首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike normal microtubule assembly, the in vitro assembly of DEAE-purified goat brain tubulin in presence of Zn(II) is not inhibited by suprastoichiometric concentrations of antimicrotubular drugs like colchicine and podophyllotoxin. However, assembly in the presence of Zn(II) is inhibited by vinblastine. Vinblastine sensitivity of the assembly process depends on the Mg(II) concentration in the assembly medium. Like normal microtubules, Zn(II)-induced polymers are sensitive to cold. The polymers assembled in presence of Zn(II) are readily disassembled on treatment with Zn(II)-chelators like EDTA or o-phenanthroline, indicating that the binding of Zn(II) to tubulin is essential for maintaining the polymeric structure.  相似文献   

2.
Binding of calmodulin to microtubule-associated proteins (MAPs) was analyzed by the equilibrium gel filtration method. The apparent dissociation constant (Kd) of calmodulin binding was found to be 2 microM for tau, and 5 microM for MAP2. These Kd values were similar to the Kd previously determined for calmodulin binding to tubulin. The inhibitory effect of increasing concentrations of calmodulin on the kinetics of microtubule assembly from tau and tubulin was not mimicked by decreasing the concentration of tau alone or tubulin alone. These results suggest that calmodulin inhibits microtubule assembly by its binding to both MAPs and tubulin.  相似文献   

3.
Post‐translational modifications (PTMs) of α/β‐tubulin are believed to regulate interactions with microtubule‐binding proteins. A well‐characterized PTM involves in the removal and re‐ligation of the C‐terminal tyrosine on α‐tubulin, but the purpose of this tyrosination–detyrosination cycle remains elusive. Here, we examined the processive motility of mammalian dynein complexed with dynactin and BicD2 (DDB) on tyrosinated versus detyrosinated microtubules. Motility was decreased ~fourfold on detyrosinated microtubules, constituting the largest effect of a tubulin PTM on motor function observed to date. This preference is mediated by dynactin's microtubule‐binding p150 subunit rather than dynein itself. Interestingly, on a bipartite microtubule consisting of tyrosinated and detyrosinated segments, DDB molecules that initiated movement on tyrosinated tubulin continued moving into the segment composed of detyrosinated tubulin. This result indicates that the α‐tubulin tyrosine facilitates initial motor–tubulin encounters, but is not needed for subsequent motility. Our results reveal a strong effect of the C‐terminal α‐tubulin tyrosine on dynein–dynactin motility and suggest that the tubulin tyrosination cycle could modulate the initiation of dynein‐driven motility in cells.  相似文献   

4.
High resolution mercury nuclear magnetic resonance (199Hg-NMR) experiments have been performed in order to monitor mercury chemical speciation when HgCl2 is added to water solutions and follow mercury binding properties towards biomembranes or other ligands. Variations of 199Hg chemical shifts by several hundred ppm depending upon pH and/or pCl changes or upon ligand or membrane addition afforded to determine the thermodynamic parameters which describe the equilibria between the various species in solution. By comparison to an external reference, the decrease in concentration of mercury species in solution allowed to estimate the amount as well as the thermodynamic parameters of unlabile mercury-ligand or mercury-membrane complexes. Hence, some buffer molecules can be classified in a scale of increasing complexing power towards Hg(II): EGTA greater than Tris greater than HEPES. In contrast, MOPS, Borax, phosphates and acetates show little complexation properties for mercury, in our experimental conditions. Evidence for complexation with phosphatidylethanolamine (PE), phosphatidylserine (PS) and human erythrocyte membranes has been found. Hg(II) does not form complexes with egg phosphatidylcholine membranes. Interaction with PE and PS model membranes can be described by the presence of two mercury sites, one labile, the other unlabile, in the NMR time scale. In the labile site Hg(PE) and Hg(PS)2 would be formed whereas in the unlabile site Hg(II) would establish bridges between three PE or PS molecules. Calculated thermodynamic data clearly indicate that PE is a better complexing agent than PS. Evidence is also found that complexation with lipids uses at first the HgCl2 species. Interestingly, mercury complexation with ligands or membranes can be completely reversed by addition of decimolar NaCl solutions. Minute mechanisms for mercury complexation with the primary amine of PE or PS membrane head groups are discussed.  相似文献   

