共查询到20条相似文献,搜索用时 17 毫秒
1.
Assaf Sukenik Ruth N. Kaplan‐Levy Yehudit Viner‐Mozzini Antonio Quesada Ora Hadas 《Journal of phycology》2013,49(3):580-587
Akinetes are spore‐like nonmotile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Various environmental factors were reported to trigger the differentiation of akinetes including light intensity and quality, temperature, and nutrient deficiency. Here, we report that deprivation of potassium ion (K+) triggers akinete development in the cyanobacterium Aphanizomenon ovalisporum. Akinetes formation is initiated 3 d–7 d after an induction by K+ depletion, followed by 2–3 weeks of a maturation process. Akinete formation occurs within a restricted matrix of environmental conditions such as temperature, light intensity or photon flux. Phosphate is essential for akinete maturation and P‐limitation restricts the number of mature akinetes. DNA replication is essential for akinete maturation and akinete development is limited in the presence of Nalidixic acid. While our results unequivocally demonstrated the effect of K+ deficiency on akinete formation in laboratory cultures of A. ovalisporum, this trigger did not cause Cylindrospermopsis raciborskii to produce akinetes. Anabaena crassa however, produced akinetes upon potassium deficiency, but the highest akinete concentration was achieved at conditions that supported vegetative growth. It is speculated that an unknown internal signal is associated with the cellular response to K+ deficiency to induce the differentiation of a certain vegetative cell in a trichome into an akinete. A universal stress protein that functions as mediator in K+ deficiency signal transduction cascade, may communicate between the lack of K+ and akinete induction. 相似文献
2.
Solitary terminal cells of Aphanizomenon gracile (Cyanobacteria,Nostocales) can divide and renew trichomes 下载免费PDF全文
Lukasz Wejnerowski Maria K. Wojciechowicz Małgorzata Glama Julia Olechnowicz Marcin K. Dziuba Slawek Cerbin 《Phycological Research》2017,65(3):248-255
An attempt was made to find evidence that morphologically distinct terminal cells of filamentous cyanobacterium Aphanizomenon gracile strain CCALA 8 are capable of dividing and forming trichomes. Based on our current knowledge, the division of morphologically diversified terminal cells is possible in nostocalean cyanobacteria. However, this process has been observed only in a few species. Terminal cells of A. gracile differ morphologically from other vegetative cells of a trichome, as they are not hyaline and can sometimes be found as solitary cells in cultures. Hence, it was reasonable for us to suspect that these cells are capable of dividing and forming trichomes. We observed terminal cells under a light and transmission electron microscope. Microscopic observations revealed that the septum formed in both solitary terminal cells and in terminal cells attached to trichomes. Our study is the first to demonstrate division and renewal of trichomes in terminal cells of A. gracile. Previously, such mode of reproduction was described only for another nostocalean cyanobacterium Raphidiopsis mediterranea. Moreover, our findings further emphasize the variability among members that belong to the genus Aphanizomenon , in which a type species (A. flos‐aquae) has hyaline cells incapable of dividing and renewing trichomes, while A. gracile can additionally propagate by solitary terminal cells division. This additional feature distinguishing A. gracile from typical species of Aphanizomenon, such as A. flos‐aquae, might be valuable for resolving taxonomic position of the species considering ambiguous genetic relationship between A. gracile and A. flos‐aquae. 相似文献
3.
