首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[3H]8-OH-DPAT is a selective ligand for labeling 5-HT1A receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [3H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [125I]RTI-55 and [3H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [3H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [3H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [125I]cyanopindolol, [3H]ketanserin/[3H]mesulergine, [3H]GR-65630, [3H]GR-113808 and [3H]LSD) that specifically labeled 5-HT1, 5-HT2, 5-HT3, 5-HT4 and 5-HT5–7 receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

2.
Citalopram, a selective serotonin (5-HT) uptake inhibitor with antidepressant properties, was found to bind with high affinity to the 5-HT transporter from human neuronal and platelet membranes. At 20 degrees C, KD was about 1.5 nM in both tissues. [3H]Citalopram bound to rat neuronal membranes with higher affinity than to human neuronal and platelet membranes; at 20 degrees C KD was about 0.7 nM. The Bmax value for the binding of [3H]citalopram to platelet membranes was close to that found using the 5-HT uptake inhibitors [3H]imipramine and [3H]paroxetine, suggesting that all three 5-HT uptake inhibitors bind to the 5-HT transporter. The dissociation rate of [3H]citalopram increased twofold with each 4-5 degree C increase in temperature in both human and rat membranes, although at any given temperature, the dissociation rate was about four times faster in the human neuronal and platelet membranes than in rat neuronal membranes.  相似文献   

3.
Endogenous substances which inhibited the binding of [3H]flunitrazepam ([3H]FNZ) to bovine synaptosomal membranes have been purified from the hot acetic acid extracts of the bovine brain. Three peaks of inhibitory activity were obtained by Sephadex G-10 gel chromatography. Two of the peaks (Peak 2, and Peak 3) which had lower molecular weights that that of peak 1 were identified as inosine and hypoxanthine by TLC methods. Another peak (Peak 1) was further purified to homogeneity using both cation and anion ion-exchange chromatography and the following two-step reversed-phase HPLC. The purified substance inhibited the [3H]FNZ binding dose-dependently and competitively but did not have an effect on the binding of the peripheral-type BZ ligand [3H]Ro 5-4864. It was also shown that the substance was heat-stable and resistant to proteolytic degradation (trypsin, -chymotrypsin, pronase). However, a significant loss of inhibitory activity to [3H]FNZ binding was observed after acid hydrolysis. Molecular weight estimates based on gel filtration methods were less than 500 dalton, and the maximal ultraviolet absorption peak was at 314 nm. These results suggest that this substance is a new endogenous ligand for the central BZ receptor and may play an important role in regulating the GABAergic tone in the central nervous system.  相似文献   

4.
Extracts of Valeriana officinalis have been used in folkloric medicine for its sedative, hypnotic, tranquilizer and anticonvulsant effects, and may interact with -aminobutyric acid (GABA) and/or benzodiazepine sites. At low concentrations, valerian extracts enhance [3H]flunitrazepam binding (EC50 4.13 × 10–10 mg/ml). However, this increased [3H]flunitrazepam binding is replaced by an inhibition at higher concentrations (IC50 of 4.82 × 10–1 mg/ml). These results are consistent with the presence of at least two different biological activities interacting with [3H]flunitrazepam binding sites. Valerian extracts also potentiate K+ or veratridine-stimulated release of radioactivity from hippocampal slices preloaded with [3H]GABA. Finally, inhibition of synaptosomal [3H]GABA uptake by valerian extracts also displays a biphasic interaction with guvacine. The results confirm that valerian extracts have effects on GABAA receptors, but can also interact at other presynaptic components of GABAergic neurons.  相似文献   

5.
We investigated the distribution of serotonin (5-HT) receptors of type 3 (5-HT3) in human brain areas, by means of the the specific binding of [3H]GR65630. The brains were obtained during autoptic sessions from 6 subjects. Human brain membranes and the binding of [3H]GR65630 were carried out according to standardized methods. The highest density (Bmax ± 6 SD, fmol/mg protein) of [3H]GR65630 binding sites was found in area postrema (13.1 ± 9.7), followed at a statistically lower level, by nucleus tractus solitarius (6.7 ± 3.4), nervus vagus (5.5 ± 2.1), striatum (4.8 ± 2.4) with a progressive decrease in amygdala, olivar nuclei, hippocampus, olfactory bulbus and prefrontal cortex, and then by the other cortical areas and the cerebellum, where no binding was detected. These observations extend previous findings on the distribution of 5-HT3 receptors and confirm interspecies variations that might explain the heterogeneous properties of 5-HT3 receptors in different animals.  相似文献   

