首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The location of the nutrient‐rich organic refuse produced by a leaf‐cutting ant colony varies among ant species. Atta cephalotes locate their organic refuse in subterranean chambers, whereas A. colombica place their organic refuse on the soil surface near the nest. We studied the effect of the absence or presence of external organic refuse on the abundance of fine roots and seed bank composition in the superficial horizons of ant nests. We sampled soils from ant nests or dumps and adjacent areas of 15 adult nests of A. cephalotes at La Selva (LS), Costa Rica, and of 15 of A. colombica nests on Barro Colorado Island (BCI), Panama. Soils from A. cephalotes nests did not differ from adjacent soils in abundance of fine‐root and seed diversity. In contrast, organic refuse from A. colombica nests was less diverse in seed composition (due to the great abundance of Miconia argentea) and had a greater abundance of fine roots than adjacent areas. Thus the external location of the ant‐nest organic refuse is potentially important in determining the different types of plant recolonization in abandoned or dead ant nests. The relative abundance of these Atta species may influence the structure and/or composition of tropical forests.  相似文献   

2.
Genise, J.F. & Farina, J.L. 2011: Ants and xenarthrans involved in a Quaternary food web from Argentina as reflected by their fossil nests and palaeocaves. Lethaia, Vol. 45, pp. 411–422. Quaternary (Ensenadan stage‐age) deposits of the Miramar Formation from the Buenos Aires sea coast near Mar del Plata (Argentina) are well known for bearing long horizontal tunnels produced by xenarthrans, either ground sloths or armadillos. Little known is that, in some cases, these palaeocaves cross‐cut social insect nests. Nests of two studied palaeocaves can be attributed to ants based on the presence of abundant ant remains, filling of chambers and organic‐rich linings. Insect remains show part of a food web composed of army ants (Neivamyrmex) preying on leaf‐cutting ants (Acromyrmex), Pheidole and other soil invertebrates. The other main component of this web is represented by the xenarthrans feeding on these ants. The facultative foraging function of xenarthran palaeocaves is supported by the common record of these extended horizontal tunnel systems similar to other subterranean foraging mammals, the presence of insect nests cross‐cut by them and the extended myrmecophagy among xenarthrans. Xenarthran foraging burrows, despite their high‐energy cost, would have been favoured by abundance of underground ant nests during Quaternary times and harsh climate. This climate would have produced the scarcity of insects on surface and longest periods of underground activity by xenarthrans, involving the extension of shelter burrows for adult and possibly juvenile feeding. □Ant fossil nests, Argentina, Buenos Aires, food web, Quaternary, xenarthran palaeocaves.  相似文献   

3.
Abstract. It has been suggested that ant nests are the most frequent small‐scale disturbance that affect vegetation patterns. However, their effects on plant diversity are little studied. We document effects of nests of the leaf‐cutting ant Acromyrmex lobicornis on physical‐chemical soil properties and their influence on plant diversity near road verges in a desert steppe in NW Patagonia, Argentina. We analysed nest soils and controls for nitrogen, phosphorus, organic matter, moisture retention capacity and texture. We also analysed the vegetation on 42 nests (30 active and 12 abandoned or without life) and 42 areas without nests. Soil around nests had a greater nutrient content and capacity to retain moisture than control soils, which is mainly due to the presence of organic waste that the ants deposit on the soil surface. We found no association between the occurrence of nests and specific groups of plants, but plant diversity was higher at nest‐sites than at nearby non‐nest sites. This increased diversity – which is also found on abandoned nests – is mainly due to the occurrence of a larger number of native and exotic plant species on nest‐sites that are uncommon elsewhere in the study area. The most abundant plant species showed similar cover values at nest and non‐nest sites. This suggests that changes in diversity are associated to edaphic changes caused by nests rather than by changes in competitive balance caused by dominant species exclusion. We propose that the nests of Acromyrmex lobicornis, through increasing the availability of resources, generate favourable microsites that can function both as ‘refuges’ for less frequent native species, and as‘stepping stones’ for less frequent exotic plant species.  相似文献   