Assaf Sukenik Ruth N Kaplan-Levy Jessica Mark Welch Anton F Post 《The ISME journal》2012,6(3):670-679
Akinetes are dormancy cells commonly found among filamentous cyanobacteria, many of which are toxic and/or nuisance, bloom-forming species. Development of akinetes from vegetative cells is a process that involves morphological and biochemical modifications. Here, we applied a single-cell approach to quantify genome and ribosome content of akinetes and vegetative cells in Aphanizomenon ovalisporum (Cyanobacteria). Vegetative cells of A. ovalisporum were naturally polyploid and contained, on average, eight genome copies per cell. However, the chromosomal content of akinetes increased up to 450 copies, with an average value of 119 genome copies per akinete, 15-fold higher than that in vegetative cells. On the basis of fluorescence in situ hybridization, with a probe targeting 16S rRNA, and detection with confocal laser scanning microscopy, we conclude that ribosomes accumulated in akinetes to a higher level than that found in vegetative cells. We further present evidence that this massive accumulation of nucleic acids in akinetes is likely supported by phosphate supplied from inorganic polyphosphate bodies that were abundantly present in vegetative cells, but notably absent from akinetes. These results are interpreted in the context of cellular investments for proliferation following a long-term dormancy, as the high nucleic acid content would provide the basis for extended survival, rapid resumption of metabolic activity and cell division upon germination. 相似文献
4.
Pollingher U.; Hadas O.; Yacobi Y. Z.; Zohary T.; Berman T. 《Journal of plankton research》1998,20(7):1321-1339
The filamentous cyanobacterium Aphanizomenon ovalisporum wasobserved for the first time in Lake Kinneret in August 1994and formed a prominent bloom from September through October.Aphanizomenon ovalisporum reappeared in diminished amounts inthe summer and fall of 1995. These events are the first recordof significant quantities of a potentially toxic nitrogen-fixingcyanobacterium in this lake. No definite provenance of inoculumhas been identified, although A.ovalisporum was also observedin a newly reflooded area (Lake Agmon) in the catchment. Unusuallyhigh water temperatures and low wind inputs were observed priorto and during the A.ovalisporum bloom period. These, togetherwith possibly enhanced availability of phosphorus or other growthfactors, may have contributed to the cyanobacterium growth in1994. Phosphorus limi tation, as indicated by high cellularalkaline phosphatase activity, the onset of stormy conditionsand a fall in water temperatures led to the demise of the 1994bloom. Although the A. ovalisporum bloom in 1994 had no seriousdirect impact on water quality, the continued presence of apotentially toxic cyanobacterium in Lake Kinneret, a major nationalwater supply source, is a cause for serious concern. 相似文献
5.
DAVID MOORE MARK O'DONOHUE CORINNE GARNETT CHRISTA CRITCHLEY GLEN SHAW 《Freshwater Biology》2005,50(2):345-352
1. Cylindrospermopsis raciborskii is a potentially toxic freshwater cyanobacterium which can produce akinetes (reproductive spores) that on germinating can contribute to future populations. To further understand factors controlling the formation of these specialised cells, the effects of diurnal temperature fluctuations (magnitude and frequency), in combination with different light intensities and phosphorus concentrations were investigated under laboratory conditions. 2. Akinete differentiation was affected by the frequency of temperature fluctuations. Maximum akinete concentrations were observed in cultures that experienced multiple diurnal temperature fluctuations. 3. Akinete concentrations increased with increasing magnitude of temperature fluctuation. A maximum akinete concentration was achieved under multiple diurnal temperature fluctuations with a magnitude of 10 °C (25 °C to 15 °C). 4. A fourfold increase in light intensity (25–100 μmol m?2 s?1) resulted in an approximate 14‐fold increase in akinete concentration. 5. High filterable reactive phosphorus (FRP) concentrations (>70 μg L?1) in the medium, combined with a multiple diurnal temperature fluctuation of 10 °C, supported the development of the highest akinete concentration. 相似文献
6.
