首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of temperature on the growth rate and the pattern of chromosome replication during the division cycle of Escherichia coli B/r growing in various media was investigated. The time between divisions, the time for a round of replication (C), and the time between completion of a round and cell division (D) were threefold longer at 21 C than at 37 C. At all temperatures and in all media, D equalled one-half C, suggesting that a common mechanism controls chromosome replication and the progression of the cell toward division after completion of a round of replication.  相似文献   

3.
The effect of p-fluorophenylalanine (FPA) on deoxyribonucleic acid (DNA) synthesis and chromosome replication was studied in a thymine-requiring mutant of Escherichia coli. The rate and extent of chromosome replication were followed by labeling the DNA with isotopic thymine and a density marker, bromouracil. The DNA was extracted and analyzed by CsCl gradient centrifugation. The block in chromosome replication caused by high concentrations of FPA occurred at the same point on the chromosome as that caused by amino acid starvation. In a random culture, DNA in cells treated with FPA replicated only slightly slower than the DNA from cells that were not exposed to the analogue. In cultures which had been previously starved for thymine, however, the DNA from the cells treated with FPA showed a marked decrease in the rate and extent of replication. It was concluded that the E. coli cell is most sensitive to FPA when a new cycle of chromosome replication is being initiated at the beginning of the chromosome.  相似文献   

4.
DnaA is a replication initiator protein that is conserved among bacteria. It plays a central role in the initiation of DNA replication. In order to monitor its behavior in living Escherichia coli cells, a nonessential portion of the protein was replaced by a fluorescent protein. Such a strain grew normally, and flow cytometry data suggested that the chimeric protein has no substantial loss of the initiator activity. The initiator was distributed all over the nucleoid. Furthermore, a majority of the cells exhibited certain distinct foci that emitted bright fluorescence. These foci colocalized with the replication origin (oriC) region and were brightest during the period spanning the initiation event. In cells that had undergone the initiation, the foci were enriched in less intense ones. In addition, a significant portion of the oriC regions at this cell cycle stage had no colocalized DnaA-enhanced yellow fluorescent protein (EYFP) focus point. It was difficult to distinguish the initiator titration locus (datA) from the oriC region. However, involvement of datA in the initiation control was suggested from the observation that, in ΔdatA cells, DnaA-EYFP maximally colocalized with the oriC region earlier in the cell cycle than it did in wild-type cells and oriC concentration was increased.Initiation of DNA replication is highly regulated to coordinate with cell proliferation. It begins with a series of events in which the replication machinery is assembled at the replication origin of the chromosomal DNA (15, 26, 28, 38). Central to this process are the initiator proteins that bind to the origin of replication and eventually lead to the unwinding of the origin and to helicase loading on the unwound region. Previous biochemical studies and recent structural studies of the bacterial initiator protein DnaA have proposed the molecular mechanism of the action of ATP-DnaA in forming a large oligomeric complex to remodel the unique origin, oriC, and trigger duplex melting (12, 26). However, it is still not clear how the timing of initiation is controlled so that it takes place at a fixed time in the cell cycle. It has been reported that a basal level of DnaA molecules is bound by high-affinity DnaA binding sites (DnaA boxes R1, R2, and R4) at oriC throughout the cell cycle (9, 37). It is also suggested that noncanonical ATP-DnaA binding sites within oriC are occupied at elevated levels of the initiator molecules prior to the initiation event (18, 25). Thus, regulation of the activity and availability of DnaA is an important factor for the initiation control.At least three schemes are known to prevent untimely initiations in Escherichia coli. First, oriC is subject to sequestration, a process that prevents reinitiation, possibly by blocking ATP-DnaA from binding to newly replicated oriC (8, 24). E. coli oriC contains 11 GATC sites that are normally methylated on both strands by Dam methyltransferase. Immediately after passage of the replication fork, GATC sites are in a hemimethylated state, with the newly synthesized strands remaining unmethylated. SeqA binds specifically to such sites and, at oriC, protects these regions from reinitiation for about one-third of the cell cycle (6, 39). Second, in a process termed regulatory inactivation of DNA (RIDA), ATP-DnaA molecules are converted to an inactive ADP-bound form after initiation by the combined action of a β subunit of DNA polymerase III holoenzyme and Hda (16, 17). Newly synthesized DnaA molecules are able to bind ATP for the next initiation event, since its cellular concentration is much higher than that of ADP. ATP-DnaA is also regenerated from the inactive ADP-DnaA later in the cell cycle (21). Finally, the chromosomal segment datA serves to reduce the level of free DnaA protein by titrating a large number of DnaA molecules after replication of the site close to oriC (20).Cytological studies would be very useful for developing our understanding of the regulation mechanisms associated with the initiation step. In the present study, we tagged E. coli DnaA with a fluorescent protein in order to monitor its behavior in live cells. Microscopic observation revealed that DnaA is distributed all over the nucleoid. Remarkably, the majority of cells bore distinct foci that emitted brighter fluorescence against a weak fluorescent background on the nucleoid. We analyzed the behavior of these foci during the cell cycle with respect to oriC and datA.  相似文献   

