首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-stage technology for bacterial and chemical leaching of nonferrous metals in a specifically designed laboratory unit has been proposed. At the first stage of leaching, ferric iron formed during the second stage of oxidation of Fe2+ ions by mesophilic chemolithotrophic microorganisms was used. The optimal parameters of the first stage of the process (flow rate, temperature, and the process duration) were 2 l/h, 75°C, and 24 h, respectively. The results of testing of the two-stage technology for leaching copper-zinc raw materials indicated that the depth of zinc and copper leaching can be increased from 70 to 93% and from 40 to 58.8%, respectively, and the process duration can be reduced from 120 to 24 h as compared to the commonly used one-stage technology.  相似文献   

2.
The process of leaching of copper-zinc concentrate with a solution containing biogenic iron, which is a product of the metabolism of iron-oxidizing microorganisms, was studied. The dependence of leaching rate of metals on temperature and pH was determined. It was shown that up to 98% of zinc and 70% of iron could be removed from the concentrate, while up to 7 and 4 g/L of zinc and copper, respectively, were accumulated in the liquid phase, which was sufficient for metal recovery. It was established that a copper concentrate with copper content up to 16% and only 0.5% of zinc could be obtained after chemical leaching for 340 min at 80°C.  相似文献   

3.
Summary Culture conditions were evaluated for their relevance to chemical and biological oxidation of sulphide in aqueous solution. With a mixed culture of colourless sulphur bacteria sulphide oxidation was investigated over a concentration range of 0.005 to 3.5 mm S2–, a pH range from 1.0 to 9.0 and temperatures from 10 to 40° C. Biological sulphide oxidation quickly decreased when fermentation conditions were suboptimal and the proportion of chemical oxidation increased with high pH values and sulphide concentration and increasing temperature. The optimal conditions for biological activity were found to be 3 mm S2–, pH 7.0, and a mesophilic temperature (40° C).Offprint requests to: C. Plas  相似文献   

4.
The microbiological leaching of a chalcopyrite concentrate has been investigated using a pure strain of Thiobacillus ferrooxidans. The optimum leaching conditions regarding pH, temperature, and pulp density were found to be 2.3, 35°C, and 22%, respectively. The energy of activation was calculated to be 16.7 kcal/mol. During these experiments the maximum rate of copper dissolution was about 215 mg/liters/hr and the final copper concentration was as high as 55 g/liter. This latter value is in the range of copper concentrations which may be used for direct electrorecovery of copper. Jarosite formation was observed during the leaching of the chalcopyrite concentrate. When the leach residue was reground to expose new substrate surface, subsequent leaching resulted in copper extractions up to about 80%. On the basis of this experimental work, a flow sheet has been proposed for commercial scale biohydrometallurgical treatment of high-grade chalcopyrite materials.  相似文献   

5.
Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 h, which allowed extraction of 40.6% of copper. As a result of subsequent chemical leaching at 80 degrees C during 7 h with a solution of sulphate ferric iron obtained after bio-oxidation by an association of microorganisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 h). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea of genus Ferroplasma acidiphilum, at 1.0 g/l h at 40 degrees C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A technological scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.  相似文献   

6.
Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 hours, which allowed extraction of 40.6% of copper. At subsequent chemical leaching at 80°C during 7 hours with a solution of ferric sulfate obtained after biooxidation by an association of micro-organisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 hours). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea Ferroplasma acidiphilum, at 1.0 g/L h at 40°C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A flowsheet scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.  相似文献   