5.
Ethacrynic acid (ECA) is a sulfhydryl reactive diuretic drug. Recent studies show that ocular administration of ECA may have potential efficacy for treatment of glaucoma. ECA affects cell shape in cultured cells from the eye outflow pathway and the microtubule system is disrupted. We have studied the effect of ECA on microtubule protein (MTP) (tubulin and microtubule-associated proteins) and purified tubulin assembly. Fifty percent inhibition of MTP (1.8 mg/ml) assembly was found at 70 microM ECA in buffer and 410 microM ECA in 30% glycerol in buffer. If all sulfhydryl groups were attributed to tubulin, then approximately two sulfhydryls were blocked at 50% inhibition. Tubulin (2 mg/ml) assembly showed 50% inhibition at 175 microM ECA and approximately 2 sulfhydryl groups were lost. Increasing ECA preincubation times (0-60 min) with tubulin showed that the longer the preincubation time, the longer the lag time, and the slower the rate of assembly and that the percentage of inhibition was proportional to the ECA preincubation time. The number of blocked sulfhydryls also increased with preincubation time. Approximately two sulfhydryls were blocked at 50% inhibition of assembly. The critical concentration for assembly increased twofold when tubulin was preincubated with 0.1 mM ECA, suggesting a loss of active tubulin. Fifty percent inhibition of taxol-induced MTP and tubulin assembly occurred at 190 and 280 microM ECA, respectively, with 3.6 to 3.8 sulfhydryls blocked, respectively. Taxol protects microtubules from disassembly by ECA, suggesting that the ECA binding key sulfhydryls are blocked in the microtubule. These results suggest that ECA reacts slowly with tubulin and blocks sulfhydryl groups important for assembly. Microtubule-associated proteins and glycerol protect the sulfhydryls and so more ECA is necessary to inhibit assembly. Since the number of blocked sulfhydryls is greater at 50% inhibition for taxol-induced microtubules, sulfhydryl blocked tubulin incompetent to assemble under normal conditions may be induced to do so with taxol.  相似文献   

6.
We have investigated the differences in microtubule assembly in cytoplasm from Xenopus oocytes and eggs in vitro. Extracts of activated eggs could be prepared that assembled extensive microtubule networks in vitro using Tetrahymena axonemes or mammalian centrosomes as nucleation centers. Assembly occurred predominantly from the plus-end of the microtubule with a rate constant of 2 microns.min-1.microM-1 (57 s-1.microM-1). At the in vivo tubulin concentration, this corresponds to the extraordinarily high rate of 40-50 microns.min-1. Microtubule disassembly rates in these extracts were -4.5 microns.min-1 (128 s-1) at the plus-end and -6.9 microns.min-1 (196 s-1) at the minus-end. The critical concentration for plus-end microtubule assembly was 0.4 microM. These extracts also promoted the plus-end assembly of microtubules from bovine brain tubulin, suggesting the presence of an assembly promoting factor in the egg. In contrast to activated eggs, assembly was never observed in extracts prepared from oocytes, even at tubulin concentrations as high as 20 microM. Addition of oocyte extract to egg extracts or to purified brain tubulin inhibited microtubule assembly. These results suggest that there is a plus-end-specific inhibitor of microtubule assembly in the oocyte and a plus-end-specific promoter of assembly in the eggs. These factors may serve to regulate microtubule assembly during early development in Xenopus.  相似文献   

