首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stereo-specific l-isoleucine-4-hydroxylase (l-isoleucine dioxygenase (IDO)) was cloned and expressed in an Escherichia coli 2Δ strain lacking the activities of α-ketoglutarate dehydrogenase (EC 1.2.4.2), isocitrate liase (EC 4.1.3.1), and isocitrate dehydrogenase kinase/phosphatase (EC 2.7.11.5). The 2Δ strain could not grow in a minimal-salt/glucose/glycerol medium due to the blockage of TCA during succinate synthesis. The IDO activity in the 2Δ strain was able to “shunt” destroyed TCA, thereby coupling l-isoleucine hydroxylation and cell growth. Using this strain, we performed the direct biotransformation of l-isoleucine into 4-HIL with an 82% yield.  相似文献   

2.
l-Leucine 5-hydroxylase (LdoA) previously found in Nostoc punctiforme PCC 73102 is a novel type of Fe(II)/α-ketoglutarate-dependent dioxygenase. LdoA catalyzed regio- and stereoselective hydroxylation of l-leucine and l-norleucine into (2S,4S)-5-hydroxyleucine and (2S)-5-hydroxynorleucine, respectively. Moreover, LdoA catalyzed sulfoxidation of l-methionine and l-ethionine in the same manner as previously described l-isoleucine 4-hydroxylase. Therefore LdoA should be a promising biocatalyst for effective production of industrially useful amino acids.  相似文献   

3.
ε-Poly-l-lysine (ε-PL), one of the only two homo-poly amino acids known in nature, is used as a preservative. In this study, strategies of feeding precursor l-lysine into 5 L laboratory scale fermenters, including optimization of l-lysine concentration and time, was investigated to optimize the production of ε-PL by Streptomyces sp. M-Z18. The optimized strategy was then used in ε-PL fed-batch fermentation in which glucose and glycerol served as mixed carbon sources. In this way, a novel ε-PL production strategy involving precursor l-lysine coupled with glucose–glycerol co-fermentation was developed. Under optimal conditions, ε-PL production reached 37.6 g/l, which was 6.2 % greater than in a previous study in which glucose and glycerol co-fermentation was performed without added l-lysine (35.14 g/l). To the best of our knowledge, this is the first report of the enhancement of ε-PL production through l-lysine feeding to evaluate the use of fermenters. Meanwhile, the role of l-lysine in the promotion of ε-PL production, participating ε-PL synthesis as a whole, was first determined using the l-[U–13C] lysine labeling method. It has been suggested that the bottleneck of ε-PL synthesis in Streptomyces sp. M-Z18 is in the biosynthesis of precursor l-lysine. The information obtained in the present work may facilitate strain improvement and efficient large-scale ε-PL production.  相似文献   

4.
During l-glutamate production, phosphoenolpyruvate carboxylase and pyruvate carboxylase (PCx) play important roles in supplying oxaloacetate to the tricarboxylic acid cycle. To explore the significance of PCx for l-glutamate overproduction, the pyc gene encoding PCx was amplified in Corynebacterium glutamicum GDK-9 triggered by biotin limitation and CN1021 triggered by a temperature shock, respectively. In the fed-batch cultures, GDK-9pXMJ19pyc exhibited 7.4 % lower l-alanine excretion and no improved l-glutamate production. In contrast, CN1021pXMJ19pyc finally exhibited 13 % lower l-alanine excretion and identical l-glutamate production, however, 8.5 % higher l-glutamate production was detected during a short period of the fermentation. It was indicated that pyc overexpression in l-glutamate producer strains, especially CN1021, increased the supply of oxaloacetate for l-glutamate synthesis and decreased byproduct excretion at the pyruvate node.  相似文献   

5.
Dietary intake of l-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, l-alanine and l-serine were preferred over their d-enantiomer counterparts, while no such effect was observed for l-threonine vs. d-threonine; (2) these behavioral patterns were closely associated with the ability of l-amino acids to promote increases in respiratory exchange ratios such that those, and only those, l-amino acids able to promote increases in respiratory exchange ratios were preferred over their d-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.  相似文献   