7.
A new biotechnological process for sulphide removal is proposed. The process is based on the oxidation of sulphide into elemental sulphur, which can be removed by sedimentation. In this study it was found that elemental sulphur and sulphate are the main oxidation products of the biological sulphide oxidation. The settling characteristics become worse as the sulphide concentration increases, due to polysulphide formation. The start-up phase of this biological system is very short; Only four days are needed to reduce the sulphide concentration of 100 to 2 mg/l at a HRT (Residence time) of 22 minutes. Also some environmental factors were evaluated. The optimal pH is situated in the pH-range 8.0–8.5. Significantly lower conversion rates are found at pH = 6.5 to 7.5 and pH = 9.0, while at pH = 9.5 the sulphide oxidation capacity of the system detoriates. The process temperature was 20°C, although the optimal temperature is situated in the range 25–35°C. No substrate inhibition of sulphide was found at sulphide concentrations up to 100 mg/l.  相似文献   

8.
Abstract: A process for gold recovery from a complex Chilean ore from Burladora (IV Region) which integrates concentration by flotation, bacterial leaching and cyanidation was studied at a laboratory scale. The chemical composition of the ore is 8.2% Fe, 0.78% Cu, 0.88% As and 3.5 g/t Au, with pyrite, hematite, covelite, arsenopyrite and chalcopyrite as the main metal-bearing minerals. The initial gold recovery by conventional cyanidation on a crushed ore sample was only 54%. The ore was ground and concentrated by flotation with a gold recovery of only 56%. The gold content of the concentrate is 17 g/I Au. Concentrate samples were leached in 1.5 l stirred reactors at 10% pulp density in 1000 ml of acid medium (pH 1.8). Some experiments were inoculated with harvested bacteria previously isolated from mining solutions. Dissolved metals, pH and bacteria concentration in the leaching solutions were periodically determined. In the presence of bacteria, oxidation of the ferrous ion produced by acid dissolution of the concentrate was observed, and after 4 days of leaching 100% of the dissolved iron was present as ferric ion. Gold recovery by cyanidation increased from 13% for the initial concentrate to 34% after 10 days of chemical acid leaching and 97% after 10 days of bacterial leaching. To increase the total gold recovery, the flotation tailings were submitted to cyanidation. A complete flowsheet of the process and a first economical evalualion are proposed. As a possible alternative process, heap bacterial leaching and further cyanidation of the ore are suggested.  相似文献   

9.
Abstract: The effect of mineralogical characteristics of gold ore minerals on the nature of sulphide oxidation during a bacterial leaching process was investigated. Three different ore types from the South African goldmines were used, i.e. an arsenopyritic-pyritic ore (Sheba goldmine), a pyritic ore (Agnes goldmine) and a loellingitic-arsenopyritic ore (New Consort goldmine). Detailed mineralogical characterization of each ore was performed. Thereafter, polished sections of the sulphides were suspended in a bacterial leach pulp in an air-stirred vessel for various periods of time. The effect of bacterial oxidation on the sulphides was monitored. Different types of gold-bearing arsenopyrite exist, each type having its own characteristic behaviour during the bacterial oxidation process. The rate of oxidation is controlled by the amount of defects in the crystal structure, and the amount of defects is again controlled by the composition of the arsenopyrite crystal. The distribution of refractory gold in the sulphide minerals can be correlated with the presence of compositional zones and structural deviations. These same mineralogical features also control the sites and rates of bacterial oxidation. Thus. refractory gold occurs at sites which are preferentially leached by the bacteria. The rate of gold liberation from sulphides is therefore being enhanced during the early stages of bacterial oxidation. Defects in a crystal structure influence the rate of bio-oxidation, and can be related directly to the crystal structure of the sulphide mineral, the crystallographic orientation of the exposed surfaces, and differences in chemical compositional and mechanical deviations in the crytals. A combination of all of these mineralogical factors influences the bacterial oxidation process. To optimize and to understand the leaching of an individual ore it is important to establish its controlling factors.  相似文献   