Glenn B. McGregor Barbara C. Sendall Yuko Niiyama Akihiro Tuji Anusuya Willis 《Journal of phycology》2023,59(2):326-341
True branching is a facultative characteristic only known from two cyanobacteria in the Aphanizomenonaceae, Umezakia natans and Dolichospermum brachiatum. In both cases, its expression has been associated with environmental stress, and its practical use as a diacritical feature has been previously evaluated. In this study, we undertook further evaluation of the phylogeny of Umezakia natans and its relationship to Chrysosporum ovalisporum as a previous study suggested the two were potentially congeneric. We used combined morphological, phylogenetic, and phylogenomic approaches to determine their relatedness using new strains available from a broad geographic range. Phylogenetic analysis based on 16S rRNA gene sequences showed that Australian C. ovalisporum and Japanese U. natans strains clustered together with accessions of C. ovalisporum originating from Australia, Israel, and Spain, with high p-distance similarity values (99.5%–99.9%). Additionally, differences between the two species in the 16S–23S ITS region was low (0%–2.5%). The average nucleotide identity of the U. natans and C. ovalisporum strains was also high (ANI of > 99.5 and AF > 0.9) and supported a genus-level separation from Chrysosporum bergii (83 ANI between clusters). Furthermore, in culture, strains of both species grown in vitamin-free media showed facultative true branching, a feature not previously known in C. ovalisporum. Collectively, the results support unification of C. ovalisporum and U. natans according to the principle of priority as Umezakia ovalisporum. 相似文献
7.
Invasive and alien cyanobacteria are considered as a serious threat to aquatic ecosystems due to their ability to produce cyanotoxins and outcompeting native species. Among cyanobacteria, Nostocales is a group with strong competitive advantages including the production of resting cells, ability to fix nitrogen or high affinity to phosphorus. A species Chrysosporum bergii has broadened its original distribution from brackish and seawater habitats of Caspian and Aral Seas to northern regions of Europe. The aim of our study was to expand the knowledge on the distribution of C. bergii, its preferred habitats in the invaded areas and examine whether the biomass of C. bergii is related with biomass of other alien or native cyanobacteria. We examined the phytoplankton community composition and the abiotic factors in randomly selected lakes of western Poland. For the first time, we showed that it occurs widely in lakes of this region. However, it occurred in one third of the investigated lakes and its contribution to total phytoplankton biomass was low. It occurred more frequently in shallow lakes with low conductivity and dissolved phosphorus, yet with higher total phosphorus concentration. The most remarkable finding was a negative relationship of C. bergii biomass with the biomass of native A. gracile, but a positive relationship with an invasive cyanobacterium C. raciborskii. This result suggests that these alien species occur under similar environmental conditions in Polish lakes. Moreover, the morphological features of C. bergii in Poland were similar to those of Anabaena bergii var. limnetica Couté et Preisig from Lithuania and Anabaena bergii from Czech Republic. 相似文献
8.
9.
Saghar Zarenezhad Tomoharu Sano Makoto M. Watanabe Masanobu Kawachi 《Phycological Research》2012,60(2):98-104
Cylindrospermopsis raciborskii is a common, bloom‐forming, planktonic, freshwater cyanobacterium. Toxic populations producing cylindrospermopsin can cause water‐safety problems. Although C. raciborskii is distributed worldwide, the presence of cylindrospermopsin‐producing strains of C. raciborskii was initially reported only in Australia and recently in Thailand. Here, we report the isolation of a toxic strain of C. raciborskii (ISG9) from a freshwater sample collected in Okinawa in 2008. This is the first report describing toxin expression in this species in Japan, detected from a subtropical area. The C. raciborskii species is known to produce cylindrospermopsin as a dominant toxin; however, in this new isolate, the dominant toxin expressed was deoxy‐cylindrospermopsin. The discovery of a toxic strain of C. raciborskii in southern Japan emphasizes the need for basic monitoring schemes for this species in water supplies located in the temperate regions of Japan because of its possible expansion and distribution to other geographic areas. 相似文献
10.
Cyanomargarita gen. nov. (Nostocales,Cyanobacteria): convergent evolution resulting in a cryptic genus 下载免费PDF全文
Sergei Shalygin Regina Shalygina Jeffrey R. Johansen Nicole Pietrasiak Esther Berrendero Gómez Markéta Bohunická Jan Mareš Christopher A. Sheil 《Journal of phycology》2017,53(4):762-777
Two populations of Rivularia‐like cyanobacteria were isolated from ecologically distinct and biogeographically distant sites. One population was from an unpolluted stream in the Kola Peninsula of Russia, whereas the other was from a wet wall in the Grand Staircase‐Escalante National Monument, a desert park‐land in Utah. Though both were virtually indistinguishable from Rivularia in field and cultured material, they were both phylogenetically distant from Rivularia and the Rivulariaceae based on both 16S rRNA and rbcLX phylogenies. We here name the new cryptic genus Cyanomargarita gen. nov., with type species C. melechinii sp. nov., and additional species C. calcarea sp. nov. We also name a new family for these taxa, the Cyanomargaritaceae. 相似文献
11.
