首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The cytomegalovirus (CMV) basic phosphoprotein (BPP) is a component of the tegument. It remains with the nucleocapsid fraction under conditions that remove most other tegument proteins from the virion, suggesting a direct and perhaps tight interaction with the capsid. As a step toward localizing this protein within the molecular structure of the virion and understanding its function during infection, we have investigated the BPP-capsid interaction. In this report we present evidence that the BPP interacts selectively, through its amino one-third, with CMV capsids. Radiolabeled simian CMV (SCMV) BPP, synthesized in vitro, bound to SCMV B-capsids, and C-capsids to a lesser extent, following incubation with either isolated capsids or lysates of infected cells. Human CMV (HCMV) BPP (pUL32) also bound to SCMV capsids, and SCMV BPP likewise bound to HCMV capsids, indicating that the sequence(s) involved is conserved between the two proteins. Analysis of SCMV BPP truncation mutants localized the capsid-binding region to the amino one-third of the molecule--the portion of BPP showing the greatest sequence conservation between the SCMV and HCMV homologs. This general approach may have utility in studying the interactions of other proteins with conformation-dependent binding sites.  相似文献   

2.
Native phosphorylated mouse small heat shock protein hsp25 from Ehrlich ascites tumor cells was isolated and the in vivo phosphorylation sites of the protein were determined. Furthermore, native hsp25 was phosphorylated by the endogenous kinase(s) in a cell-free system as well as recombinant hsp25 was phosphorylated in vitro by protein kinase C and catalytic subunit of cAMP-dependent protein kinase. The two major phosphorylation sites of native and recombinant hsp25 were determined as Ser-15 and Ser-86. There are no differences in the hsp25 phosphorylation sites phosphorylated by the protein kinase C, the catalytic subunit of cAMP-dependent protein kinase and the unknown intracellular kinase(s). The serine residues identified exist in all known small mammalian stress proteins and are located in the conserved kinase recognition sequence Arg-X-X-Ser.  相似文献   

3.
Human cytomegalovirus (HCMV) virions are composed of a DNA-containing nucleocapsid surrounded by a tegument layer and host-derived lipid envelope studded with virally encoded glycoproteins. These complex virions are estimated to be composed of more than 50 viral proteins. Assembly of HCMV virions is poorly understood, especially with respect to acquisition of the tegument; however, it is thought to involve the stepwise addition of virion components through protein-protein interactions. We sought to identify interactions among HCMV virion proteins using yeast two-hybrid analysis. Using 33 known capsid and tegument proteins, we tested 1,089 pairwise combinations for binary interaction in the two-hybrid assay. We identified 24 interactions among HCMV virion proteins, including 13 novel interactions among tegument proteins and one novel interaction between capsid proteins. Several of these novel interactions were confirmed by coimmunoprecipitation of protein complexes from transfected cells. In addition, we demonstrate three of these interactions in the context of HCMV infection. This study reveals several new protein-protein interactions among HCMV tegument proteins, some of which are likely important for HCMV replication and pathogenesis.  相似文献   

4.
5.
p21-activated protein kinase (PAK) is a family of serine/threonine kinases whose activity is stimulated by binding to small G-proteins such as Cdc42 and subsequent autophosphorylation. Focusing on the ubiquitous gamma-isoform of PAK in this study, baculovirus-infected insect cells were used to obtain recombinant gamma-PAK, while native gamma-PAK was isolated from rabbit reticulocytes. Two-dimensional gel electrophoresis of gamma-PAK followed by immunoblot analysis revealed a similar profile for native and recombinant gamma-PAK, both consisting of multiple protein spots. Following Cdc42-stimulated autophosphorylation, the two-dimensional profiles of native and recombinant gamma-PAK were characterized by a similar acidic shift, suggesting a common response to Cdc42. To understand the effect of differential phosphorylation on its activation status, gamma-PAK autophosphorylation was conducted in the presence or absence of activators such as Cdc42 and histone II-AS, followed by tryptic digestion and comparative two-dimensional phosphopeptide mapping. The major phosphopeptides were subjected to a combination of manual and automated amino acid sequencing. Overall, eight autophosphorylation sites were identified in Cdc42-activated gamma-PAK, six of which are in common with those previously reported in alpha-PAK, while Ser-19 and Ser-165 appear to be uniquely phosphorylated in the gamma-form. Further, the phosphorylation of Ser-141, Ser-165, and Thr-402 was found to correlate with gamma-PAK activation.  相似文献   