5.
Chromosome Replication and the Division Cycle of Escherichia coli B/r   总被引:22,自引:16,他引:6       下载免费PDF全文
The average amount of deoxyribonucleic acid (DNA) per cell was measured in steady-state cultures of Escherichia coli B/r grown at 37 C in glucose-limited chemostats or in batch cultures in the exponential growth phase as maintained with one of several carbon sources. Within experimental errors, DNA content was dependent only on growth rate and independent of the type of culture, the carbon source, or the addition of growth factors. The amount of DNA per cell increased continuously with growth rate over the range of 0.02 to 3 divisions per hour. The data over the entire range of growth rates are in agreement with a constant time for a single replication point to traverse the entire genome, 47 min, and with cell division following 25 min after termination of replication. The measured amount of DNA per genome was 4.2 x 10(-15) g (or 2.5 x 10(9) daltons).  相似文献   

6.
The properties of Escherichia coli mutant D2-47LT indicate that it is temperature-sensitive for a protein required for the initiation of chromosome replication. The results of several different experiments are consistent with this hypothesis, and no support was found for the alternate hypotheses tested. Although the strain is usually unable to initiate replication at 42 C, some of the initiation proteins are apparently synthesized at the restrictive temperature. This can cause initiation on partially replicated, but not completed, chromosomes. It appears that the temperature-sensitive protein is required for initiation on completed chromosomes.  相似文献   

7.
An Escherichia coli HF4704S mutant temperature sensitive in deoxyribonucleic acid (DNA) synthesis and different from any previously characterized mutant was isolated. The mutated gene in this strain was designated dnaH. The mutant could grow normally at 27 C but not at 43 C, and DNA synthesis continued for an hour at a decreasing rate and then ceased. After temperature shift-up, the increased amount of DNA was 40 to 50%. When the culture was incubated at 43 C for 70 min and then transferred to 27 C, DNA synthesis resumed after about 50 min, initiating synchronously at a fixed region on the bacterial chromosome. The initiation step in DNA replication sensitive to 30 mug of chloramphenicol per ml occurs synchronously before the resumption of DNA replication after the temperature shift-down, being completed about 30 min before the start of DNA replication. When the cells incubated at 27 C in the presence of 30 mug of chloramphenicol per ml after the temperature shift-down to 27 C were transferred to 43 C with simultaneous removal of the antibiotic, no resumption of DNA replication was observed. When the culture was returned to 43 C after being released from high-temperature inhibition at 30 min before the start of DNA replication, no recovery replication was observed; whereas at 20 min, the recovery of replication was observed. These results indicated that HF4704S was temperature sensitive in the initiation of DNA replication. Analysis of HF4704S, by an interrupted conjugation experiment, indicated that gene dnaH was located at about 64 min on the E. coli C linkage map. In E. coli S1814 (a K-12 derivative), which was a dnaH(ts) transductant from HF4704S (C strain) with phage P1, the mutated gene (dnaH) was demonstrated to be closely linked to the thyA marker by conjugation and P1 transduction experiments and to be distinct from genes dnaA through dnaG.  相似文献   