7.
A new fluorophor for tubulin which has permitted the monitoring of microtubule assembly in vitro is reported. DAPI (4',6-diamidino-2-phenylindole), a fluorophor already known as a DNA intercalator, was shown to bind specifically to a unique tubulin site as a dimer (KD(app) = 43 +/- 5 microM at 37 degrees C) or to tubulin associated in microtubules (KD(app) = 6 +/- 2 microM at 37 degrees C) with the same maximum enhancement in fluorescence. When tubulin polymerization was induced with GTP, the change in DAPI affinity for tubulin resulted in an enhancement of DAPI binding and, consequently, of fluorescence intensity. DAPI, whose binding site is different from that of colchicine, vinblastine, or taxol, did not interfere greatly with microtubule polymerization. It induced a slight diminution of the critical concentration for tubulin assembly due to a decrease in the depolymerizing rate constant. Moreover, DAPI did not interfere with GTP hydrolysis correlated with tubulin polymerization, but it decreased the GTPase activity at the steady state of tubulin assembly. Even at substoichiometric levels DAPI can be used to follow the kinetics of microtubule assembly.  相似文献   

8.
Estimation of the diffusion-limited rate of microtubule assembly.   总被引:2,自引:0,他引:2       下载免费PDF全文
Microtubule assembly is a complex process with individual microtubules alternating stochastically between extended periods of assembly and disassembly, a phenomenon known as dynamic instability. Since the discovery of dynamic instability, molecular models of assembly have generally assumed that tubulin incorporation into the microtubule lattice is primarily reaction-limited. Recently this assumption has been challenged and the importance of diffusion in microtubule assembly dynamics asserted on the basis of scaling arguments, with tubulin gradients predicted to extend over length scales exceeding a cell diameter, approximately 50 microns. To assess whether individual microtubules in vivo assemble at diffusion-limited rates and to predict the theoretical upper limit on the assembly rate, a steady-state mean-field model for the concentration of tubulin about a growing microtubule tip was developed. Using published parameter values for microtubule assembly in vivo (growth rate = 7 microns/min, diffusivity = 6 x 10(-12) m2/s, tubulin concentration = 10 microM), the model predicted that the tubulin concentration at the microtubule tip was approximately 89% of the concentration far from the tip, indicating that microtubule self-assembly is not diffusion-limited. Furthermore, the gradients extended less than approximately 50 nm (the equivalent of about two microtubule diameters) from the microtubule tip, a distance much less than a cell diameter. In addition, a general relation was developed to predict the diffusion-limited assembly rate from the diffusivity and bulk tubulin concentration. Using this relation, it was estimated that the maximum theoretical assembly rate is approximately 65 microns/min, above which tubulin can no longer diffuse rapidly enough to support faster growth.  相似文献   

9.
The effects of bivalent ions on tubulin dynamics and the upper phase of glycolysis were investigated at different organization levels in vitro. Cu2+, Cd2+, Hg2+ and CrO4(2-) inhibit the tubulin polymerization at an IC50 of 14-24 microM with high cooperativity and also induce microtubule disassembly. The apparent binding constants of the ions to tubulin, estimated by fluorescence quenching, vary between 6 and 28 microM. BIAcore measurements for tubulin-tubulin interaction suggest that the presence of Cu2+ affects neither koff nor kon, but the amount of the bound tubulin. While the inhibitory effect of Cu2+ on tubulin polymerization is partially abolished by cross-linking of microtubules with substoichiometric amounts of phosphofructokinase or decoration of tubules with cytosolic proteins, in the presence of kinase but not with cytosolic proteins the tubules are resistant to CrO4(2-). No inhibitory effect of Cu2+ or CrO4(2-) on microtubule assembly was detected in the MAP-containing cytosolic fraction. Electron microscopy revealed that tubules assembled in the presence of Cu2+ or CrO4(2-) ions contain aggregates of thread-like oligomers that are less conspicuous in the presence of cytosolic proteins. Cu2+, Cd2+, and Hg2+ inhibit the glycolytic flux in the cytosolic fraction characterized at equilibrium by an IC50 of 10-14 microM with high cooperativity. Tubulin diminishes the inhibitory effect of the cations. These data indicate that the responses elicited by the bivalent ions are highly dependent on the supramolecular organization of the systems.  相似文献   