6.
The experiments presented here were based on the conclusions of our previous results. In order to avoid introduction of expression plasmid and to balance the NADH/NAD ratio, the NADH biosynthetic enzyme, i.e., NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GADPH), was replaced by NADP-dependent GADPH, which was used to biosynthesize NADPH rather than NADH. The results indicated that the NADH/NAD ratio significantly decreased, and glucose consumption and l-lysine production drastically improved. Moreover, increasing the flux through l-lysine biosynthetic pathway and disruption of ilvN and hom, which involve in the branched amino acid and l-methionine biosynthesis, further improved l-lysine production by Corynebacterium glutamicum. Compared to the original strain C. glutamicum Lys5, the l-lysine production and glucose conversion efficiency (α) were enhanced to 81.0 ± 6.59 mM and 36.45 % by the resulting strain C. glutamicum Lys5-8 in shake flask. In addition, the by-products (i.e., l-threonine, l-methionine and l-valine) were significantly decreased as results of genetic modification in homoserine dehydrogenase (HSD) and acetohydroxyacid synthase (AHAS). In fed-batch fermentation, C. glutamicum Lys5-8 began to produce l-lysine at post-exponential growth phase and continuously increased over 36 h to a final titer of 896 ± 33.41 mM. The l-lysine productivity was 2.73 g l?1 h?1 and the α was 47.06 % after 48 h. However, the attenuation of MurE was not beneficial to increase the l-lysine production because of decreasing the cell growth. Based on the above-mentioned results, we get the following conclusions: cofactor NADPH, precursor, the flux through l-lysine biosynthetic pathway and DCW are beneficial to improve l-lysine production in C. glutamicum.  相似文献   

7.
High concentrations of acetate, the main by-product of Escherichia coli (E. coli) high cell density culture, inhibit bacterial growth and l-threonine production. Since metabolic overflux causes acetate accumulation, we attempted to reduce acetate production by redirecting glycolysis flux to the pentose phosphate pathway by deleting the genes encoding phosphofructokinase (pfk) and/or pyruvate kinase (pyk) in an l-threonine-producing strain of E. coli, THRD. pykF, pykA, pfkA, and pfkB deletion mutants produced less acetate (9.44 ± 0.83, 3.86 ± 0.88, 0.30 ± 0.25, and 6.99 ± 0.85 g/l, respectively) than wild-type THRD cultures (19.75 ± 0.93 g/l). THRDΔpykF and THRDΔpykA produced 11.05 and 5.35 % more l-threonine, and achieved a 10.91 and 5.60 % higher yield on glucose, respectively. While THRDΔpfkA grew more slowly and produced less l-threonine than THRD, THRDΔpfkB produced levels of l-threonine (102.28 ± 2.80 g/l) and a yield on glucose (0.34 g/g) similar to that of THRD. The dual deletion mutant THRDΔpfkBΔpykF also achieved low acetate (7.42 ± 0.81 g/l) and high l-threonine yields (111.37 ± 2.71 g/l). The level of NADPH in THRDΔpfkA cultures was depressed, whereas all other mutants produced more NADPH than THRD did. These results demonstrated that modification of glycolysis in E. coli THRD reduced acetate production and increased accumulation of l-threonine.  相似文献   

8.
l-Serine is a nonessential amino acid, but plays a crucial role as a building block for cell growth. Currently, l-serine production is mainly dependent on enzymatic or cellular conversion. In this study, we constructed a recombinant Escherichia coli that can fermentatively produce l-serine from glucose. To accumulate l-serine, sdaA encoding the l-serine dehydratase, iclR encoding the isocitrate lyase regulator, and arcA encoding the aerobic respiration control protein were deleted in turn. In batch fermentation, the engineered E. coli strain YF-5 exhibited obvious l-serine accumulation but poor cell growth. To restore cell growth, aceB encoding the malate synthase was knocked out, and the engineered strain was then transformed with plasmid that overexpressed serA FR , serB, and serC genes. The resulting strain YF-7 produced 4.5 g/L l-serine in batch cultivation and 8.34 g/L l-serine in fed-batch cultivation.  相似文献   