4.
为探明热带森林恢复过程中蚂蚁筑巢对土壤易氧化有机碳(readily oxidizable carbon, ROC)时空动态的影响及机制, 本研究以西双版纳白背桐(Mallotus paniculatus)群落、野芭蕉(Musa acuminata)群落和崖豆藤(Mellettia leptobotrya)群落3种恢复阶段热带森林为研究对象, 设置“蚂蚁筑巢地”与“非巢地”2种处理进行野外控制实验, 对比分析蚁巢和非蚁巢土壤ROC含量的时空变化特征, 并揭示这些变化与土壤微生物生物量碳及理化性质之间的相互关系。结果表明: (1)蚂蚁筑巢显著影响热带森林土壤ROC含量(P < 0.05), 蚁巢土壤ROC含量较非蚁巢提高了14.2%。不同恢复阶段蚁巢与非蚁巢土壤ROC含量大小顺序为: 野芭蕉群落 > 崖豆藤群落 > 白背桐群落。(2)不同恢复阶段热带森林蚁巢与非蚁巢土壤ROC含量均呈单峰型的时间变化趋势(P < 0.05), 最大值出现在6月, 且各月份蚁巢土壤ROC含量均高于非蚁巢。(3)不同恢复阶段热带森林蚁巢和非蚁巢土壤ROC含量均随土层深度增加呈显著递减的垂直变化趋势(P < 0.05), 且蚁巢土壤ROC含量均大于非蚁巢(P < 0.05)。(4)蚂蚁筑巢引起的土壤理化性质变化对土壤ROC含量产生了一定的影响。土壤ROC含量与土壤pH和容重呈显著负相关(P < 0.05), 与土壤有机碳、微生物生物量碳、全氮、铵态氮及硝态氮呈显著正相关(P < 0.05)。土壤微生物生物量碳与总有机碳是蚁巢土壤ROC时空变化的主要贡献者, 而铵态氮、全氮和总有机碳是非蚁巢ROC时空变化的主控因子。因此, 蚂蚁筑巢改变热带森林土壤微生物量(如微生物生物量碳)及土壤理化性质(如总有机碳、铵态氮与全氮等), 进而显著影响土壤ROC的时空动态。  相似文献   

5.
Many ant species accumulate organic debris in the vicinity of their nests. These organic materials should provide a rich resource base for the soil biota. We examined the effect of harvester ant nests (Pogonomyrmex barbatus) on the soil community and soil chemistry. Ant nest soils supported 30-fold higher densities of microarthropods and 5-fold higher densities of protozoa than surrounding, control soils. The relative abundances of the major groups of protozoa differed as well: amoebae and ciliates were relatively overrepresented, and flagellates underrepresented, in ant nest versus control soils. Densities of bacteria and fungi were similar in the two soil types. Concentrations of nitrate, ammonium, phosphorus, and potassium were significantly higher in ant nest soils, while concentrations of magnesium, calcium, and water were similar in nest and control soils. Ant nest soils were marginally more acidic than controls. The results demonstrate that P. barbatus nests constitute a significant source of spatial heterogeneity in soil biota and soil chemistry in arid grasslands. Received: 17 March 1997 / Accepted: 10 June 1997  相似文献   

6.
Ants can influence soil fertility and the spatial distribution of seeds, with possible effects on seedling recruitment. The ant species Pachycondyla striata Fr. Smith, 1858 and Odontomachus chelifer (Latreille, 1802) co-occur in many forest areas in the Neotropics. We assessed soil fertility and seed bank structure in soil samples close and distant (control) from ant nests in forest fragments. We also assessed the richness and abundance of seedlings on nests and control sites. In soil samples from ant nests, the concentration of phosphorus and potassium were respectively 55.6% and 36% higher than in control sites. Aluminium was 11–15% lower in soil samples from ant nests. In the greenhouse, soils from ant nests had higher plant abundance and species richness, but the same species composition in comparison with control sites. Although more plants emerged from soil samples of O. chelifer nests, in the field, the density and richness of seedlings were similar for the two ant species studied. Seedlings in the nest sites were, on average, 1.8 times more abundant and 1.6 times richer in species than in control sites. Our results showed that ant species can play a key role in seedling recruitment in forest fragments, where other animals with equivalent and positive effects, such as mammals, are missing.  相似文献   