6.
Human cytomegalovirus (HCMV), a member of the herpesvirus family, is a large complex enveloped virus composed of both viral and cellular gene products. While the sequence of the HCMV genome has been known for over a decade, the full set of viral and cellular proteins that compose the HCMV virion are unknown. To approach this problem we have utilized gel-free two-dimensional capillary liquid chromatography-tandem mass spectrometry (MS/MS) and Fourier transform ion cyclotron resonance MS to identify and determine the relative abundances of viral and cellular proteins in purified HCMV AD169 virions and dense bodies. Analysis of the proteins from purified HCMV virion preparations has indicated that the particle contains significantly more viral proteins than previously known. In this study, we identified 71 HCMV-encoded proteins that included 12 proteins encoded by known viral open reading frames (ORFs) previously not associated with virions and 12 proteins from novel viral ORFs. Analysis of the relative abundance of HCMV proteins indicated that the predominant virion protein was the pp65 tegument protein and that gM rather than gB was the most abundant glycoprotein. We have also identified over 70 host cellular proteins in HCMV virions, which include cellular structural proteins, enzymes, and chaperones. In addition, analysis of HCMV dense bodies indicated that these viral particles are composed of 29 viral proteins with a reduced quantity of cellular proteins in comparison to HCMV virions. This study provides the first comprehensive quantitative analysis of the viral and cellular proteins that compose infectious particles of a large complex virus.  相似文献   

7.
8.
In response to virus infection, cells can alter protein expression to modify cellular functions and limit viral replication. To examine host protein expression during infection with human cytomegalovirus (HCMV), an enveloped DNA virus, we performed a semiquantitative, temporal analysis of the cell surface proteome in infected fibroblasts. We determined that resident low density lipoprotein related receptor 1 (LRP1), a plasma membrane receptor that regulates lipid metabolism, is elevated early after HCMV infection, resulting in decreased intracellular cholesterol. siRNA knockdown or antibody-mediated inhibition of LRP1 increased intracellular cholesterol and concomitantly increased the infectious virus yield. Virions produced under these conditions contained elevated cholesterol, resulting in increased infectivity. Depleting cholesterol from virions reduced their infectivity by blocking fusion of the virion envelope with the cell membrane. Thus, LRP1 restricts HCMV infectivity by controlling the availability of cholesterol for the virion envelope, and increased LRP1 expression is likely a defense response to infection.  相似文献   

9.
Signal transduction from the insulin receptor to downstream effectors is attenuated by phosphorylation at a number of Ser/Thr residues of insulin receptor substrate-1 (IRS-1) resulting in resistance to insulin action, the hallmark of type II diabetes. Ser/Thr residues can also be reversibly glycosylated by O-linked beta-N-acetylglucosamine (O-GlcNAc) monosaccharide, a dynamic posttranslational modification that offers an alternative means of protein regulation to phosphorylation. To identify sites of O-GlcNAc modification in IRS-1, recombinant rat IRS-1 isolated from HEK293 cells was analyzed by two complementary mass spectrometric methods. Using data-dependent neutral loss MS3 mass spectrometry, MS/MS data were scanned for peptides that exhibited a neutral loss corresponding to the mass of N-acetylglucosamine upon dissociation in an ion trap. This methodology provided sequence coverage of 84% of the protein, permitted identification of a novel site of phosphorylation at Thr-1045, and facilitated the detection of an O-GlcNAc-modified peptide of IRS-1 at residues 1027-1073. The level of O-GlcNAc modification of this peptide increased when cells were grown under conditions of high glucose with or without chronic insulin stimulation or in the presence of an inhibitor of the O-GlcNAcase enzyme. To map the exact site of O-GlcNAc modification, IRS-1 peptides were chemically derivatized with dithiothreitol following beta-elimination and Michael addition prior to LC-MS/MS. This approach revealed Ser-1036 as the site of O-GlcNAc modification. Site-directed mutagenesis and Western blotting with an anti-O-GlcNAc antibody suggested that Ser-1036 is the major site of O-GlcNAc modification of IRS-1. Identification of this site will facilitate exploring the biological significance of the O-GlcNAc modification.  相似文献   