A limnological database for Lake Kinneret was used to determinethe period each year when the interaction of mixed depth andlight availability would permit growth of the planktonic cyanobacteriumAphanizomenon ovalisporum. The organism, recorded for 56211days in each of the 7-years, 19942000, was usually distributedthrough the mixed epilimnion and reached a maximum in late October.The mixed depth (zm) was calculated from the temperature profile,wind speed and wind direction. Changes in the total populationwere related to changes in the daily integrals of photosynthesis,calculated from vertical profiles of water temperature () andlight attenuation (Kd), and hourly changes in photon irradiance(E0) each day, using temperature-compensated algorithms basedon measurements of photosynthesis at different irradiances.Net photosynthesis was calculated for different ratios of respiration(R) and maximum photosynthesis (Pm). In a modelling analysis,the daily integral of net photosynthesis fell below zero onthe day of the population maximum, and remained negative duringthe period of population decline, when R was set at -0.08 Pm.Similar modelling, based on the 7-year mean values of , Kd andE0for each day of the year, showed the critical depth for photosynthesisby Aphanizomenon would exceed the mixed depth in Lake Kinneretfrom mid-March to late October. Direct measurements of -R/Pmratios could be used with information in the database to analysethe periods of photosynthetic production by different phytoplanktonspecies in Lake Kinneret. 相似文献
12.
Genetic characterisation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) isolates from Africa and Europe 总被引:1,自引:0,他引:1
Sigrid Haande Thomas Rohrlack Andreas Ballot Kjetil Rberg Randi Skulberg Martin Beck Claudia Wiedner 《Harmful algae》2008,7(5):692-701
The invasive cyanobacterium Cylindrospermopsis raciborskii is increasingly spreading in temperate freshwater habitats worldwide and is of major concern due to its ability to produce potent toxins. It is, therefore, important to understand the mechanisms behind the dispersal of this species. Different hypotheses have been proposed to explain the phylogeography and mechanisms underlying the recent expansion of C. raciborskii into temperate latitudes, but there is still no conclusive evidence whether the obvious ecological success of C. raciborskii is due to selection mechanisms, physiological tolerance, climatic change or radiation after the last ice age. In the present study, new isolates of C. raciborskii from Europe and Africa were genetically characterised by sequencing the ITS1, PC-IGS, nifH and rpoC1 genes and compared to corresponding sequences of C. raciborskii available in GenBank in order to test different phylogeographical hypotheses. The strains were also morphologically examined and screened for production of the hepatotoxic cylindrospermopsin (CYN). We clearly demonstrate a variation among the populations of C. raciborskii from different geographical regions. The phylogenetic analyses revealed a clustering of the strains due to geographic origin. The ITS1 and nifH genes separated into American, European and Australian–African groups, whereas the PC-IGS and rpoC1 separated into American and European/Australian/African groups. An analysis of concatenated data supported the division into American, European and African/Australian groups, and even indicated a subdivision into an African and an Australian group. Our findings do not strongly support any of the existing hypotheses on the phylogeography of C. raciborskii, and most likely a combination of these hypotheses is the best approach to understand the evolution and dispersal of this species. 相似文献
13.