7.
Solenopsis invicta virus 2 (SINV-2) is the second virus identified from the fire ant, S. invicta Buren. SINV-2 is unique among positive-strand RNA viruses from insects by possessing four cistrons in a monopartite genome. Fire ant colonies testing positive for SINV-2 by RT-PCR did not exhibit any discernable symptoms. RT-PCR-based surveys for SINV-2 among 688 fire ant mounds in Alachua County, Florida, sampled during the period January, 2006 through December, 2007 showed that the prevalence of SINV-2 among nests ranged from 1.6% to 16.4%. Unlike S. invicta virus 1, no seasonal-associated prevalence was observed with regard to SINV-2 infection among fire ant colonies. No social form specificity was evident; SINV-2 was found in both monogyne and polygyne S. invicta ants. Real-time quantitative PCR experiments showed that SINV-2 genome equivalents per individual ant ranged from 1.9 × 107 in. pupae to 4.3 × 1011 in. inseminated queens. The SINV-2 infection was detected in all ant stages examined (eggs, larvae, pupae, workers, and queens). Tissue tropism studies indicated that the alimentary canal (specifically the midgut) is most likely the susceptible tissue. SINV-2 was successfully transmitted to uninfected S. invicta ants by feeding a partially purified homogenate of SINV-2-infected ants. The SINV-2 transmission rate ranged from 30% to 80%, and both positive (genomic) and negative (replicative) SINV-2 RNA strands accumulated in recipient ants over the course of the experiment. These results indicated that SINV-2 replicates within S. invicta.  相似文献   

8.
In desert ecosystems, harvester ants have been shown to be important granivores and seed dispersers. Because many desert plants exist as seeds in the ground for long periods, harvester ants may greatly influence plant population dynamics. In this study, we examine the effects of harvester ant nests on vegetation and soil properties in a desert ecosystem dominated by the dwarf shrub Rhanterium epapposum in Kuwait, north-eastern Arabia. Soil properties were greatly modified in the circular refuse zone around the nests of the harvester ants, with elevated levels of nutrients (except nitrogen) and organic matter. Plant species richness and productivity were also significantly enhanced in the refuse zone. The vast majority of species inhabiting this zone were desert annuals, but there is no evidence to suggest that the species involved have any distinct association with ant nests. Harvester ants therefore contribute substantially to small-scale spatial heterogeneity in this aridland plant community. It is also suggested that the significance of ant nests in providing favourable sites for plant growth is enhanced in drier years, when many species in off-nest sites may die prematurely due to drought. Furthermore, because ants occasionally abandon their nests and create new colonies, the addition of nutrient-rich patches to the landscape over time could represent an important mechanism for maintaining fertility of desert soils, possibly with long-term implications for plant biodiversity. Harvester ants can therefore be regarded as a key ecosystem engineer in this relatively undisturbed desert ecosystem of Kuwait.  相似文献   

9.
1. Ants provide multiple ecosystem services, including nutrient cycling. Although most studies on nests effects on soil fertility and plant performance include species with large nests, species with less apparent nests may have a relevant effect, especially if they are widespread, abundant, and/or inhabit nutrient-poor soils. 2. We studied the effects of nests of three abundant and widespread ant species in the Patagonian steppe (the generalist Dorymyrmex tener, and the seed harvesters Pogonomyrmex carbonarius and Pheidole spininodis) on soil properties, plant growth of two native species, and seedling recruitment. Our main hypothesis was that, despite their non-apparent nests, these species have a positive effect on soils and enhance plant growth. 3. Nest soils showed higher soil conductivity, %K and %Mg than non-nest soils. In a greenhouse experiment, individuals of the biennial forb Oenothera odorata grew bigger in nest soils of P. carbonarius and D. tener than in non-nest soils. Individuals of the perennial tussock grass Pappostipa speciosa grew taller and had more tillers in nest versus non-nest soils. Seedling abundance and richness were the highest in P. carbonarius nest soils and the general trends were similar to those observed in the plant growth experiment. 4. Our results show that ant species with non-apparent nests in an arid area enhance soil properties, favouring plant growth (nests of P. carbonarius and D. tener) and seedling abundance (nests of P. carbonarius). Due to their high abundance and widespread distribution, these two species could have a relevant role in ecosystem recovery after disturbance.  相似文献   

10.
Ants are among the most important elements in many ecosystems and known as famous ecosystem engineers. By changing physical and chemical properties of soil, ants may provide suitable habitats for other species. Based on previous observations, we hypothesized that Persian goitered gazelles (Gazella subgutturosa subgutturosa) exhibit a preference for utilizing sites close to seed harvester ant (Messor spp.) nests. We tested our hypothesis by (1) mapping the occurrence of harvester ant nests and aggregated gazelle pellet groups along 31 strip transects, (2) monitoring pellet group accumulation bimonthly at 56 pairs of permanent plots established on ant nests and at adjacent control sites for a complete year, and (3) comparing vegetation and soil parameters between ant nest sites used by gazelles and paired control plots without ant nests. Although the area of Messor spp. nest sites covered only about 0.29% of the sampled transects, 84% of the gazelle pellet group aggregation sites were positioned upon ant nests, suggesting that gazelles actively selected Messor spp. nest sites. Pair-wise comparisons between ant nest plots and paired control plots also confirmed higher use of ant nest sites by gazelles compared to sites without ant nests in all time periods. Percent soil organic matter, percent cover of gravel, and annual herb vegetation significantly differed between ant nest and paired control plots in all the vegetation communities. We suggest that the alterations brought about by harvester ants on soil and vegetation make these sites attractive to gazelles. Gazelle territoriality behaviour and use of ant nests as bedding sites may be the reasons for selection of ant nest sites by gazelles.  相似文献   