6.
Summary The binding of [3H]dizocilpine [[3H]MK-801] to the N-methylD-aspartate receptor complex of well washed rat cortical membranes was reduced by guanidinoethane sulphonic acid (GES). Micromolar concentrations of GES, which were high relative to those of dizocilpine, inhibited in a concentration dependent manner the binding of [3H]dizocilpine. The inhibitory effect of GES on [3H]dizocilpine binding was slightly influenced by concentration of glutamate. The glutamate antagonist DL-2-amino-5phosphonovaleric acid blocked the effect GES at concentrations higher relative to GES. The inhibitory effect of GES was still present during spermidine-induced stimulation of [3H]dizocilpine binding. GES reduced the binding of the glycine antagonist [3H]5,7-dichlorokynurenic acid with an IC50 of 530 M.. Intraperitoneal injections of GES (0.2mmol/kg) protected against both amnesia and decrease in the choline acetyltransferase activity following local injections of the neurotoxin AF64A into the nucleus basalis magnocellularis. GES given to lesioned rats during the training period in the spatial learning task gradually improved the performance to the level of sham operated rats. It is concluded that GES interferes with the transmitter and the dizocilpine binding sites of the NMDA receptor complex and has the capacity to protect against neurotoxic brain damage.  相似文献   

7.
[3H]Spiperone ([3H]SPI) binding sites in rat or bovine striata have been solubilized using CHAPS or digitonin detergents. Solubilized sites retained the binding characteristics of those in native membrane preparations. The same solubilized material, however, did not bind [3H]tyramine ([3H]PTA), thus indicating that [3H]PTA binding sites and DA receptors are different chemico-physical entities. In membrane preparations or crude synaptosomes obtained from the c.striatum of neonatally-rendered hypothyroid rats, when central DA-pathways are impaired, both [3H]PTA binding and [3H]DA uptake processes were markedly decreased, with no effect on [3H]mazindol ([3H]MAZ) binding, compared to euthyroids. Reserpine, a well-known inhibitor of DA-uptake into a variety of secretory vesicles, and a potent in vivo andin vitro inhibitor of [3H]PTA binding, did not affect the [3H]MAZ binding process. This further supported the suggestion that while [3H]PTA binding sites are almost totally associated with the vesicular transporter for DA, [3H]MAZ does label a site involved in the DA-translocation across the neuronal membrane. The latter process seems to be rather insensitive to thyroid hypofunction, when however the intracellular storage of DA might be consistently impaired. In conclusion, PTA might be well exploited as a marker of the DA vesicular transporter through its molecular characterization, whenever possible.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

8.
The specific binding of (3H)ethylketocyclazocine to frog brain membrane preparation was enhanced in the presence of sodium ions administered as NaCl, both at 0 °C and at room temperature. The optimal NaCl concentration was 25 mM at 0 °C and 50 mM at 24 °C. MgCl2 inhibited the [3H]ethylketocyclazocine binding. Two binding sites (high and low affinity) were established with [3H]ethylketocyclazocine as ligand by equilibrium binding studies. Addition of NaCl increased the Bmax of the low-affinity site more than that of the high-affinity site at both temperatures. Affinities were higher at 0 °C than at 24 °C. TheK D values were not significantly influenced by sodium ions. The dissimilarities between the rat and frog brain opioid receptors in [3H]ethylketocyclazocine binding are attributed to the different lipid composition of the two membranes.Abbreviations used DAGO D-Ala2-(Me)Phe4-Gly-ol5-enkephalin - DALE d-Ala2-l-Leu5-enkephalin - DADLE d-Ala2-d-Leu5-enkephalin - EKC Ethylketocyclazocine - DHM Dihydromorphine - BIT 2-(p-ethoxybenzyl)1-diethylaminoethyl-5-isothiocyanobenzimidazole isothiocyanate - FIT Fentanyl isothiocyanate  相似文献   

9.
GMP-PNP, a non-hydrolyzable analog of GTP binds tightly to G-protein in the presence of Mg2+, so that the binding is stable even after exhaustive washings. This property was exploited to prepare membrane samples of rat brain where G-protein GTP-binding sites were saturated with GMP-PNP. Experiments carried out with these membranes showed that GTP, GMP-PNP, GDP-S and GMP (1 mM) inhibit the sodium-independent [3H]glutamate binding by 30–40% [F(4,40) = 5.9; p < .001], whereas only GMP-PNP activates adenylate cyclase activity [F(6,42) = 3.56; p < .01]. The inhibition of sodium-independent [3H]glutamate binding occurred in the absence of Mg2+. These findings suggest that guanine nucleotides may inhibit glutamate binding and activate adenylate cyclase through distinct mechanisms by acting on different sites.  相似文献   