Samuel Cirés Lars W?rmer Andreas Ballot Ramsy Agha Claudia Wiedner David Velázquez María Cristina Casero Antonio Quesada 《Applied and environmental microbiology》2014,80(4):1359-1370
Planktonic Nostocales cyanobacteria represent a challenge for microbiological research because of the wide range of cyanotoxins that they synthesize and their invasive behavior, which is presumably enhanced by global warming. To gain insight into the phylogeography of potentially toxic Nostocales from Mediterranean Europe, 31 strains of Anabaena (Anabaena crassa, A. lemmermannii, A. mendotae, and A. planctonica), Aphanizomenon (Aphanizomenon gracile, A. ovalisporum), and Cylindrospermopsis raciborskii were isolated from 14 freshwater bodies in Spain and polyphasically analyzed for their phylogeography, cyanotoxin production, and the presence of cyanotoxin biosynthesis genes. The potent cytotoxin cylindrospermopsin (CYN) was produced by all 6 Aphanizomenon ovalisporum strains at high levels (5.7 to 9.1 μg CYN mg−1 [dry weight]) with low variation between strains (1.5 to 3.9-fold) and a marked extracellular release (19 to 41% dissolved CYN) during exponential growth. Paralytic shellfish poisoning (PSP) neurotoxins (saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin) were detected in 2 Aphanizomenon gracile strains, both containing the sxtA gene. This gene was also amplified in non-PSP toxin-producing Aphanizomenon gracile and Aphanizomenon ovalisporum. Phylogenetic analyses supported the species identification and confirmed the high similarity of Spanish Anabaena and Aphanizomenon strains with other European strains. In contrast, Cylindrospermopsis raciborskii from Spain grouped together with American strains and was clearly separate from the rest of the European strains, raising questions about the current assumptions of the phylogeography and spreading routes of C. raciborskii. The present study confirms that the nostocalean genus Aphanizomenon is a major source of CYN and PSP toxins in Europe and demonstrates the presence of the sxtA gene in CYN-producing Aphanizomenon ovalisporum. 相似文献
14.
Twenty-one strains of cyanobacteria representing the genera Anabaena, Cylindrospermum, Mojavia, Nostoc, Trichormus, and Wollea (Nostocales, Cyanobacteria) isolated from algocenoses of the Yenisei River basin (eastern Siberia, Russia) were taxonomically
studied. New taxa characteristic of this region were discovered. The properties of pure cultures of Anabaena sedovii, A. zinserlingii,Cylindrospermum stagnale f. tortuosum, Nostoc kihlmani, Trichormus variabilis f. tenuis, and Wollea saccata have never been described before. The primary taxonomic features (the position of akinetes and heterocysts, the width of
vegetative cells, akinetes and heterocysts, and the shape of terminal cells) of these cyanobacteria when cultured were shown
to fit the diagnosis of the identified taxa. 相似文献
15.
Lukasz Wejnerowski Slawek Cerbin Maria Wojciechowicz Tomasz Jurczak Małgorzata Glama Jussi Meriluoto 《欧洲藻类学杂志》2018,53(3):280-289
Grazing is recognized as one of the selective factors shaping the morphology and physiology of cyanobacteria. A recent study has shown that the filamentous cyanobacterium Aphanizomenon gracile strain SAG 31.79 thickened in the presence of Daphnia (Cladocera) and its exudates. The aims of our study were: (1) to determine whether this type of response to Daphnia cues is common for other strains of A. gracile, and other species of filamentous cyanobacteria, (2) to test whether the response is due to nutrients recycled by Daphnia, or kairomone induced, and (3) whether it is related to toxin production. Prior to the experiment, cyanobacterial strains were inspected using chromatographic methods for the presence of two toxins, cylindrospermopsin (CYN) and three homologues of microcystin (MC-RR, MC-YR, MC-LR). HPLC analyses showed that all strains were free of cylindrospermopsin, whereas microcystins were detected only in one strain (Planktothrix agardhii). We then tested whether Daphnia exudates can cause thickening of cyanobacterial filaments, which would suggest the morphological changes in cyanobacterial filaments are caused by recycled nutrients. Cyanobacteria were also exposed to sodium octyl sulphate (a commercially available Daphnia kairomone). Transmission electron microscopy (TEM) was used to check whether Daphnia exudates and sodium octyl sulphate trigger thickening of cyanobacterial cell walls, which would be a defence mechanism against grazing. The TEM analysis revealed no significant effect of either Daphnia exudates or kairomone (sodium octyl sulphate) on the cell wall thickness of cyanobacteria. However, our study showed that Daphnia exudates triggered filament thickening in nostocalean cyanobacteria, while filaments of the oscillatorialean strain P. agardhii did not show this response. It was also demonstrated that sodium octyl sulphate alone can also cause filament thickening, which suggests that this might be a specific defence response to the presence of grazers. 相似文献
16.
