 µmol g−1). Na+/K+-ATPase (Nka) is an essential transporter in brain cells, and since NH4
+ can substitute for K+ to activate Nka, we hypothesized that the brain of M. albus expressed multiple forms of Nka α-subunits, some of which might have high K+ specificity. Thus, this study aimed to clone and sequence the nka α-subunits from the brain of M. albus, and to determine the effects of ammonia exposure on their mRNA expression and overall protein abundance. The effectiveness of NH4
+ to activate brain Nka from M. albus and Mus musculus was also examined by comparing their Na+/K+-ATPase and Na+/NH4
+-ATPase activities over a range of K+/NH4
+ concentrations. The full length cDNA coding sequences of three nkaα (nkaα1, nkaα3a and nkaα3b) were identified in the brain of M. albus, but nkaα2 expression was undetectable. Exposure to 50 mmol l−1 NH4Cl for 1 day or 6 days resulted in significant decreases in the mRNA expression of nkaα1, nkaα3a and nkaα3b. The overall Nka protein abundance also decreased significantly after 6 days of ammonia exposure. For M. albus, brain Na+/NH4
+-ATPase activities were significantly lower than the Na+/K+-ATPase activities assayed at various NH4
+/K+ concentrations. Furthermore, the effectiveness of NH4
+ to activate Nka from the brain of M. albus was significantly lower than that from the brain of M. musculus, which is ammonia-sensitive. Hence, the (1) lack of nkaα2 expression, (2) high K+ specificity of K+ binding sites of Nkaα1, Nkaα3a and Nkaα3b, and (3) down-regulation of mRNA expression of all three nkaα isoforms and the overall Nka protein abundance in response to ammonia exposure might be some of the contributing factors to the high brain ammonia tolerance in M. albus. 相似文献
13.
Karl-Anders Karlsson Bo E. Samuelsson Göran O. Steen 《The Journal of membrane biology》1971,5(2):169-184
Summary Ducks (Anas platyrhynchos) were fed hypertonic saline for eight days, resulting in an activation and hypertrophy of the salt gland. The Na+–K+-dependent adenosine triphosphatase, an enzyme generally assumed to be part of the active Na transport system, increased its specific activity by about 200% during this activation. Sulfatides, the major glycolipids of the salt gland, increased their concentration to the same extent. Cholesterol, cerebrosides, and six phospholipid classes showed an increase of 20–80%.A preliminary report on this work was given at the Second International Meeting of the International Society for Neurochemistry, Milan, September 1–5, 1969, and at the XIIIth International Conference on the Biochemistry of Lipids, Athens, September 7–12, 1969. 相似文献
14.
J. S. Graves Ph.D. T. Inabnett K. Geering J. A. V. Simson 《Cell and tissue research》1989,258(1):137-145
Summary An antibody to the 96 kD -subunit of the Na+, K+ -ATPase from Bufo marinus has been used in immunostaining rat kidney and salivary glands. Intense staining was observed on basolateral membranes of distal tubules of the kidney and striated ducts of the three major salivary glands. Less intense staining was seen on the basolateral membranes of parotid acinar cells, but no staining was seen on the acinar cells of submandibular or sublingual glands. These sites of staining have been shown, by other methods, to posses substantial Na+, K+ -ATPase, indicating that the antibody recognizes antigenic determinants of the sodium pump highly conserved in the course of evolution. In addition, staining with this antibody was observed at the apical region of cells of the proximal straight tubule and of the papillary collecting duct in the kidney. Absorption studies suggest that the apical antigenic determinants are the same or closely related to each other but are distinct from basolateral antigenic determinants. 相似文献
15.