10.
The inhibition of microtubule proteins (MTP) assembly by Spirogermanium (SP, 1.25-100 microM) has been studied. Assembly at 37 degrees C was monitored by turbidity measurements and electron microscopy. For SP in 1:1 protein-drug ratio the inhibition of assembly was 50%. Addition of 12.5 microM SP to microtubules induced spontaneous disassembly. SP had less effect on the assembly of pure tubulin (tubulin 6S). Complete inhibition of assembly induced by glycerol and Mg2+ was found with 250 microM and the ratio of SP to tubulin to obtain 50% inhibition was higher than with MTP.  相似文献   

11.
Metal ion chelators widely used in experimental protocols and clinical diagnosis are generally assumed to be inert. We previously reported that the ubiquitous chelator EDTA has high levels of superoxide suppressing activity. Here, we report that the common chelators calcium chelator EGTA and contrast agent EHPG have significant activities in suppressing superoxide levels depending on the nature of metal ion chelated. The most active species is Mn(II)-EGTA which exhibited an IC50 value of 0.19 microM for superoxide destruction. In addition, IC50 values for Mn(II)-EHPG and 2Cu(II)-EGTA were 0.69 and 0.60 microM, respectively. In conclusion, Mn(II) and Cu(II) complexes of the common chelators EGTA and EHPG exhibit considerable superoxide scavenging activities. Caution should be employed in their use in biological systems where superoxide has a key role and they may be useful for the development of catalytic anti-oxidants.  相似文献   

12.
The impact of triethyl lead chloride was studied on: (i) the in vitro assembly and disassembly of microtubules from porcine brain by turbidometry and electron microscopy, (ii) the microtubule system of living mammalian cells using immunofluorescence microscopy, (iii) cell motility and chemotaxis employing the methods of phagokinetic track formation and the Boyden chamber assay, respectively, and (iv) thiol groups of the protein tubulin by their titration in the presence and absence of the organic lead compound. Triethyl lead chloride inhibited microtubule assembly and depolymerized preformed microtubules in vitro and in living cells. Random motility of cells was not markedly inhibited by triethyl lead chloride, whereas chemotaxis (directed cellular movement) was strongly inhibited. Triethyl lead chloride was found to interact with 2 thiol groups of the tubulin dimer. The interaction of triethyl lead chloride with the tubulin/microtubule system in vivo likely causes aneuploidy and is at least partly responsible for the cytotoxicity of the drug.  相似文献   

13.
Substoichiometric concentrations of tubulin-colchicine complex (TC) inhibits microtubule assembly through a copolymerization reaction between tubulin and TC. We have determined the rates and extent of TC incorporation into bovine brain microtubules and developed a theory that models copolymerization. Our analysis suggests that while the apparent association rate constants for tubulin and TC are similar, the apparent dissociation rate constants for TC are a factor of five or more larger than those of tubulin. Copolymer composition showed only slight changes during assembly despite changes in the solution phase and showed little dependence at high TC upon the initial tubulin concentration. The theory was based on coupled Oosawa-Kasai equations that allow for the co-assembly of two components, tubulin and TC. An expression was derived that relates copolymer composition to reaction mixture composition and to the affinity of microtubule ends for tubulin and TC. This expression predicts copolymer composition at TC concentrations less than 10 microM and correlates composition with assembly inhibition. We perceive copolymerization as a facilitated incorporation of TC requiring the presence of tubulin. TC incorporation was dependent on the ratio of total tubulin to the dissociation constant for TC bound to microtubule ends. The copolymerization reaction is thus characterized by an interplay of two effects (a) where tubulin facilitates the incorporation of TC into the microtubule, and (b) where TC inhibits the assembly of tubulin into microtubules.  相似文献   

14.
He YK  Sun JG  Feng XZ  Czakó M  Márton L 《Cell research》2001,11(3):231-236
INTRODUCTIONEnvironmental pollution is an increasing prob-lem both fOr developing and developed countries.Mercury, both in organic and ionic fOrm, is one of themost hazardous pollutants among the heavy met-als[l]and its accumuIation in human body results ininactivation of metabolic enzymes and structuralproteins[2, 3] giving rise to serious health problems(Minamatasyndrome).Usually mercury pollution is caused by indus-trial and agricultural activities, releasing mercuryinto air, water an…  相似文献   