Vasas G Gáspár A Surányi G Batta G Gyémánt G M-Hamvas M Máthé C Grigorszky I Molnár E Borbély G 《Analytical biochemistry》2002,302(1):95-103
Toxic cyanobacteria are known to produce cyanotoxins, toxic secondary metabolites. In recent years the cylindrospermopsin (tricyclic guanidinyl hydroxymethyluracil)-producing organisms Aphanizomenon ovalisporum, Cylindrospermopsis raciborskii, and Umezakia natans have been inhabiting polluted fresh waters. Cylindrospermopsin, a potent hepatotoxic cyanotoxin, has been implicated in cases of human poisoning as well. This study describes the isolation and purification of cylindrospermopsin from A. ovalisporum with the help of a slightly modified Blue-Green Sinapis Test, a plant test suitable for determining the cyanotoxin content of chromatographic fractions besides plankton samples. The recent modification, using microtiter plates for the assay, improves the method and reduces the amount of sample needed for the assay. This approach proved that plant growth and metabolism, at least in the case of etiolated Sinapis alba seedlings, are inhibited by cylindrospermopsin. The establishment of capillary electrophoresis of cylindrospermopsin and consideration of the results reported here lead us to the expectation that capillary electrophoresis of cylindrospermopsin may be a powerful and useful analytical method for investigating cyanobacterial blooms for potential cylindrospermopsin content and toxicity. Confirmation of chemical identity of the purified compound is performed by UV spectrophotometry, NMR, and MALDI-TOF. 相似文献
17.
Sergei Shalygin Nicole Pietrasiak Fernando Gomez Cecilia Mlewski Emmanuelle Gerard Jeffrey R. Johansen 《欧洲藻类学杂志》2013,48(4):537-548
ABSTRACTNatural populations of a Rivularia-like cyanobacterium were collected from the carbonate deposits of the temporarily flooded littoral zone of a hypersaline, high elevation lake, The Laguna Negra, Andes, Argentina. Subsequently, the cyanobacterial strain PUNA-NP3, named after its origin (Puna Volcanic Plateau) was isolated from these Rivularia-like rounded, pillow-like, black microbial mats. None of the previously described species of the genus Rivularia occupy inland, hypersaline aquatic environments. After morphological examination of this strain, we found clear morphological autapomorphies, such as mucilaginous pads at the bases of the young trichomes, wide trichomes and filaments, and uniquely branched trichomes. Furthermore, based on results from 16S rRNA phylogeny and analysis of the 16S-23S ITS region, PUNA-NP3 was found to be an independent lineage of the evolutionary tree. Based on the combination of ecological, morphological and molecular evidence, we name strain PUNA-NP3 Rivularia halophila sp. nov. a new species under requirements of the International Code of Nomenclature for Algae, Fungi and Plants. 相似文献
18.