10.
This study is aimed at using kinetic modeling to investigate the yield of mineralization products from anaerobic decomposition of the aquatic macrophyte Ludwigia inclinata. The initial hypothesis was that the decay of different fractions of detritus and the kinetics of gases productions are both positively correlated to temperature. The plants and water samples were collected from a tropical oxbow lake; the anaerobic decomposition was described using incubations maintained at controlled temperatures. The methane and carbon dioxide productions were determined daily by gas chromatography. The mass loss of detritus owing to leaching and chemical oxidation was also measured, with the results being used to develop a mathematical (kinetic) model considering the heterogeneity of the resource and three mineralization pathways: (i) oxidation of the labile particulate organic carbon; (ii) formation of dissolved organic carbon leached from the detritus, and subsequent oxidation of those compounds; and (iii) oxidation of refractory particulate organic carbon (RPOC). The temperature did not affect the leaching rate constant or the mineralization of labile and dissolved fractions. On the other hand, the mineralization of RPOC was improved with increasing temperatures. The yield of CO2 formation was higher at 20.1°C and decreased with increasing temperatures. The methanogenesis was significantly affected by the temperature; it abbreviated the beginning of the process and increased the CH4 yield. Conversely as hypothesized, the results suggest that the increase in temperature improved the decay rates of RPOC, but did not affect the leaching process and the subsequent leachate oxidation. Furthermore, the rising temperatures had positive correlation with methanogenesis and negative with CO2 production. Handling editor: S. M. Thomaz  相似文献   

11.
The thin-layer leaching process originally conceived and developed for leaching oxide ores has been successfully adapted to bacterial leaching of mixed and secondary sulphide ores. The process is currently being applied at the Socicdad Minera Pudahuel Lo Aguirre Plant. About 3000 ton of ore per day are being processed to produce 14000 ton of high-grade copper cathodes per year, in a closed circuit integrated with SX-EW. Changes in the soluble copper grade of the ore from about 1.8C4 to (I.6% have occurred during the last years, which have been compensated by an equivalent increase in the insoluble copper grade. In addition, ore from satellite ore bodies has resulted in acid consumption variations ranging from 611 to 120 kg H2SO4 per ton of ore. The main sulphide mineralogical species are chatcocite and bornite, with small amounts of chalcopyrite and covellite. An intensive research program in columns and large-scale heaps has been carried out to define the operating conditions which assure adequate bacterial growth and bacterial activity towards the sulphides. Agglomerated ores with 1.7 2.5% Cur and (I.3-0.6%: Cus, with the insoluble copper mainly present as chalcocite bornite, were leached at a flow rate of 0.2 1 min1 mu2 with a SX-Raffinate solution containing (in g-1) 5–10 H2SO4, 2–4 FeT, 1–3 Fe+3, 0.5 Cu, as well as impurities resulting from a closed circuit operation. Copper recoveries of 75 85% CuT were obtained after 180–250 days of total leaching time, depending on the copper grade, the mineralogical composition, and the acid consumption of the ore. Important bacterial activity was detected. About 10 3−105 bacteria ml−1 were measured in effluent solutions. Iron oxidation rates of 7–100μg Fe2+ h−1 g−1, measured from respirometric tests on agglomerated ore, suggest that an adsorbed biomass of about 107-108 bacteria g−1 must also be present. Further applications of the bacterial thin-layer leaching process to Cerro Colorado and Qucbrada Blanca ores in North Chile are being studied.  相似文献   

12.
Thiobacillus ferrooxidans oxidized the sulphide minerals e.g., pyrite, pyrrhotite and copper concentrate under anaerobic conditions in the presence of ferric ion as sole electron acceptor. Copper and iron were solubilized from sulphide ores by the sulphur (sulphide)-dependent ferric-ion oxidoreductase activity. Treatment of resting cells of T. ferrooxidans with 0.5% phenol for 30 min completely destroyed the iron- and copper-solubilizing activity. The above treatment destroyed the sulphur(sulphide)-dependent ferric-ion-reducing activity completely but did not affect the iron-oxidizing activity. The results suggest that sulphur(sulphide)-dependent ferric-ion-reducing activity actively participates in the oxidation of sulphide minerals under anaerobic conditions. The activity of sulphur(sulphide)-dependent ferric ion reduction in the solubilization of iron and copper from the sulphide ores were also observed under aerobic conditions in presence of sodium azide (0.1 μmol), which completely inhibits the iron-oxidizing activity. Received: 23 May 1995/Received revision: 10 October 1995/Accepted: 16 October 1995  相似文献   