15.
Microtubule assembly from purified tubulin preparations involves both microtubule nucleation and elongation. Whereas elongation is well documented, microtubule nucleation remains poorly understood because of difficulties in isolating molecular intermediates between tubulin dimers and microtubules. Based on kinetic studies, we have previously proposed that the basic building blocks of microtubule nuclei are persistent tubulin oligomers, present at the onset of tubulin assembly. Here we have tested this model directly by isolating nucleation-competent cross-linked tubulin oligomers. We show that such oligomers are composed of 10-15 laterally associated tubulin dimers. In the presence of added free tubulin dimers, several oligomers combine to form microtubule nuclei competent for elongation. We provide evidence that these nuclei have heterogeneous structures, indicating unexpected flexibility in nucleation pathways. Our results suggest that microtubule nucleation in purified tubulin solution is mechanistically similar to that templated by gamma-tubulin ring complexes with the exception that in the absence of gamma-tubulin complexes the production of productive microtubule seeds from tubulin oligomers involves trial and error and a selection process.  相似文献   

16.
We have found that mitoxantrone can inhibit the polymerization of brain tubulin in a dose dependent manner. MXT had relatively high affinity for tubulin but had no appreciable effect on tubulin associated guanosine-triphosphatase (GTPase) activity nor could it compete with vinblastine (VB) and colchicine (Col) for tubulin binding sites. Furthermore, MXT (0.1-10 microM) is antiproliferative to cold-treated (0 degree C) epithelial cells after only brief exposure (30 min). These results indicated that MXT is a microtubule inhibitory agent and can exert its anticellular effect through modulation of microtubule assembly.  相似文献   

17.
When sperm of Strongylocentrotus purpuratus or Lytechinus pictus are diluted into seawater, motility is initiated; and when exposed to egg jelly, an acrosome reaction is induced. In the presence of a variety of structurally different metal chelators (0.1-1 mM EDTA, EGTA, phenanthroline, dipyridyl, cysteine, or dithiothreitol), motility initiation is delayed and the acrosome reaction is inhibited. Of the metals detected in the sperm of these two species, very low levels of Zn+2 (0.1 microM free Zn+2) uniquely prevent this chelator inhibition. L. pictus sperm concentrate 65Zn+2 from seawater, and EDTA removes 50% of the accumulated 65Zn+2 by 5 min. Since both sperm motility and acrosome reactions are in part regulated by intracellular pH (pHi), the effect of chelators on the sperm pHi was examined by using the fluorescent pH sensitive probe, 9-aminoacridine, EDTA depresses sperm pHi in both species, and 0.1 microM free Zn+2 reverses this pHi depression. When sperm are diluted into media that contain chelators, both NH4Cl and monensin (a Na+/H+ ionophore) increase the sperm pHi and reverse the chelator inhibition of sperm motility and acrosome reactions. The results of this study are consistent with the involvement of a trace metal (probably zinc) in the pHi regulation of sea urchin sperm and indicate a likely mechanism for the previously observed effects of chelators on sperm motility and acrosome reactions.  相似文献   

18.
Two related compounds, 1,8-anilinonaphthalenesulfonate (1,8-ANS) and bis(1,8-anilinonaphthalenesulfonate) (Bis-ANS), are useful fluorescent probes for hydrophobic areas on protein molecules. Using fluorescence, we examined the binding of these compounds to bovine brain tubulin and found that Bis-ANS and 1,8-ANS bound to tubulin with Ki values of 2 and 25 microM, respectively. Bis-ANS potently inhibited the polymerization of tubulin into microtubules in vitro. In the presence of microtubule-associated protein 2, half-maximal inhibition of assembly was obtained at 3 microM Bis-ANS. In the presence of tau protein, half-maximal inhibition was obtained at 15 microM Bis-ANS. Surprisingly, 1,8-ANS, even at 200 microM, did not inhibit assembly. Scatchard analysis indicated one binding site for Bis-ANS on tubulin. Previous reports of 1,8-ANS binding to tubulin may have been influenced by the presence of Bis-ANS which until recently was a common contaminant of commercial supplies. Because of its intense fluorescence in addition to its potent inhibitory effects, Bis-ANS appears to be a useful probe to study microtubule assembly and other interactions involving tubulin.  相似文献   