《Harmful algae》2016
The traditional genus Aphanizomenon comprises a group of filamentous nitrogen-fixing cyanobacteria of which several memebers are able to develop blooms and to produce toxic metabolites (cyanotoxins), including hepatotoxins (microcystins), neurotoxins (anatoxins and saxitoxins) and cytotoxins (cylindrospermopsin). This genus, representing geographically widespread and extensively studied cyanobacteria, is in fact heterogeneous and composed of at least five phylogenetically distant groups (Aphanizomenon, Anabaena/Aphanizomenon like cluster A, Cuspidothrix, Sphaerospermopsis and Chrysosporum) whose taxonomy is still under revision. This review provides a thorough insight into the phylogeny, ecology, biogeography and toxicogenomics (cyr, sxt, and ana genes) of the five best documented “Aphanizomenon” species with special relevance for water risk assessment: Aphanizomenon flos-aquae, Aphanizomenon gracile, Cuspidothrix issatschenkoi, Sphaerospermopsis aphanizomenoides and Chrysosporum ovalisporum. Aph. flos-aquae, Aph. gracile and C. issatschenkoi have been reported from temperate areas only whereas S. aphanizomenoides shows the widest distribution from the tropics to temperate areas. Ch. ovalisporum is found in tropical, subtropical and Mediterranean areas. While all five species show moderate growth rates (0.1–0.4 day−1) within a wide range of temperatures (15–30 °C), Aph. gracile and A. flos-aquae can grow from around (or below) 10 °C, whereas Ch. ovalisporum and S. aphanizomenoides are much better competitors at high temperatures over 30 °C or even close to 35 °C. A. gracile has been confirmed as the producer of saxitoxins and cylindrospermopsin, C. issatschenkoi of anatoxins and saxitoxins and Ch. ovalisporum of cylindrospermopsin. The suspected cylindrospermopsin or anatoxin-a production of A. flos-aquae or microcystin production of S. aphanizomenoides is still uncertain. This review includes a critical discussion on the the reliability of toxicity reports and on the invasive potential of “Aphanizomenon” species in a climate change scenario, together with derived knowledge gaps and research needs. As a whole, this work is intended to represent a key reference for scientists and water managers involved in the major challenges of identifying, preventing and mitigating toxic Aphanizomenon blooms. 相似文献
19.
Dale A. Casamatta Chelsea D. Villanueva Alyssa D. Garvey Holly S. Stocks Melissa Vaccarino Petr Dvořák Petr Hašler Jeffrey R. Johansen 《Journal of phycology》2020,56(2):425-436
The Nostocales is a monophyletic, heterocytous lineage of cyanobacteria capable of akinete production and division in multiple planes, depending upon family-level clade. While present in a variety of ecosystems, the diversity of the Nostocales has been poorly elucidated. Due to environmentally -induced phenotypic plasticity, morphology alone is often insufficient to determine the true phylogenetic placement of these taxa. In order to bridge this gap, taxonomists now employ the polyphasic approach, combining methods such as morphological analysis, phylogenetic analysis based on DNA sequence and genetic identity based on ribosomal genes, and secondary structure of the 16S-23S ITS and 16S rRNA gene sequences, as well as ecological characterization. Using this combined approach, a new genus and species (Reptodigitus chapmanii gen. et sp. nov.) isolated from the St. Johns River (Jacksonville, Florida, USA) within the Nostocales is herein described. Phylogenetic analyses place this taxon within the Hapalosiphonaceae, sister to the clade containing Fischerella, Hapalosiphon, and Westiellopsis. The 16S-23S ITS secondary folding structure analysis also supports the erection of this new genus. 相似文献
20.
Anabaenopsis spp. are heterocytous cyanobacteria commonly found in tropical, subtropical, and temperate water bodies. So far, the knowledge
about the phylogeny of this genus is poor. Therefore, we have isolated 15 Anabaenopsis spp. strains from Kenyan and Mexican alkaline and saline water bodies and from a Ugandan freshwater body and studied the
morphology and phylogeny in a polyphasic approach. Morphologically, the investigated strains could be discriminated in two
groups. One group was containing six Anabaenopsis abijatae and A. cf. abijatae strains with up to more than 500 vegetative cells in one filament, mostly single intercalary heterocyte formation, and the
ability to branch out. The other group comprised nine strains of Anabaenopsis elenkinii with short filaments with up to 38 vegetative cells, intercalary heterocytes in pairs, and no ability to branch out. The
morphological differences were reflected in the two distinct clusters, which were found in the phylogenetic trees of 16S rDNA
and PC-IGS. While the high 16S rDNA similarity values >97.5% found between all investigated A. abijatae and A. elenkinii strains support the assignment of these two species to one single genus, the morphological differences and the low similarity
values (<87.3) found in PC-IGS sequences between the two clusters indicate two separate genera. A close morphological and
phylogenetic relationship was found for A. abijatae and Anabaenopsis (Cyanospira) rippkae. 相似文献