13.
The effect of activated carbon addition on the rate and efficiency of copper mobilization from Sarcheshmeh chalcopyrite concentrate was studied in the presence and absence of a mixed culture of moderately thermophilic microorganisms. Conventional leaching at a 10% (w/v) pulp density in 500-ml Erlenmeyer flasks on a rotary shaker at 150 rpm, and electrochemical bioleaching in a stirred bioreactor at an ORP (oxidation-reduction potential) range of 400 to 430 mV measured against a Ag/AgCl reference electrode. The bioreactor contained ore concentrate at a pulp density of 20%, which was stirred at 600 rpm. All experiments were conducted in the presence and absence of 3 g/L activated carbon, at initial pH 1.5, temperature 50°C, in Norris's nutrient medium with an addition of 0.02% (w/v) yeast extract. The results showed that the addition of activated carbon increased the rate and yield of copper extraction from the concentrate especially in the presence of bacteria. Final recovery after 20 days was 52% and 44% in the shake flask experiments with and without carbon addition, respectively. Enhanced rates of copper mobilization were achieved in the electrochemical bioleaching experiments in which copper was leached selectively relative to iron. Final copper recovery after 10 days was 85% and 77% in the presence and absence of activated carbon, respectively. The positive effect of activated carbon on copper extraction could be related to the galvanic interaction between the inert carbon as cathode and chalcopyrite as anode. The bacterial elimination of sulfur produced on the sulfide minerals during chemical leaching is assumed to intensify the galvanic interaction. It seems that maintaining the ORP at a low potential and efficient mixing improves the bacterial and chemical subsystems in the electro-bioreactor that accelerates the rate of copper mobilization from the concentrate.  相似文献   

14.
An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.  相似文献   

15.
Biological sulphide oxidation in a fed-batch reactor   总被引:12,自引:0,他引:12  
This study shows that, in a sulphide-oxidizing bioreactor with a mixed culture of Thiobacilli, the formation of sulphur and sulphate as end-products from the oxidation of sulphide can be controiledinstantaneously and reversibiy by the amount of oxygen supplied. It was found that at sulphide loading rates of up to 2.33 mmol7/L . h, both products can be formed already at oxygen concentrations below 0.1 mg/L. Because the microorganisms tend to form sulphate rather than forming sulphur, the oxygen concentration is not appropriate to optimize the sulphur production. Within less than 2 h, the system can be switched reversibly from sulphur to sulphate formation by adjusting the oxygen flow. This is below the minimum doubling time (2.85 h) of, e.g., Thiobacillus neapolitanus and Thiobacillus 0,(18) which indicates that one metabolic type of organism can probably perform both reactions. Under highly oxygen-limited circumstances, that is, at an oxygen/sulphide consumption ratio below 0.7 mol . h(-1) mol . h(-1) thiosulphate is abundantly formed. Because the chemical sulphide oxidation results mainly in the formation of thiosulphate, it is concluded that, under these circumstances, the biological oxidation capacity of the system is lower than the chemical oxidation capacity. The oxidation rate of the chemical sulphide oxidation can be described by a first-order process (k =-0.87 h(-1)).(c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
Pure cultures of indigenous microorganisms Acidithiobacillus ferrooxidans strain TFUd, Leptospirillum ferrooxidans strain LUd, and Sulfobacillus thermotolerans strain SUd have been isolated from the oxidation zone of sulfide copper ore of the Udokanskoe deposit. Regimes of bacterial-chemical leaching of ore have been studied over a temperature range from −10 to +20°C. Effects of pH, temperature, and the presence of microorganisms on the extraction of copper have been shown. Bacterial leaching has been detected only at positive values of temperature, and has been much more active at +20 than at +4°C. The process of leaching was more active when the ore contained more hydrophilic and oxidized minerals. The possibility of copper ore leaching of the Udokanskoe deposit using sulfuric acid with pH 0.4 at negative values of temperature and applying acidophilic chemolithotrophic microorganisms at positive values of temperature and low pH values was shown.  相似文献   