10.
Specific β1-adrenoreceptors antagonist [3H]CGP 26505 binding was characterized in rat cerebral cortex and heart sinus atrial node. In both tissues [3H]CGP 26505 binding was maximal at 25°C, it was specific, saturable and protein concentration dependent. Scatchard analysis of saturation isotherms of specific [3H]CGP 26505 binding in cerebral cortex showed that [3H]CGP 26505 binds a single class of high affinity sites with a dissociation constant (KD) of 1±0.3 nM and a maximal number of binding sites (Bmax) of 40±2 fmol/mg of protein. In sinus atrial node, [3H]-CGP 26505 binds a single class of high affinity sites (KD=1.9±0.4 nM, Bmax=28±2 fmol/mg of protein).  相似文献   

11.
The effect of N-methyl-D-aspartic acid (NMDA), a selective glutamate receptor agonist, on the release of previously incorporated [3H]-aminobutyric acid(GABA) was examined in superfused striatal slices of the rat. NMDA (0.01 to 1.0 mM) increased [3H]GABA overflow with an EC50 value of 0.09 mM. The [3H]GABA releasing effect of NMDA was an external Ca2+-dependent process and the GABA uptake inhibitor nipecotic acid (0.1 mM) potentiated this effect. These findings support the view that NMDA evokes GABA release from vesicular pool in striatal GABAergic neurons. Addition of glycine (1 mM), a cotransmitter for NMDA receptor, did not influence the NMDA-induced [3H]GABA overflow. Kynurenic acid (1 mM), an antagonist of glycineB site, decreased the [3H]GABA-releasing effect of NMDA and this reduction was suspended by addition of 1 mM glycine. Neither glycine nor kynurenic acid exerted effects on resting [3H]GABA outflow. These data suggest that glycineB binding site at NMDA receptor may be saturated by glycine released from neighboring cells. Glycyldodecylamide (GDA) and N-dodecylsarcosine, inhibitors of glycineT1 transporter, inhibited the uptake of [3H]glycine (IC50 33 and 16 M) in synaptosomes prepared from rat hippocampus. When hippocampal slices were loaded with [3H]glycine, resting efflux was detected whereas electrical stimulation failed to evoke [3H]glycine overflow. Neither GDA (0.1 mM) nor N-dodecylsarcosine (0.3 mM) influenced [3H]glycine efflux. Using Krebs-bicarbonate buffer with reduced Na+ for superfusion of hippocampal slices produced an increased [3H]glycine outflow and electrical stimulation further enhanced this release. These experiments speak for glial and neuronal [3H]glycine release in hippocampus with a dominant role of the former one. GDA, however, did not influence resting or stimulated [3H]glycine efflux even when buffer with low Na+ concentration was applied.  相似文献   

12.
Ventral mesencephalic neurons contained only low-affinity and sodium-independent binding sites of [3H]WIN 35,428 (marker of dopamine transporter) during the first 10d in primary cultures. These sites were present in cytosol, and they are not very probably related to dopamine transporter. After 12 d in culture, membrane-bound, high-affinity, and sodium-dependent [3H]WIN 35,428 binding sites were detected. In membranes prepared from cells 14 d in culture, cocaine displaced [3H]WIN 35,428 binding with similar potency to that in striatal membranes of adult rat brain. The high-affinity [3H]WIN 35,428 binding sites in mesencephalic neuronal cell cultures are very probably related to dopamine transporter. The development of high-affinity [3H]WIN 35,428 binding sites in neurons cultured for different time periods could be a useful model of dopamine transporter ontogenesis.  相似文献   