9.
Enantiomerically pure l-homophenylalanine (l-HPA) is a key building block for the synthesis of angiotensin-converting enzyme inhibitors and other chiral pharmaceuticals. Among the processes developed for the l-HPA production, biocatalytic synthesis employing phenylalanine dehydrogenase has been proven as the most promising route. However, similar to other dehydrogenase-catalyzed reactions, the viability of this process is markedly affected by insufficient substrate loading and high costs of the indispensable cofactors. In the present work, a highly efficient and economic biocatalytic process for l-HPA was established by coupling genetically modified phenylalanine dehydrogenase and formate dehydrogenase. Combination of fed-batch substrate addition and a continuous product removal greatly increased substrate loading and cofactor utilization. After systemic optimization, 40 g (0.22 mol) of keto acid substrate was transformed to l-HPA within 24 h and a total of 0.2 mM NAD+ was reused effectively in eight cycles of fed-batch operation, consequently giving an average substrate concentration of 510 mM and a productivity of 84.1 g l?1 day?1 for l-HPA. The present study provides an efficient and feasible enzymatic process for the production of l-HPA and a general solution for the increase of substrate loading.  相似文献   

10.
?-Poly-l-lysine (?-PL), produced by Streptomyces or Kitasatospora strains, is a homo-poly-amino acid of l-lysine, which is used as a safe food preservative. In this study, the effects of l-lysine and its isomer, d-lysine, on ?-PL biosynthesis and their metabolites by the ?-PL-producing strain Streptomyces ahygroscopicus GIM8 were determined. The results indicated that l-lysine added into the fermentation medium in the production phase mainly served as a precursor for ?-PL biosynthesis during the flask culture phase, leading to greater ?-PL production. At an optimum level of 3 mM l-lysine, a ?-PL yield of 1.16 g/L was attained, with a 41.4% increment relative to the control of 0.78 g/L. Regarding d-lysine, the production of ?-PL increased by increasing its concentrations up to 6 mM in the initial fermentation medium. Interestingly, ?-PL production (1.20 g/L) with the addition of 3 mM d-lysine into the initial fermentation medium in flasks was higher than that of the initial addition of 3 mM L-lysine (1.06 g/L). The mechanism by which d-lysine improves ?-PL biosynthesis involves its utilization that leads to greater biomass. After S. ahygroscopicus GIM8 was cultivated in the defined medium with L-lysine, several key metabolites, including 5-aminovalerate, pipecolate, and l-2-aminoadipate formed in the cells, whereas only l-2-aminoadipate was observed after d-lysine metabolism. This result indicates that l-lysine and d-lysine undergo different metabolic pathways in the cells. Undoubtedly, the results of this study are expected to aid the understanding of ?-PL biosynthesis and serve as reference for the formulation of an alternative approach to improve ?-PL productivity using l-lysine as an additional substrate in the fermentation medium.  相似文献   

11.
l-dopa-l-Tyr was synthesized by Fmoc solid-phase peptide synthesis, purified by reversed-phase HPLC and characterized by using 1H, 13C NMR and ESI–MS analyses. The interaction of l-dopa-l-Tyr and l-dopa with ctDNA has been investigated respectively by UV–vis absorption and fluorescence spectroscopy. The results showed that both l-dopa and l-dopa-l-Tyr interacted with ctDNA through intercalative mode and l-dopa-l-Tyr showed a higher affinity for DNA. Meanwhile, compared with the free l-dopa, gel electrophoresis assay also demonstrated that l-dopa-l-Tyr interacted with DNA by intercalation.  相似文献   

12.
A thiaisoleucine-resistant mutant, ASAT–372, derived from a threonine producer of Corynebacterium glutamicum, KY 10501, produced 5 mg/ml each of l-isoleucine and l-threonine. l-Isoleucine productivity of ASAT–372 was improved stepwise, with concurrent decrease in threonine production, by successively endowing it with resistivity to such substances as ethionine, 4-azaleucine and α-aminobutyric acid. The mutant strain finally selected, RAM–83, produced 9.7 mg/ml of l-isoleucine with a medium containing 10% (as sugar) molasses.

l-Isoleucine production was significantly affected by the concentration of ammonium sulfate in the fermentation medium. At 4% ammonium sulfate l-isoleucine production was enhanced whereas l-threonine production was suppressed. At 2% ammonium sulfate l-threonine production was stimulated while l-isoleucine production decreased.  相似文献   