17.
《Inorganica chimica acta》1988,152(4):265-270
The role of metal sulphides vis-à-vis the availability of dietary copper in ruminant animals has been investigated using zinc sulphide as a model metal sulphide and a selection of copper complexes and copper containing proteins as models for sources of dietary copper. The extent of reactivity of zinc sulphide towards the copper complexes is dependent upon the type of donor atom co-ordinated to copper:
The order to reactivity is found to be CuO > CuN > CuS complexes and is in keeping with the reported values for the instability constant pKn of the complexes. In contrast, no reaction is observed between zinc sulphide and the copper containing proteins studied (azurin, superoxide dismutase and cerulophasmin) and is attributed to the protection of the copper centres by the protein backbone. The results facilitate an understanding of copper metabolism in ruminants and a mechanism is proposed for the removal of dietary copper sources in such species.Reactions between copper(II) sulphate solutions and samples of zinc sulphide having a range of specific surface areas (prepared by sintering at differing temperatures) have been studied. The fact that the reactivity is found to be highly dependent upon the specific surface area of the metal sulphide may well be of significance when considering the fate of copper in sulphur-rich biological systems.  相似文献   

18.
The leaching process of copper and zinc from copper converter slag with ferric iron in sulfuric acid solutions obtained using the association of acidophilic chemolithotrophic microorganisms was investigated. The best parameters of chemical leaching (temperature 70°C, an initial concentration of ferric iron in the leaching solution of 10.1 g/L, and a solid phase content in the pulp of 10%) were selected. Carrying out the process under these parameters resulted in the recovery of 89.4% of copper and 39.3% of zinc into the solution. The possibility of the bioregeneration of ferric iron in the solution obtained after the chemical leaching of slag by iron-oxidizing acidophilic chemolithotrophic microorganisms without inhibiting their activity was demonstrated.  相似文献   

19.
The effects of a duckweed (DW) cover on the surface of waste stabilisation ponds on sulphide emissions were studied in a laboratory scale set-up of an anaerobic pond-reactor, followed by two algae (A) pond-reactors and two duckweed (Lemna gibba) pond-reactors. The concentrations of various S-components were measured at different depth in the reactors, while sulphide emissions were measured at the surface. Presence of a duckweed cover on the anaerobic pond-reactor resulted in a reduction of 99% in sulphide emission. In algae pond-reactors, sulphide emissions were negligible through chemical and biological conversion of sulphide. In the duckweed pond-reactors, colourless sulphur bacteria (Beggiatoa sp.) were observed on the duckweed roots. Batch tests showed that both micro-biological and possibly chemical oxidation occurred in a typical duckweed pond environment. The duckweed cover reduced H2S volatilisation via two mechanisms, by forming a physical barrier and by providing attachment area for sulphide oxidising bacteria.  相似文献   

20.
Experimental peat-based wetlands at the former Bell Copper Mine (Smithers, B.C., Canada) removed copper from low strength (0.3–1.0 ppm, pH 6–8) and high strength (35–50 ppm, pH 3) copper-contaminated mine drainage. Copper species retained in wetlands sediments were quantified as a means to assess the long-term potential of these wetlands for treating mine drainage. Previous microbial and chemical analyses had indicated that sulphide was biologically generated in these wetlands, and mineralogical analysis confirmed that copper sulphides were present in wetland sediments. However, sequential leaching of these sediments showed that copper was predominantly in organically-bound and oxide-bound phases, with a smaller proportion present as sulphides. The available data suggest that much of the copper was retained as sulphides when low strength mine drainage was applied to the wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号