Justin C. Havird Raymond P. Henry Alan E. Wilson 《Comparative biochemistry and physiology. Part D, Genomics & proteomics》2013,8(2):131-140
Recent advances in molecular techniques have allowed gene expression in euryhaline animals to be quantified during salinity transfers. As these investigations transition from studying single genes to utilizing genomics-based methodologies, it is an appropriate time to summarize single gene studies. Therefore, a meta-analysis was performed on 59 published studies that used quantitative polymerase chain reaction (qPCR) to examine expression of osmoregulatory genes (the Na+/K+–ATPase, NKA; the Na+/K+/2Cl? cotransporter, NKCC; carbonic anhydrase, CA; the cystic fibrosis transmembrane regulator, CFTR; and the H+–ATPase, HAT) in response to salinity transfer. Based on 887 calculated effect sizes, NKA, NKCC, CA, and HAT are up-regulated after salinity transfer, while surprisingly, CFTR is unchanged. Meta-analysis also identified influential factors contributing to these changes. For example, expression was highest: 1) during transfers from higher to lower salinities comprising a physiological transition from osmoconformity to osmoregulation, 2) 1–3 days following transfer, 3) during dissimilar transfers, and 4) in crustaceans rather than teleosts. Methodological characteristics (e.g., types of controls) were not important. Experiments lacking in the current literature were also identified. Meta-analyses are powerful tools for quantitatively synthesizing a large body of literature, and this report serves as a template for their application in other areas of comparative physiology. 相似文献
16.
Neurochemical Research - Accurate quantification of cellular contributions to rates of substrate utilization in resting, activated, and diseased brain is essential for interpretation of data from... 相似文献
17.
《Comparative biochemistry and physiology. A, Comparative physiology》1991,98(2):357-360
- 1.1. The effects of alternating current electronarcosis, rectified current electronarcosis and chemical anaesthesia (benzocaine hydrochloride) on plasma electrolytes and on the osmotic pressure of the blood of the freshwater bream Oreochromis mossambicus were evaluated.
- 2.2. Plasma Ca2+, Na+ and K+ concentrations and the osmotic pressure of the blood were monitored over a period of 7 days.
- 3.3. The results showed that the different electrolytes respond differently to the different techniques.
- 4.4. Chemical anaesthesia exhibited the least effects on the parameters studied.
18.
Neurochemical Research - 相似文献
19.
Biyun Ching Jia M. Woo Kum C. Hiong Mel V. Boo Celine Y. L. Choo Wai P. Wong Shit F. Chew Yuen K. Ip 《PloS one》2015,10(3)
This study aimed to obtain the coding cDNA sequences of Na+/K+-ATPase α (nkaα) isoforms from, and to quantify their mRNA expression in, the skeletal muscle (SM), the main electric organ (EO), the Hunter’s EO and the Sach’s EO of the electric eel, Electrophorus electricus. Four nkaα isoforms (nkaα1c1, nkaα1c2, nkaα2 and nkaα3) were obtained from the SM and the EOs of E. electricus. Based on mRNA expression levels, the major nkaα expressed in the SM and the three EOs of juvenile and adult E. electricus were nkaα1c1 and nkaα2, respectively. Molecular characterization of the deduced Nkaα1c1 and Nkaα2 sequences indicates that they probably have different affinities to Na+ and K+. Western blotting demonstrated that the protein abundance of Nkaα was barely detectable in the SM, but strongly detected in the main and Hunter’s EOs and weakly in the Sach’s EO of juvenile and adult E. electricus. These results corroborate the fact that the main EO and Hunter’s EO have high densities of Na+ channels and produce high voltage discharges while the Sach’s EO produces low voltage discharges. More importantly, there were significant differences in kinetic properties of Nka among the three EOs of juvenile E. electricus. The highest and lowest V
max of Nka were detected in the main EO and the Sach’s EO, respectively, with the Hunter’s EO having a V
max value intermediate between the two, indicating that the metabolic costs of EO discharge could be the highest in the main EO. Furthermore, the Nka from the main EO had the lowest Km (or highest affinity) for Na+ and K+ among the three EOs, suggesting that the Nka of the main EO was more effective than those of the other two EOs in maintaining intracellular Na+ and K+ homeostasis and in clearing extracellular K+ after EO discharge. 相似文献