8.
In Escherichia coli, a sudden increase in external concentration causes a pressure drop across the cell envelope, followed by an active recovery. After recovery, and if the external osmolality remains high, cells have been shown to grow more slowly, smaller, and at reduced turgor pressure. Despite the fact that the active recovery is a key stress response, the nature of these changes and how they relate to each other is not understood. Here, we use fluorescence imaging of single cells during hyperosmotic shocks, combined with custom made microfluidic devices, to show that cells fully recover their volume to the initial, preshock value and continue to grow at a slower rate immediately after the recovery. We show that the cell envelope material properties do not change after hyperosmotic shock, and that cell shape recovers along with cell volume. Taken together, these observations indicate that the turgor pressure recovers to its initial value so that reduced turgor is not responsible for the reduced growth rate observed immediately after recovery. To determine the point at which the reduction in cell size and turgor pressure occurs after shock, we measured the volume of E. coli cells at different stages of growth in bulk cultures. We show that cell volume reaches the same maximal level irrespective of the osmolality of the media. Based on these measurements, we propose that turgor pressure is used as a feedback variable for osmoregulatory pumps instead of being directly responsible for the reduction in growth rates. Reestablishment of turgor to its initial value might ensure correct attachment of the inner membrane and cell wall needed for cell wall biosynthesis.  相似文献   

9.
10.
The key processes of the bacterial cell cycle are controlled and coordinated to match cellular mass growth. We have studied the coordination between replication and cell division by using a temperature-controlled Escherichia coli intR1 strain. In this strain, the initiation time for chromosome replication can be displaced to later (underreplication) or earlier (overreplication) times in the cell cycle. We used underreplication conditions to study the response of cell division to a delayed initiation of replication. The bacteria were grown exponentially at 39°C (normal DNA/mass ratio) and shifted to 38 and 37°C. In the last two cases, new, stable, lower DNA/mass ratios were obtained. The rate of replication elongation was not affected under these conditions. At increasing degrees of underreplication, increasing proportions of the cells became elongated. Cell division took place in the middle in cells of normal size, whereas the longer cells divided at twice that size to produce one daughter cell of normal size and one three times as big. The elongated cells often produced one daughter cell lacking a chromosome; this was always the smallest daughter cells, and it was the size of a normal newborn cell. These results favor a model in which cell division takes place at only distinct cell sizes. Furthermore, the elongated cells had a lower probability of dividing than the cells of normal size, and they often contained more than two nucleoids. This suggests that for cell division to occur, not only must replication and nucleoid partitioning be completed, but also the DNA/mass ratio must be above a certain threshold value. Our data support the ideas that cell division has its own control system and that there is a checkpoint at which cell division may be abolished if previous key cell cycle processes have not run to completion.  相似文献   

11.
The aim of this study was to investigate whether the synthesis rates of some proteins change after the initiation of replication in Escherichia coli. An intR1 strain, in which chromosome replication is under the control of an R1 replicon integrated into an inactivated oriC, was used to synchronize chromosome replication, and the rates of protein synthesis were analyzed by two-dimensional polyacrylamide gel electrophoresis of pulse-labeled proteins. Computerized image analysis was used to search for proteins whose expression levels changed at least threefold after initiation of a single round of chromosome replication, which revealed 7 out of about 1,000 detected proteins. The various synthesis rates of three of these proteins turned out to be caused by unbalanced growth and the synthesis of one protein was suppressed in the intR1 strain. The rates of synthesis of the remaining three could be correlated only to the synchronous initiation of replication. These three proteins were analyzed by peptide mass mapping and appeared to be the products of the dps, gapA, and pyrI genes. Thus, the expression of the vast majority of proteins is not influenced by the state of chromosome replication, and a possible role of the replication-associated expression changes of the three identified proteins in the cell cycle is not clear.  相似文献   