13.
Due to the unique role of l-proline in the folding and structure of protein, a variety of synthetic proline analogues have been developed. l-Proline analogues have been proven to be valuable reagents for studying cellular metabolism and the regulation of macromolecule synthesis in both prokaryotic and eukaryotic cells. In addition to these fundamental researches, they are useful compounds for industrial use. For instance, microorganisms that overproduce l-proline have been obtained by isolating mutants resistant to l-proline analogues. They are also promising candidates for tuning the biological, pharmaceutical, or physicochemical properties of naturally occurring or de novo designed peptides. Among l-proline analogues, l-azetidine-2-carboxylic acid (l-AZC) is a toxic non-proteinogenic amino acid originally found in lily of the valley plants and trans-4-hydroxy-l-proline (4-l-THOP) is the most abundant component of mammalian collagen. Many hydroxyprolines (HOPs), such as 4-l-THOP and cis-4-hydroxy-l-proline (4-l-CHOP), are useful chiral building blocks for the organic synthesis of pharmaceuticals. In addition, l-AZC and 4-l-CHOP, which are potent inhibitors of cell growth, have been tested for their antitumor activity in tissue culture and in vivo. In this review, we describe the recent discoveries regarding the physiological properties and microbial production and metabolism of l-proline analogues, particularly l-AZC and HOPs. Their applications in fundamental research and industrial use are also discussed.  相似文献   

14.
Poly(ε-l-lysine) (ε-PL) producer strain Streptomyces albulus PD-1 secreted a novel polymeric substance into its culture broth along with ε-PL. The polymeric substance was purified to homogeneity and identified. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and nuclear magnetic resonance spectroscopy as well as other analytical techniques revealed that the substance was poly(l-diaminopropionic acid) (PDAP). PDAP is an l-α,β-diaminopropionic acid oligomer linking between amino and carboxylic acid functional groups. The molecular weight of PDAP ranged from 500 to 1500 Da, and no co-polymers composed of l-diaminopropionic acid and l-lysine were present in the culture broth. Compared with ε-PL, PDAP exhibited stronger inhibitory activities against yeasts but weaker activities against bacteria. ε-PL and PDAP co-production was also investigated. Both ε-PL and PDAP were synthesized during the stationary phase of growth, and the final ε-PL and PDAP concentration reached 21.7 and 4.8 g L-1, respectively, in fed-batch fermentation. Citric acid feeding resulted in a maximum ε-PL concentration of 26.1 g L-1 and a decrease in the final concentration of PDAP to 3.8 g L-1. No studies on ε-PL and PDAP co-production in Streptomyces albulus have been reported previously, and inhibition of by-products such as PDAP is potentially useful in ε-PL production.  相似文献   

15.
Effect of oxygen tension on l-lysine, l-threonine and l-isoleucine accumulation was investigated. Sufficient supply of oxygen to satisfy the cell’s oxygen demand was essential for the maximum production in each fermentation. The dissolved oxygen level must be controlled at greater than 0.01 atm in every fermentation, and the optimum redox potentials of culture media were above ?170 mV in l-lysine and l-threonine and above ?180 mV in l-isoleucine fermentations. The maximum concentrations of the products were 45.5 mg/ml for l-lysine, 10.3 mg/ml for l-threonine and 15.1 mg/ml for l-isoleucine. The degree of the inhibition due to oxygen limitation was slight in the fermentative production of l-lysine, l-threonine and l-isoleucine, whose biosynthesis is initiated with l-aspartic acid, in contrast to the accumulation of l-proline, l-glutamine and l-arginine, which is biosynthesized by way of l-glutamic acid.  相似文献   