13.
A characterization of [3H]ketanserin ([3H]KTS) binding in the frontal cortex (fCTX) and neostriatum (caudate-putamen, CPU) of rabbit was carried out to determine whether this ligand labels a non-serotoninergic receptor. The association and dissociation kinetics in fCTX were rapid, and could be fitted to two-site models, suggesting [3H]KTS is labeling two cortical sites. Using the serotonin-2 (5-HT2) antagonist mianserin to determine nonspecific binding, the saturation curves revealed a single high-affinity binding site. In contrast, when unlabeled ketanserin was used for nonspecific counts, the Scatchard plots were best fitted to a two-site model but the binding parameters of the high-affinity site were similar to that obtained in the presence of mianserin. The 5-HT2 antagonists mianserin, methysergide and ritanserin inhibited [3H]KTS binding in fCTX at nanomolar concentrations, however, the curves were best fitted to two-site models. In contrast, [3H]KTS binding to membrane preparations from the CPU could only be inhibited by high (micromolar) concentrations of these antagonists. Low micromolar concentrations of the monoamine uptake blockers GBR12909, desipramine, nomifensine, cocaine and fluoxetine competed with [3H]KTS in both fCTX and CPU. This study demonstrates that [3H]KTS labels a non-serotoninergic recognition site in the rabbit fCTX and CPU similar to that found in the rat neostriatum, i.e.: probably a monoamine transport site.  相似文献   

14.
Summary

The metabolism of [3H]ecdysone was examined in 3 species of annelids: the bloodworm, Tubifex vulgaris (a freshwater oligochaete), the earthworm, Lumbricus terrestris (a terrestrial oligochaete) and the ragworm, Nereis divtrsicolor (a marine polychaete). One of these species, N. diversicolor, metabolised injected [3H]ecdysone into compounds which co-chromatographed on both reversed-phase and adsorption HPLC with authentic 20-hydroxyecdysone, 26-hydroxyecdysone and 20,26-dihydroxyecdysone, thus demonstrating the occurrence of 20-hydroxylation and 26-hydroxylation capability in the Annelida. Furthermore, [3H]ecdysonoic acid was also formed and excreted by N. diversicolor, suggesting that 26-oic acid formation is involved in ecdysteroid inactivation in this species. Other, as yet unidentified, radioactive metabolites were also excreted by N. diversicolor. Several metabolites of [3H]ecdysone were also detected in the other 2 species examined, T. vulgaris and L. terrestris.  相似文献   

15.
1. The effects of chronic administration of antidepressants on dopamine-related [3H]SCH 23390 and [3H]spiperone binding to rat striatal membranes were assessed. 2. The monoamine oxidase inhibitors phenelzine (5 or 10 mg kg-1/day) and tranylcypromine (1 mg kg-1/day) and the tricyclic desipramine (10 mg kg-1/day) were administered for 28 days by constant subcutaneous infusion using Alzet (2ML4) osmotic minipumps. 3. These treatments did not alter Kd estimates for either [3H]SCH 23390 or [3H]spiperone binding sites. The monoamine oxidase inhibitors induced a decrease in the Bmax values for both [3H]SCH 23990 and [3H]spiperone binding sites. Desipramine induced a decrease in the Bmax value for [3H]SCH 23390 binding but had no effect on the Bmax value for [3H]spiperone binding.  相似文献   

16.
Kinetic analysis of binding of [3H][N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide ([3H]WAY100635) to 5-HT1A receptors in rat hippocampal membranes has revealed complex regulation mechanism for this radioligand. Saturation binding experiments revealed that [3H]WAY100635 binds to a single class of receptors with very high apparent affinity (K D = 87 ± 4 pM, B max = 15.1 ± 0.2 fmol/mg protein). The binding was almost irreversible, as the dissociation rate constant obtained k off = (7.8 ± 1.1) × 10−3 min−1, means that equilibrium with this radioligand cannot be achieved before 7.5 h incubation at 25°C. Systematic association kinetic studies of [3H]WAY100635 binding revealed sharp reaction acceleration at higher radioligand concentration, proposing mechanism of positive cooperativity. The affinities of antagonists determined from competition with [3H]WAY100635 did not coincide with their abilities to inhibit 5-HT-dependent activation of [35S]GTPγS binding probably due to the ligand’s kinetic peculiarities. Thus, [3H]WAY100635 appears to be an excellent tool for determining receptor binding sites, but its applicability in equilibrium studies is strongly limited.  相似文献   

17.
Some G protein-coupled receptors (GPCRs) have functional links to cancer biology, yet the manifestation of GPCRs in tumor types is little studied to date. Using a battery of radioligand binding assays, we sought to characterize GPCR recognition binding sites on HeLaS3 tumor cells. High levels of binding of the selective serotonin 5-HT1A receptor agonist [3H]8-OH-DPAT were observed in these cells. Saturation and homologous competition experiments indicated that [3H]8-OH-DPAT bound different populations of high- and low-affinity sites. In competition experiments, several serotonergic compounds displaced [3H]8-OH-DPAT binding with low potency from its high-affinity binding sites, suggesting that low-affinity binding is the predominant mode of binding. A variety of drugs targeting different classes of receptors did not affect [3H]8-OH-DPAT binding. These observations may help elucidate the pathophysiological and functional relevance of 5-HT receptors in tumor cells and link GPCRs and tumorigenic mechanisms to pharmacological and chemotherapeutic paradigms.  相似文献   