12.
The macromolecular composition and a number of parameters affecting chromosome replication were examined over a range of exponential growth rates in two common Escherichia coli strains, B/r and K-12 AB1157. Based on improved measurements of DNA after treatment of exponential cultures with rifampin, the cell mass per chromosomal replication origin (initiation mass) and the time required to replicate the chromosome from origin to terminus (C period) were determined. For these two strains, the initiation mass approached values of 8 × 10−10 and 10 × 10−10 units of optical density (at 460 nm) of culture mass per oriC, respectively, at growth rates above 1 doubling/h (at 37°C). The amount of protein per oriC decreased with increasing growth rate for AB1157 and remained nearly constant for the B/r strain. The C period decreased for both strains in an essentially identical manner from about 70 min at 0.6 doublings/h to about 33 min at 3 doublings/h. From the initiation mass and C period, relative or absolute copy numbers for genes with known map locations can be accurately determined at different growth rates. At growth rates above 2 doublings/h, when chromosomes are highly branched, genes near the origin are about threefold more prevalent than genes near the terminus. At a growth rate of 0.6 doubling/h, this ratio is only about 1.7, which reflects the lower degree of chromosome branching.  相似文献   

13.
At 33 C (60-min generation time) the time required to replicate the chromosome is C = 60 min. The time between the end of a round of replication and cell division is D = 20 min, as at 37 C. Nalidixic acid and a temperature shift in a dnaB mutant give identical results for the determination of the end of a round of replication.  相似文献   

14.
Alkaline sucrose gradients were used to study the molecular weight of deoxyribonucleic acid (DNA) synthesized during the initiation of chromosome replication in Escherichia coli 15 TAU-bar. The experiments were conducted to determine whether newly synthesized, replication origin DNA is attached to higher-molecular-weight parental DNA. Little of the DNA synthesized after readdition of required amino acids to cells previously deprived of the amino acids was present in DNA with a molecular weight comparable to that of the parental DNA. The newly synthesized, low-molecular-weight DNA rapidly appeared in higher-molecular-weight material, but there was an upper limit to the size of this intermediate-molecular-weight DNA. This limit was not observed when exponentially growing cells converted newly synthesized DNA to higher-molecular-weight material. The size of the intermediate-molecular-weight DNA was related to the age of the replication forks, and the size increased as the replication forks moved further from the replication origin. The results indicate that the newly synthesized replication origin DNA is not attached to parental DNA, but it is rapidly attached to the growing strands that extend from the replication fork to the replication origin, or to the other replication fork if replication is bidirectional. Experiments are reported which demonstrate that the DNA investigated was from the vicinity of the replication origin and was not plasmid DNA or DNA from random positions on the chromosome.  相似文献   