11.
左倩倩  王邵军  王平  曹乾斌  赵爽  杨波 《生态学报》2021,41(18):7339-7347
蚂蚁作为生态系统工程师能够调节土壤微生物及理化环境,进而对热带森林土壤有机氮矿化速率及其时间动态产生显著影响。以西双版纳白背桐热带森林群落为研究对象,采用室内需氧培养法测定土壤有机氮矿化速率,比较蚁巢和非蚁巢土壤有机氮矿化速率的时间动态,揭示蚂蚁筑巢活动引起土壤无机氮库、微生物生物量碳及化学性质改变对有机氮矿化速率时间动态的影响。结果表明:(1)蚂蚁筑巢显著影响土壤有机氮矿化速率(P<0.01),相较于非蚁巢,蚁巢土壤有机氮矿化速率提高了261%;(2)土壤有机氮矿化速率随月份推移呈明显的单峰型变化趋势,即6月最大(蚁巢1.22 mg kg-1 d-1、非蚁巢0.41 mg kg-1 d-1),12月最小(蚁巢0.82 mg kg-1 d-1、非蚁巢0.18 mg kg-1 d-1);(3)两因素方差分析表明,不同月份及不同处理对土壤有机氮矿化速率、NH4-N及NO3-N产生显著影响(P<0.05),但对NO3-N的交互作用不显著;(4)蚂蚁筑巢显著提高了无机氮库(NH4-N与NO3-N)、微生物生物量碳、有机质、水解氮、全氮及易氧化有机碳等土壤养分含量,而降低了土壤pH值;(5)回归分析表明,铵态氮和硝态氮对土壤有机氮矿化速率产生显著影响,分别解释87.89%、61.84%的有机氮矿化速率变化;(6)主成份分析表明NH4-N、微生物生物量碳及有机质是影响有机氮矿化速率时间动态的主要因素,而全氮、NO3-N、易氧化有机碳、水解氮及pH对土壤有机氮矿化速率的影响次之,且pH与土壤有机氮矿化速率呈显著负相关。总之,蚂蚁筑巢活动主要通过影响土壤NH4-N、微生物生物量碳及有机质的状况,进而调控西双版纳热带森林土壤有机氮矿化速率的时间动态。研究结果将有助于进一步提高对土壤氮矿化生物调控机制的认识。  相似文献   

12.
Summary A major hypothesis concerning the benefits of myrmecochory, seed dispersal by ants, to plants is that ant nests are nutrient-enriched microsites that are beneficial to seedling growth. We experimentally test this hypothesis for a neotropical myrmecochore, Calathea ovandensis, asking two questions: 1) is soil of nests of a seed-dispersing ant chemically or structurally distinct from surrounding soils, and 2) do seedlings grow better in soil collected from ant nests than in randomly collected soil? We found that although ant-nest soil was significantly enriched in nitrate-nitrogen, magnesium, iron, manganese, cadmium and percent organic matter compared to randomly collected soil, seedling growth was not significantly improved by ant-nest soil.  相似文献   

13.
Effects of the Argentine ant on myrmecophilous animals living inside ant nests have been rarely studied to date. We investigated whether the “specialist” myrmecophilous cricket Myrmecophilus kubotai Maruyama that lives only in colonies of a Japanese native ant, Tetramorium tsushimae Emery, could live with the Argentine ant. In the field, the cricket was never found in nests of the Argentine ant. Our experiments showed that the cricket could not survive in artifical nests of the Argentine ant under laboratory conditions.  相似文献   