18.
We studied the characteristics of [3H]cocaine binding to membranes prepared from whole guinea pig brain. Cocaine binding was specific and saturable. A one-site binding model fit the data adequately: the Kd value of [3H]cocaine was 44 nM with a Bmax value of 280 fmol/mg protein. The rank order of potency for the [3H]cocaine binding site was paroxetine > clomipramine > (–)-cocaine > fluoxetine > mazindol > desipramine > GBR12909 > phencyclidine > benztropine > GBR12935 > (+)-cocaine. The IC50 values of these drugs for inhibition of [3H]cocaine binding were highly correlated with their IC50 values for inhibition of [3H]5-HT uptake into synaptosomes prepared from whole guinea pig brain. High affinity 5-HT uptake inhibitors produced dose-dependent wash-resistant (pseudoirreversible) inhibition of [3H]cocaine binding. The wash-resistant inhibition produced by paroxetine was due to an increase in the Kd of [3H]cocaine binding sites, and was accompanied by an increase in the dissociation rate, consistent with an allosteric mechanism. These studies suggest that, using membranes prepared from whole guinea pig brain, [3H]cocaine labels a binding site associated with serotonin transporter and that paroxetine and cocaine bind to different sites on the serotonin transporter.Abbreviations GBR12909 1-(2-{bis(4-fluorophenyl)methoxy}ethyl)-4-{3-phenylpropyl}piperazine - TCP 1-{1-(2-thienyl)cyclohexyl}piperidine - BTCP N-{1-(2-benzo(b)thiophenyl)cyclohexyl}piperidine - PCP 1-(1-phenylcyclohexyl)piperidine - GBR12935 (1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine) - CMI clomipramine  相似文献   

19.
The binding of the 5-hydroxytryptamine (5-HT, serotonin) uptake inhibitor [3H]paroxetine to rat cortical homogenates has been characterized. The effect of tissue concentration was examined and, with 0.75 mg wet weight tissue/ml in a total volume of 1,600 microliter, the binding was optimized with an apparent dissociation constant (KD) of 0.03-0.05 nM. Competition experiments with 5-HT, citalopram, norzimeldine, and desipramine revealed a high (90%) proportion of displaceable binding that fitted a single-site binding model. Fluoxetine and imipramine revealed, in addition to a high-affinity (nanomolar) site, also a low-affinity (micromolar) site representing approximately 10% of the displaceable binding. The specificity of the [3H]paroxetine binding was emphasized by the fact that 5-HT was the only active neurotransmitter bound and that the serotonin S1 and S2 antagonist methysergide was without effect on the binding. Both 5-HT- and fluoxetine-sensitive [3H]paroxetine binding was completely abolished after protease treatment, suggesting that the binding site is of protein nature. Saturation studies with 5-HT (100 microM) sensitive [3H]paroxetine binding were also consistent with a single-site binding model, and the binding was competitively inhibited by 5-HT and imipramine. The number of binding sites (Bmax) for 5-HT-sensitive [3H]paroxetine and [3H]imipramine binding was the same, indicating that the radioligands bind to the same sites. Lesion experiments with p-chloroamphetamine resulted in a binding in frontal and parietal cortices becoming undetectable and a greater than 60% reduction in the striatum and hypothalamus, indicating a selective localization on 5-HT terminals. Together these findings suggest that [3H]paroxetine specifically and selectively labels the substrate recognition site for 5-HT uptake in rat brain.  相似文献   

20.
This study aimed at comparing the binding characteristics of [3H]ketanserin, a high-affinity serotonin 2A (5-HT2A) receptor antagonist, in the prefrontal cortex, hippocampus and striatum of human brain post-mortem. The results indicated the presence of a single population of binding sites in all the regions investigated, with no statistical difference in maximum binding capacity (Bmax) or dissociation constant (Kd) values. The pharmacological profile of [3H]ketanserin binding was consistent with the labeling of the 5-HT2A receptor, since it revealed a competing drug potency ranking of ketanserin = spiperone > clozapine = haloperidol > methysergide > mesulergine > 5-HT. In conclusion, the 5-HT2A receptor, as labeled by [3H]ketanserin, would seem to consist of a homogenous population of binding sites and to be equally distributed in human prefronto-cortical, limbic and extrapyramidal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号