19.
The long-term toxicity of arsenic (As) as a result of exposure to contaminated drinking water might be modified by coinciding exposures to elements like selenium, antimony, or mercury. In this study the influence of tetravalent selenite, trivalent antimonite, and divalent mercury was investigated in vitro using cultured primary rat hepatocytes. The cell vitality was assessed in the 3-[4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] (MTT), assay with concurrent exposures of the cells to up to 50 microM sodium arsenite(III) and a potential modifier [50 microM sodium(IV) selenite, 10 microM antimony(III) chloride, 25 microM mercuric(II) chloride], which indicated an additive increase in the combined cytotoxicity. Sodium arsenite was tested for genotoxicity in the micronucleus test in a concentration range of 0.25 up to 7.5 microM. In this range, the MTT conversion was at least 80%, indicating high cell viability. Adose-dependent induction of micronuclei was observed. The lowest concentration causing a significantly elevated frequency of micronuclei was 1 microM As (p < 0.05). A significant influence (i.e., reduction of the combined genotoxicity as a result of the presence of a potential modifier) was only observed for 10 and 25 microM antimony chloride (p < 0.05, Fisher's exact test). The metabolic methylation of arsenite was not affected by concurrent incubation with any of the potential modifiers.  相似文献   

20.
Isolated centrosomes nucleate microtubules when incubated in pure tubulin solutions well below the critical concentration for spontaneous polymer assembly (approximately 15 microM instead of 60 microM). Treatment with urea (2-3 M) does not severely damage the centriole cylinders but inactivates their ability to nucleate microtubules even at high tubulin concentrations. Here we show that centrosomes inactivated by urea are functionally complemented in frog egg extracts. Centrosomes can then be reisolated on sucrose gradients and assayed in different concentrations of pure tubulin to quantify their nucleating activity. We show that the material that complements centrosomes is stored in a soluble form in the egg. Each frog egg contains enough material to complement greater than 6,000 urea-inactivated centrosomes. The material is heat inactivated above 56 degrees C. One can use this in vitro system to study how the microtubule nucleating activity of centrosomes is regulated. Native centrosomes require approximately 15 microM tubulin to begin nucleating microtubules, whereas centrosomes complemented in interphase extracts begin nucleating microtubules around 7-8 microM tubulin. Therefore, the critical tubulin concentrations for polymer assembly off native centrosomes is higher than that observed for the centrosomes first denatured and then complemented in egg extracts. In vivo, the microtubule nucleating activity of centrosomes seems to be regulated by phosphorylation at the onset of mitosis (Centonze, V. E., and G. G. Borisy. 1990. J. Cell Sci. 95:405-411). Since cyclins are major regulators of mitosis, we tested the effect of adding bacterially produced cyclins to interphase egg extracts. Both cyclin A and B activate an H1 kinase in the extracts. Cyclin A-associated kinase causes an increase in the microtubule nucleating activity of centrosomes complemented in the extract but cyclin B does not. The critical tubulin concentration for polymer assembly off centrosomes complemented in cyclin A-treated extracts is similar to that observed for centrosomes complemented in interphase extracts. However, centrosomes complemented in cyclin A treated extracts nucleate much more microtubules at high tubulin concentration. We define this as the "capacity" of centrosomes to nucleate microtubules. It seems that the microtubule nucleating activity of centrosomes can be defined by two distinct parameters: (a) the critical tubulin concentration at which they begin to nucleate microtubules and (b) their capacity to nucleate microtubules at high tubulin concentrations, the latter being modulated by phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号