14.
Solenopsis geminata (F.) is an invasive ant that is widely distributed in weedy areas and agricultural fields in Taiwan. Previous studies have found that S. geminata harvests the seeds of numerous plants. In the present study, we further investigated the composition of harvested seeds in ant nests and seed selection by workers. The seed caches in S. geminata nests sampled in eight areas in Taiwan suggest that the seeds harvested by workers were diverse and belonged to 52 plant species in 17 plant families. Twenty-three species (44%) belong to the family Gramineae, and most of the seeds weighed from 0.02 to 2.29 mg, which might suggest that these are the main seeds harvested by S. geminata from their habitat. Ten common species with similar seed weights were used to compare the seed preferences of workers from two experimental sites. The results suggest that the seed preference was different between the two experimental sites. The seeds of Casuarina equisetifolia showed the most obvious difference in seed removal speed, which might suggest that S. geminata potentially prefers the encountered seed species in the habitat. The various plant species in the ant nests and seed preference suggest that fire ants easily accept newly encountered plant species. As more than half of the plant species (52%) and the total seed number (63%) belonged to exotic species, the role of S. geminata might be negative because it tends to harvest exotic seeds and has a high opportunity to improve the establishment of exotic seedlings.  相似文献   

15.
Composition and dynamics of ant communities may be influenced by highly specialized, specific parasitoids such as eucharitids. Yet, little is known about their prevalence in ant societies. Through systematic monthly excavation of ant nests, we evaluated the impact on the Neotropical ant Ectatomma tuberculatum of two eucharitid parasitoid species, Dilocantha lachaudii and Isomerala coronata, which simultaneously attack the same host populations in southern Mexico. Nearly 90% of all the nests collected through the year were parasitized, with an average of 13% ant pupae and 6.7% ant larvae parasitized by eucharitids, and an annual loss of 17% of the ant brood. Eucharitid prevalence among host nests was, however, very variable, and only some E. tuberculatum nests were severely weakened (100% of ant brood parasitized). Parasitism was highest during the dry season (January–March), just when the production of ant pupae was minimum: up to 50.6% of the ant pupae were destroyed in March. However, production of E. tuberculatum males and females occurred later (June–July), and the reproductive potential of the host colonies did not ultimately seem to be heavily affected by eucharitid parasitism. Differences in the seasonal timing of eucharitid attack and ant reproduction thus have the potential to modulate the impact of eucharitids on ants. Our results are discussed in the context of the impact of eucharitids upon E. tuberculatum colonies and their possible effect on the community structure of this potential biocontrol agent ant.  相似文献   

16.
We studied differences in respiration of materials from different parts of wood ant nest (top, bottom, and rim) and from the nest surroundings (humus layer and mineral soil). Samples were taken from 8 wood ant (Formica aquilonia) nests in each of the two types of forest (birch and pine) in eastern Finland. The differences were related to material and forest stand characteristics (i.e., moisture, pH, carbon content, and C:N ratio). As a result, the highest respiration per g DW was measured at the top of ant nests in the birch forest. However, respiration did not significantly differ between the parts of ant nests in the pine forest. Respiration of the humus layers in both forest stands was on average higher, whereas respiration of the mineral soils in both forest stands was lower in comparison with respiration of the nest materials. The respiration per g C did not show any significant differences between different parts of nests and surrounding soil. The most important factors influencing respiration of the materials appeared to be moisture, carbon content, and pH. In conclusion, respiration of wood ant nest material is affected by the specific material and forest stand characteristics.  相似文献   

17.
Biological characteristics of the parasitoid Orasema simplex Heraty (Hymenoptera: Eucharitidae), a potential candidate for the biological control of fire ants in the United States were investigated. Female survivorship, fertility and oviposition preferences were studied in the laboratory. Naturally parasitized colonies were examined to determine offspring sex ratio, development success and time, and to artificially parasitize healthy ant colonies. In addition, field studies were carried out to establish natural oviposition substrates and adult activity patterns. Orasema simplex female survivorship was 3.6 ± 1.5 days. Newly emerged females contained 613.5 ± 114.0 mature eggs. The adult development success in natural parasitized colonies was 22.2% with a female-biased sex ratio (4:1). The time required from planidia to adult was 29.5 ± 5.4 days. In the field, adults were mostly found around the ant nests at midday. A broad range of plant species was observed as oviposition substrates. The transfer of planidia to healthy ant colonies was achieved but the development success was very low. Orasema simplex appears to have a limited potential as a fire ant biocontrol agent because of cosmetic damage to a wide variety of plants used for oviposition. However, further studies are necessary to evaluate the real damage exerted by oviposition punctures.  相似文献   