15.
We successfully substituted Escherichia coli''s origin of replication oriC with the origin region of Vibrio cholerae chromosome I (oriCIVc). Replication from oriCIVc initiated at a similar or slightly reduced cell mass compared to that of normal E. coli oriC. With respect to sequestration-dependent synchrony of initiation and stimulation of initiation by the loss of Hda activity, replication initiation from oriC and oriCIVc were similar. Since Hda is involved in the conversion of DnaAATP (DnaA bound to ATP) to DnaAADP (DnaA bound to ADP), this indicates that DnaA associated with ATP is limiting for V. cholerae chromosome I replication, which similar to what is observed for E. coli. No hda homologue has been identified in V. cholerae yet. In V. cholerae, dam is essential for viability, whereas in E. coli, dam mutants are viable. Replacement of E. coli oriC with oriCIVc allowed us to specifically address the role of the Dam methyltransferase and SeqA in replication initiation from oriCIVc. We show that when E. coli''s origin of replication is substituted by oriCIVc, dam, but not seqA, becomes important for growth, arguing that Dam methylation exerts a critical function at the origin of replication itself. We propose that Dam methylation promotes DnaA-assisted successful duplex opening and replisome assembly at oriCIVc in E. coli. In this model, methylation at oriCIVc would ease DNA melting. This is supported by the fact that the requirement for dam can be alleviated by increasing negative supercoiling of the chromosome through oversupply of the DNA gyrase or loss of SeqA activity.The genomes of Vibrio cholerae and several related Vibrio spp. are distributed between two circular chromosomes. Characterization of the origins of replication of V. cholerae chromosomes I and II (oriCIVc and oriCIIVc, respectively) has shown that oriCIVc is similar to the origin of replication of the Escherichia coli chromosome, oriC, whereas oriCIIVc is completely different (20). Like oriC, oriCIVc has five R-type DnaA boxes (53) as well as boxes conforming to the I and τ types (52, 61), and the DnaA protein is the rate-limiting factor in the initiation of replication in both cases (18). In E. coli, DnaA associates with both ATP and ADP, and the ATP-bound form is absolutely required for initiation to take place (reviewed in reference 60). When reaching a critical level, DnaAATP (DnaA bound to ATP) protein is proposed to form a helical filament, anchored at one or more R-boxes (54, 69), in which origin DNA wraps around the outside of the DnaA core (21) or where the DnaA wraps around oriC (61). In both cases, the topology of the DnaA-oriC nucleoprotein complex leads to formation of compensatory negative supercoiling that facilitates unwinding of the adjacent AT-rich region resulting in initiation. In both models, DnaAATP is absolutely required for initiation, and in agreement with this, DnaAATP was found to be the rate-limiting factor for initiation in vivo (69).The V. cholerae oriCIVc also resembles oriC in having many potential sites for methylation by DNA adenine methyltransferase (Dam), although the number and position of the GATC sites differ slightly (see Fig. Fig.1).1). The role of Dam in initiation of chromosome replication has been studied mainly in E. coli. After initiation of DNA replication has occurred on a fully methylated oriC, the newly replicated hemimethylated origins are sequestered from the Dam methyltransferase and from reinitiation for approximately one-third of a doubling time. During this time interval, the activity and amount of DnaA available for initiation are reduced to prevent immediate reinitiation (reviewed in references 57 and 83). The sequestration is carried out by the SeqA protein that binds hemimethylated oriC GATC sequences with high affinity (48). In the absence of Dam methylation or SeqA, the same origin can be reinitiated in the same cell cycle, and initiations become asynchronous (9, 48).Open in a separate windowFIG. 1.Alignment of the E. coli minimal oriC with the corresponding region from V. cholerae chromosome I. The AT-rich sequence and the three 13-mer repeats L, M, and R found in E. coli (5) are indicated above the alignment. The 6-mer (A/T)GATCT boxes (80) are underlined. Other DnaA binding sites, i.e., R-boxes (53), I-boxes (52), and τ-boxes (61), are shown as boxed regions. Dam methylation sites (GATC) are shaded gray. The experimentally defined binding sites for integration host factor (IHF) (22) and factor for inversion stimulation (FIS) (65) in E. coli are indicated, and bases that match the consensus sequence are in boldface type. The single base difference between oriCIVc and oriCIVc* (see Materials and Methods) in the minimal origin region is shown below the two sequences. A gap introduced to maximize alignment of the two sequences is indicated by a dash in the sequence. Nucleotides that are identical in the two sequences are indicated by an asterisk below the two sequences.Genes encoding a Dam homologue and a SeqA homologue are present on Vibrio genomes, but there appear to be some differences between the functions of the proteins in E. coli and V. cholerae. dam has been found to be an essential gene in V. cholerae (33, 15), which is not the case in E. coli (48, 51). Conflicting data exist concerning the essentiality of seqA in V. cholerae (15, 72). The roles of Dam and SeqA in oriCIVc replication have been studied using minichromosomes, i.e., plasmids replicating exclusively from a cloned copy of oriCIVc (20). oriCIVc-based minichromosomes can replicate in wild-type E. coli cells but were unable to replicate in dam, seqA, and seqA dam mutants (20). The extrachromosomal existence of minichromosomes is dependent on their ability to initiate replication in synchrony with the chromosomal origin (46, 75). In E. coli cells mutated in dam or seqA, incompatibility exists between the oriC carried on minichromosomes and that of the chromosome due to origin competition (13), and when minichromosomes are maintained under selective pressure, they integrate into the origin region of the host chromosome (46, 75). Minichromosomes based on oriCIVc may also compete with the E. coli oriC for initiations in dam or seqA mutant cells. However, due to limited sequence identity, they may not be able to integrate into the E. coli chromosome. This could provide an explanation for the failure to introduce oriCIVc minichromosomes into dam and seqA mutant cells (20). Both dam and seqA genes could therefore be required for viability of V. cholerae for reasons not related to chromosome replication. In addition to its role in DNA replication, roles for Dam methylation in gene regulation and DNA repair have also been demonstrated in a number of bacteria (for reviews, see references 11, 45, 47, and 50). For V. cholerae as well as for Salmonella spp. and Yersinia pseudotuberculosis, Dam plays a role in virulence possibly through regulation of virulence gene expression (33). Less is known about the functions of seqA apart from its role in E. coli replication, but it has been suggested that SeqA functions as a nucleoid-organizing protein (for a review, see reference 83), and the E. coli chromosome has been demonstrated to have increased supercoiling in a seqA strain (85).Here we describe the first in vivo evidence that Dam plays an important role in the initiation of replication by facilitating the replication initiation at oriCIVc in E. coli. In addition, we show that SeqA does not carry an essential role in the initiation of replication.  相似文献   