10.
11.
A novel baculovirus-based protein expression strategy was developed to produce recombinant proteins in insect cells without contaminating baculovirus virions. This novel strategy greatly simplifies the downstream processing of biopharmaceuticals produced in insect cells. The formation of these virions is prevented by deletion of a baculovirus gene essential for virion formation. The deletion is trans-complemented in a transgenic insect cell line in which the baculovirus seed stock is produced. The Autographa californica multicapsid nucleopolyhedrovirus vp80 gene was selected for this purpose, as absence of VP80 prevented the formation of budded virus as well as occlusion-derived virus, while foreign gene expression was not affected. Sf9 insect cells were engineered to functionally complement the vp80 deletion in the expression vector virus during seed stock production. The trans-complemented vp80-deletion baculovirus seed produced an amount of recombinant protein similar to that produced with conventional baculovirus vectors but without contaminating virions. This novel expression method obviates the need to purify the virions away from the biopharmaceuticals.  相似文献   

12.
O-linked N-acetylglucosamine (O-GlcNAc) is a highly dynamic and abundant modification found on nuclear and cytoplasmic proteins of nearly all eukaryotes. O-GlcNAc addition is required for life at the single cell level and is analogous to protein phosphorylation in most respects. In a previous study (M.S. Jiang, G.W. Hart, A subpopulation of estrogen receptors are modified by O-linked N-acetylglucosamine. J. Biol. Chem. 270 (1997) 2421-2428), we demonstrated that a subpopulation of the murine estrogen receptor-alpha (mER-alpha) is modified by O-GlcNAc at Thr(575). Here we mutated mER-alpha to convert Thr(575) and Ser(576) to Val and Ala, respectively. Surprisingly, this glycosylation-site mutant is still extensively modified by O-GlcNAc. Analyses of glycopeptides identified two additional sites of modification on mER-alpha, at Ser(10) and Thr(50) near the N-terminus. The major glycosylation sites are within or near PEST regions, suggesting that O-GlcNAc may regulate mER-alpha turnover.  相似文献   

13.
The L1 coat protein of human papillomavirus type 11 (HPV-11) was expressed in Sf-9 insect cells with the recombinant baculovirus vector Ac11L1. Viruslike particles (VLPs) were identified by electron microscopy in the nucleus and cytoplasm of Sf-9 cells infected with Ac11L1. The L1 protein was purified from Ac11L1-infected insect cells. The purified protein spontaneously assembled in vitro into various aggregates, including particles appearing similar to empty virions. Reaction of VLP-containing insect cell extracts with antisera directed against either denatured or nondenatured capsid epitopes in Western blot (immunoblot) and immuno-dot blot assays suggested that conformational epitopes present in native HPV-11 infectious virions were also present on the baculovirus-produced HPV-11 VLPs. Immuno-dot blot assays using human sera obtained from individuals with biopsy-proven condyloma acuminatum correlated closely with results previously obtained in HPV-11 whole virus particle-based enzyme-linked immunosorbent assays. These morphologic and immunologic similarities to native HPV-11 virions suggest that recombinant VLPs produced in the baculovirus system may be useful in seroepidemiology and pathogenesis studies of genital HPV infection and that they may also be potential candidates for vaccine development.  相似文献   