16.
The gene of an l-rhamnose isomerase (RhaA) from Bacillus subtilis was cloned to the pET28a(+) and then expressed in the E. coli ER2566. The expressed enzyme was purified with a specific activity of 3.58 U/mg by His-Trap affinity chromatography. The recombinant enzyme existed as a 194 kDa tetramer and the maximal activity was observed at pH 8.0 and 60°C. The RhaA displayed activity for l-rhamnose, l-lyxose, l-mannose, d-allose, d-gulose, d-ribose, and l-talose, among all aldopentoses and aldohexoses and it showed enzyme activity for l-form monosaccharides such as l-rhamnose, l-lyxose, l-mannose, and l-talose. The catalytic efficiency (k cat/K m) of the recombinant enzyme for l-rhamnose, l-lyxose, and l-mannose were 7,460, 1,013, and 258 M/sec. When l-xylulose 100 g/L and l-fructose 100 g/L were used as substrates, the optimum concentrations of RpiB were determined with 6 and 15 U/mL, respectively. The l-lyxose 40 g/L was produced from l-xylulose 100 g/L by the enzyme during 60 min, while l-mannose 25 g/L was produced from l-fructose 100 g/L for 80 min. The results suggest that RhaA from B. subtilis is a potential producer of l-form monosaccharides.  相似文献   

17.
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a l-arabinose/d-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP+ but uses also NAD+ as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards l-arabinose, d-galactose and d-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of l-arabinose, and the stable oxidation product detected is l-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear l-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for l-arabinose uptake, resulted in production of 18 g of l-arabonate per litre, at a rate of 248 mg of l-arabonate per litre per hour, with 86 % of the provided l-arabinose converted to l-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for l-arabonate production in yeast.  相似文献   

18.
19.
In this study, extremely halophilic and moderately thermophilic microorganisms from a hypersaline microbial mat were screened for their ability to produce antibacterial, antidiatom, antialgal, and quorum-sensing (QS) inhibitory compounds. Five bacterial strains belonging to the genera Marinobacter and Halomonas and one archaeal strain belonging to the genus Haloterrigena were isolated from a microbial mat. The strains were able to grow at a maximum salinity of 22–25 % and a maximum temperature of 45–60 °C. Hexanes, dichloromethane, and butanol extracts from the strains inhibited the growth of at least one out of nine human pathogens. Only butanol extracts of supernatants of Halomonas sp. SK-1 inhibited growth of the microalga Dunaliella salina. Most extracts from isolates inhibited QS of the acyl homoserine lactone producer and reporter Chromobacterium violaceum CV017. Purification of QS inhibitory dichloromethane extracts of Marinobacter sp. SK-3 resulted in isolation of four related diketopiperazines (DKPs): cyclo(l-Pro-l-Phe), cyclo(l-Pro-l-Leu), cyclo(l-Pro-l-isoLeu), and cyclo(l-Pro-d-Phe). QS inhibitory properties of these DKPs were tested using C. violaceum CV017 and Escherichia coli-based QS reporters (pSB401 and pSB1075) deficient in AHL production. Cyclo(l-Pro-l-Phe) and cyclo(l-Pro-l-isoLeu) inhibited QS-dependent production of violacein by C. violaceum CV017. Cyclo(l-Pro-l-Phe), cyclo(l-Pro-l-Leu), and cyclo(l-Pro-l-isoLeu) reduced QS-dependent luminescence of the reporter E. coli pSB401 induced by 3-oxo-C6-HSL. Our study demonstrated the ability of halophilic and moderately thermophilic strains from a hypersaline microbial mat to produce biotechnologically relevant compounds that could be used as antifouling agents.  相似文献   

20.
l-DOPA (3,4-dihydroxyphenyl-l-alanine) is the most widely used drug for treatment of Parkinson’s disease. In this study Yarrowia lipolytica-NCIM 3472 biomass was used for transformation of l-tyrosine to l-DOPA. The process parameters were optimized using response surface methodology (RSM). The optimum values of the tested variables for the production of l-DOPA were: pH 7.31, temperature 42.9 °C, 2.31 g l?1 cell mass and 1.488 g l?1 l-tyrosine. The highest yield obtained with these optimum parameters along with recycling of the cells was 4.091 g l?1. This optimization of process parameters using RSM resulted in 4.609-fold increase in the l-DOPA production. The statistical analysis showed that the model was significant. Also coefficient of determination (R2) was 0.9758, indicating a good agreement between the experimental and predicted values of l-DOPA production. The highest tyrosinase activity observed was 7,028 U mg?1 tyrosine. l-DOPA production was confirmed by HPTLC and HPLC analysis. Thus, RSM approach effectively enhanced the potential of Y. lipolytica-NCIM 3472 as an alternative source to produce l-DOPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号