18.
蚂蚁筑巢定居能够形成与巢穴周围显著不同的微生境和土壤养分环境,从而对土壤易氧化有机碳(EOC)产生重要影响.本研究以中国科学院西双版纳勐仑热带植物园白背桐群落为研究对象,比较蚂蚁巢地与非巢地土壤EOC时空分布特征,并分析蚂蚁筑巢引起土壤理化性质的改变对土壤EOC时空动态的影响.结果表明: 研究区蚁巢和非蚁巢地土壤EOC随月份均呈明显的单峰型变化规律,表现为6月>9月>3月>12月;土壤EOC沿土层呈逐渐降低的变化趋势,在0~5 cm土层,蚁巢土壤EOC显著大于非巢地,在5~10和10~15 cm土层的差异不显著.蚂蚁筑巢显著提高了土壤温度、土壤有机碳、土壤易氧化有机碳、土壤微生物生物量碳、全氮、硝态氮和水解氮含量,显著降低了土壤含水率和容重,但对铵态氮、pH值的影响不显著.土壤有机碳、土壤微生物生物量碳是调控蚁巢和非巢地土壤EOC时空变化的主要因子,土壤温度、含水率、全氮和硝态氮等土壤指标对土壤EOC的影响次之.蚂蚁筑巢主要通过改变微生境(土壤温度和水分)及土壤养分(主要是土壤有机碳和微生物生物量碳)的状况,进而调控热带森林土壤易氧化有机碳的时空动态.  相似文献   

19.
蚂蚁筑巢能够改变热带森林土壤理化环境,从而对土壤微生物生物量碳及熵的时空动态产生重要影响.本研究以西双版纳高檐蒲桃热带森林群落为对象,采用氯仿熏蒸法对蚂蚁巢地和非巢地土壤微生物生物量碳及熵时空动态进行测定.结果表明: 1)蚁巢地平均微生物生物量碳及熵(1.95 g·kg-1,6.8%)显著高于非巢穴(1.76 g·kg-1,5.1%);蚁巢地和非蚁巢地土壤微生物生物量碳呈单峰型时间变化趋势,而土壤微生物熵呈“V”型变化格局.2)蚁巢地和非巢地土壤微生物生物量碳及熵均具有明显的垂直变化:微生物生物量碳随土层加深显著降低,微生物熵则沿土层加深显著升高,但蚁巢微生物生物量碳及熵的垂直变化较非巢穴显著. 3)蚂蚁筑巢引起了巢内水分和温度的显著改变,进而影响土壤微生物生物量碳及熵的时空动态.土壤水分分别解释微生物生物量碳及熵的66%~83%和54%~69%,而土壤温度分别解释土壤微生物生物量碳及熵的71%~86%和67%~76%. 4)蚂蚁筑巢引起土壤理化性质变化对土壤微生物生物量碳和熵产生重要影响.蚁巢土壤微生物生物量碳与土壤有机碳、温度、全氮、含水率呈极显著正相关,与容重、硝态氮,水解氮呈显著正相关,与土壤pH呈极显著负相关;除土壤微生物熵与pH呈显著正相关外,与其他土壤理化指标均呈显著负相关.土壤总有机碳、全氮和温度对微生物生物量碳的贡献最大,而土壤总有机碳和全氮对微生物熵的负作用最小.因此,蚂蚁筑巢能够显著改变微生境(如土壤水分与温度)及土壤理化性质(如总有机碳及全氮),进而调控热带森林土壤微生物生物量碳及熵的时空动态.  相似文献   

20.
Chemical properties (total and available P concentration; oxidizable C concentration; available K, Na, and Ca concentration; and pH) were quantified for 33 nests of the ant Myrmica ruginodis and in surrounding soil in young spruce forest stands. All properties, except total P, were significantly higher in the nests than in the surrounding soil. Total P was not higher in nests than in surrounding soil across all nests because nests had higher total P than surrounding soil if the soil contained low concentrations of total P but nests had lower total P than surrounding soil if the soil contained high concentrations of total P. The effect of nests on total P in the surrounding soil corresponded with effects of nests on oxidizable carbon (an indicator of organic matter) in the surrounding soil (concentrations of oxidizable carbon and total P were closely correlated). Available P concentrations were much higher in nests than in surrounding soil. Overall, the results indicated that two main processes explain the chemical changes of soil in the ant nests: (i) mixing due to excavation of deeper soil layers and (ii) deposition of excreta and food residues. The effect of soil mixing (whereby ants transport mineral soil from deeper layers to layers near the surface) is more pronounced in soils with high organic content near the surface because mixing increases the proportion of mineral soil in the nest while decreasing the proportion of organic matter and the concentration of total P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号