14.
Langat (LGT) virus M protein has been generated in a recombinant system. Antiserum raised against the LGT virus M protein neutralizes tick-borne encephalitis serocomplex flaviviruses but not mosquito-borne flaviviruses, indicating that the M protein is exposed on the surface of virions. The antiserum recognizes intracellular LGT virus prM/M and binds to prM and M in Western blots of whole-cell lysates and purified virus, respectively. These data suggest that the prM and M proteins are structurally similar under native conditions and support the hypothesis that the "pr" portion of prM facilitates proper folding of the M protein for expression on the virion surface.  相似文献   

15.
V Bruss  X Lu  R Thomssen    W H Gerlich 《The EMBO journal》1994,13(10):2273-2279
The preS domain at the N-terminus of the large envelope protein (LHBs) of the hepatitis B virus is involved in (i) envelopment of viral nucleocapsids and (ii) binding to the host cell. While the first function suggests a cytosolic location of the preS domain during virion assembly, the function as an attachment site requires its translocation across the lipid bilayer and final exposure on the virion surface. We compared the transmembrane topology of newly synthesized LHBs in the endoplasmic reticulum (ER) membrane with its topology in the envelope of secreted virions. Protease sensitivity and the absence of glycosylation suggest that the entire preS domain of newly synthesized LHBs remains at the cytosolic side of ER vesicles. However, virions secreted from transfected cell cultures or isolated from the blood of persistent virus carriers expose antibody binding sites and proteolytic cleavage sites of the preS domain at their surface in approximately half of the LHBs molecules. Thus, preS domains appear to be transported across the viral lipid barrier by a novel post-translational translocation mechanism to fulfil a dual function in virion assembly and attachment to the host cell.  相似文献   

16.
Heterogeneous proteins can be displayed on the surface of the budded form of Autographa californica nucleopolyhedrovirus (AcMNPV) after fusion of the display protein to the AcMNPV major envelope glycoprotein, gp64. However, display is restricted to the poles of the virion and is relatively low level. To investigate the use of alternative membrane anchor sequences that would be compatible with virus surface display, we have constructed a display vector containing the gp64 signal peptide and a membrane anchor from the vesicular stomatitis virus (VSV) G glycoprotein. Introduction of a gene encoding green fluorescent protein (GFP) between these signals led to abundant display of GFP on the surface of insect cells and on recombinant budded virions. In addition, and in contrast to gp64 based fusion proteins, GFP was localized to the lateral virion surfaces.  相似文献   

17.
Polyoma virions have different attachment proteins which are responsible for hemagglutination of erythrocytes and attachment to cultured mouse kidney cells (MKC). Virion binding studies demonstrated that MKC possess specific (productive infection) and nonspecific (nonproductive) receptors. Empty polyoma capsids have hemagglutination activity and bind to non-specific MKC receptors, but they are not capable of competing for specific virion cell receptors or preventing productive infection. Isoelectric focusing of the virion major capsid protein, VP1, separated this protein into six species (A through F). These species had identical amino acid sequences, but differed in degree of modification (phosphorylation, acetylation, sulfation and hydroxylation). Evidence based upon precipitation with specific antisera supports the view that VP1 species E is required for specific adsorption and that D and F are required for hemagglutination. The virion attachment domain has been localized to an 18 kilodalton fragment of the C-terminal region of VP1. Monopinocytotic vesicles containing 125I-labeled polyoma virions were isolated from infected MKC. A crosslinker was used to bind the MKC cell receptor(s) covalently to VP1 attachment protein, and a new 120 kilodalton band was identified by SDS-PAGE. An anti-idiotype antibody prepared against a neutralizing polyoma monoclonal antiody was used to identify a putative 50 kilodalton receptor protein from a detergent extract of MKC, as well as from MKC membrane preparation.  相似文献   