16.
Growth rate and nutrient availability are the primary determinants of size in single-celled organisms: rapidly growing Escherichia coli cells are more than twice as large as their slow growing counterparts. Here we report the identification of the glucosyltransferase OpgH as a nutrient-dependent regulator of E. coli cell size. During growth under nutrient-rich conditions, OpgH localizes to the nascent septal site, where it antagonizes assembly of the tubulin-like cell division protein FtsZ, delaying division and increasing cell size. Biochemical analysis is consistent with OpgH sequestering FtsZ from growing polymers. OpgH is functionally analogous to UgtP, a Bacillus subtilis glucosyltransferase that inhibits cell division in a growth rate-dependent fashion. In a striking example of convergent evolution, OpgH and UgtP share no homology, have distinct enzymatic activities, and appear to inhibit FtsZ assembly through different mechanisms. Comparative analysis of E. coli and B. subtilis reveals conserved aspects of growth rate regulation and cell size control that are likely to be broadly applicable. These include the conservation of uridine diphosphate glucose as a proxy for nutrient status and the use of moonlighting enzymes to couple growth rate-dependent phenomena to central metabolism.  相似文献   

17.
18.
Acquired tolerance for a quaternary ammonium compound produced a tolerance for a similar compound. Tolerance was associated with the structure and the extent of adsorption of the compound. Morphological changes and resistance to disruption by pressure and by sonic treatment accompanied the development of tolerance. An otherwise weakened culture evolved with the acquisition of tolerance. The maximum obtainable viable population density of tolerant cells in growth medium was approximately 5% of that obtained in the parent culture. Tolerant cultures died off more rapidly in the original growth medium as well as when washed cell suspensions were stored at 5 C. Since acquired tolerance was associated with an otherwise weakened culture, the occurrence of the tolerant cells to limit the efficacy of quaternary ammonium compounds in sanitation operations is highly unlikely.  相似文献   

19.
20.
Synchronous cultures of Escherichia coli strain B/r were used to investigate the relationship between deoxyribonucleic acid (DNA) replication and cell division. We have determined that terminal steps in division can proceed in the absence of DNA synthesis. Inhibition of DNA replication with nalidixic acid prior to the start of a new round of replication does not stop cell division, which indicates that the start of the round is not essential in triggering cell division. Inhibition of DNA replication at any time prior to the termination of a round of replication completely blocks cell division, which suggests that there may be a link between the end of the replication cycle and the commitment of the cell to divide. Studies that use a temperature-sensitive mutant which is unable to synthesize DNA at the nonpermissive temperature are in complete agreement with those that use nalidixic acid to inhibit DNA synthesis. This adds support to the idea that the treatments employed limit their action to DNA synthesis. Investigation of minicell production indicates that the production of minicells is blocked when DNA synthesis is inhibited with nalidixic acid. Although nuclear segregation is not required for cell division, DNA synthesis is still required to trigger division. The evidence presented suggests strongly that (i) DNA synthesis is essential for cell division, (ii) the end of a round of replication triggers cell division, and (iii) there is considerable time lapse (one-half generation) between the completion of a round of DNA replication and physical separation of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号