18.
Cell fractionation and protein electrophoresis were used to study the intracellular sites of synthesis and intermediate structures in the assembly of the virion proteins of vesicular stomatitis virus. Each of the three major virion proteins assembled into virions through a separable pathway. The nucleocapsid (N) protein was first a soluble protein and later incorporated into free, cytoplasmic nucleocapsids. A small amount of N protein was bound to membranes at later times, presumably representing either nucleocapsids in the process of budding or completed virions attached to the cell surface. The matrix (M) protein also appeared to be synthesized as a soluble protein, but was then directly incorporated into membranous structures with the same density as whole virus. Very little M protein was ever found in membranes banding at the density of plasma membranes. The M protein entered extracellular virus very quickly, as though it moved directly from a soluble state into budding virus. In contrast, the glycoprotein (G) was always membrane bound; it appeared to be directly inserted into membranes during its synthesis. Glycosylation of the G protein was completed only in smooth membrane fractions, possibly in the Golgi apparatus. After a minimum time of 15 min following its synthesis, G protein was incorporated into the surface plasma membrane, from which it was slowly shed into virions. These multiple processing steps probably account for its delayed appearance in virus. From this work it appears that the three major structural proteins come into the surface budding structure through independent pathways and together they coalesce at the plasma membrane to form the mature virion.  相似文献   

19.
Varicella-zoster virus (VZV) open reading frame (ORF) 62 potentially encodes a protein with considerable amino acid homology to the herpes simplex virus (HSV) immediate-early regulatory polypeptide ICP4 (or IE3). To identify and characterize its protein product(s) (IE62), we used a rabbit antiserum prepared against a synthetic peptide corresponding to the C-terminal 13 amino acids of the predicted protein. This antiserum reacted with phosphorylated polypeptides of 175 to 180 kDa that were made in VZV-infected cells and in cells infected with a vaccinia virus recombinant expressing IE62, but not in control-infected cells, confirming its specificity and reactivity to the IE62 protein. The antiserum recognized a 175-kDa polypeptide in purified virions that comigrated with a major structural protein. Comparison of this reactivity with that of an antipeptide antiserum directed against the VZV ORF 10 product (homologous to the HSV major structural protein VP16) indicates similar levels of ORF 62 and ORF 10 polypeptides in VZV virions. In contrast, antipeptide antiserum directed against the VZV ORF 29 product, the homolog of the HSV major DNA-binding protein, failed to recognize any protein in our virion preparations. Treatment of virions with detergents that disrupt the virion envelope did not dissociate IE62 from the nucleocapsid-tegument structure of the virion. Differential sensitivity of VZV virion IE62 to trypsin digestion in the presence or absence of Triton X-100 indicates that IE62 is protected from trypsin degradation by the virus envelope; since it is not a nucleocapsid protein, we conclude that it is part of the tegument. Finally, we show that the virion 175-kDa protein either can autophosphorylate or is a major substrate in vitro for virion-associated protein kinase activity.  相似文献   

20.
In this paper we report the first application of fast atom bombardment mass spectrometry (FAB-MS) to O-linked N-acetylglucosamine (O-GlcNAc)-bearing glycopeptides. Using N-acetylgalactosamine (GalNAc)- and Gal-GalNAc-containing glycopeptides (isolated from Tn glycophorin and desialylated normal glycophorin, respectively) as readily available model compounds, rapid and sensitive derivatization/FAB-MS strategies applicable to serine/threonine-rich glycopeptides have been devised. Peptides and glycopeptides were propionylated in a 1 min reaction using a mixture of trifluoroacetic anhydride and propionic acid, and the product mixtures were analysed directly by FAB-MS. Glycopeptides and peptides rich in hydroxylated residues afforded characteristic clusters of molecular ions at high sensitivity. Additional sensitivity enhancement was achieved by prior esterification of carboxyl groups. These methods were used in a study of O-GlcNAc glycopeptides produced by purified O-GlcNAc transferase addition of GlcNAc to the synthetic peptides YSDSPSTST and YSGSPSTST in which Y is tyrosine, S is serine, D is aspartic acid, P is proline, T is threonine and G is glycine. The propionyl derivatives afforded high-quality spectra which unequivocally showed that the majority of the glycopeptides were substituted with a single GlcNAc residue. Low pmol quantities of material gave detectable signals. The propionylation/FAB-MS procedure has been combined with gas-phase sequencing strategies and shows promise for defining the sites of glycosylation of O-GlcNAc glycopeptides that are available in limited quantities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号