首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Continuum solvation models that estimate free energies of solvation as a function of solvent accessible surface area are computationally simple enough to be useful for predicting protein conformation. The behavior of three such solvation models has been examined by applying them to the minimization of the conformational energy of bovine pancreatic trypsin inhibitor. The models differ only with regard to how the constants of proportionality between free energy and surface area were derived. Each model was derived by fitting to experimentally measured equilibrium solution properties. For two models, the solution property was free energy of hydration. For the third, the property was NMR coupling constants. The purpose of this study is to determine the effect of applying these solvation models to the nonequilibrium conformations of a protein arising in the course of global searches for conformational energy minima. Two approaches were used: (1) local energy minimization of an ensemble of conformations similar to the equilibrium conformation and (2) global search trajectories using Monte Carlo plus minimization starting from a single conformation similar to the equilibrium conformation. For the two models derived from free energy measurements, it was found that both the global searches and local minimizations yielded conformations more similar to the X-ray crystallographic structures than did searches or local minimizations carried out in the absence of a solvation component of the conformational energy. The model derived from NMR coupling constants behaved similarly to the other models in the context of a global search trajectory. For one of the models derived from measured free energies of hydration, it was found that minimization of an ensemble of near-equilibrium conformations yielded a new ensemble in which the conformation most similar to the X-ray determined structure PTI4 had the lowest total free energy. Despite the simplicity of the continuum solvation models, the final conformation generated in the trajectories for each of the models exhibited some of the characteristics that have been reported for conformations obtained from molecular dynamics simulations in the presence of a bath of explicit water molecules. They have smaller root mean square (rms) deviations from the experimentally determined conformation, fewer incorrect hydrogen bonds, and slightly larger radii of gyration than do conformations derived from search trajectories carried out in the absence of solvent.  相似文献   

2.
Molecular modeling studies have been carried out to investigate the interactions between substrate sialyloligosaccharide (SOS) fragments bearing different glycosidic linkages and influenza virus N9 neuraminidase, a surface glycoprotein of influenza virus subtype N9. The studies revealed that the allowed orientation for sialic acid (SA) is less than 1% in the Eulerian space at the active site. The active site of this enzyme has enough space to accommodate various SOS fragments, NeuNAcalpha(2-3)Gal, NeuNAcalpha(2-6)Gal, NeuNAcalpha(2-8)NeuNAc and NeuNAcalpha(2-9)NeuNAc, but on specific conformations. In the bound conformation, among these substrates there exists a conformational similarity leading to a structural similarity, which may be an essential requirement for the cleavage activity of the neuraminidases irrespective of the type of glycosidic linkage.  相似文献   

3.
An octapeptide containing a central -Aib-Gly- segment capable of adopting beta-turn conformations compatible with both hairpin (beta(II') or beta(I')) and helical (beta(I)) structures has been designed. The effect of solvent on the conformation of the peptide Boc-Leu-Val-Val-Aib-Gly-Leu-Val-Val-OMe (VIII; Boc: t-butyloxycarbonyl; OMe: methyl ester) has been investigated by NMR and CD spectroscopy. Peptide VIII adopts a well-defined beta-hairpin conformation in solvents capable of hydrogen bonding like (CD(3))(2)SO and CD(3)OH. In solvents that have a lower tendency to interact with backbone peptide groups, like CDCl(3) and CD(3)CN, helical conformations predominate. Nuclear Overhauser effects between the backbone protons and solvent shielding of NH groups involved in cross-strand hydrogen bonding, backbone chemical shifts, and vicinal coupling constants provide further support for the conformational assignments in different solvents. Truncated peptides Boc-Val-Val-Aib-Gly-Leu-Val-Val-OMe (VII), Boc-Val-Val-Aib-Gly-Leu-Val-OMe (VI), and Boc-Val-Aib-Gly-Leu-OMe (IV) were studied in CDCl(3) and (CD(3))(2)SO by 500 MHz (1)H-NMR spectroscopy. Peptides IV and VI show no evidence for hairpin conformation in both the solvents. The three truncated peptides show a well-defined helical conformation in CDCl(3). In (CD(3))(2)SO, peptide VII adopts a beta-hairpin conformation. The results establish that peptides may be designed, which are poised to undergo a dramatic conformational transition.  相似文献   

4.
Several hydration models for peptides and proteins based on solvent accessible surface area have been proposed previously. We have evaluated some of these models as well as four new ones in the context of near-native conformations of a protein. In addition, we propose an empirical site-site distance-dependent correction that can be used in conjunction with any of these models. The set of near-native structures consisted of 39 conformations of bovine pancreatic trypsin inhibitor (BPTI) each of which was a local minimum of an empirical energy function (ECEPP) in the absence of solvent. Root-mean-square (rms) deviations from the crystallographically determined structure were in the following ranges: 1.06-1.94 A for all heavy atoms, 0.77-1.36 A for all backbone heavy atoms, 0.68-1.33 A for all alpha-carbon atoms, and 1.41-2.72 A for all side-chain heavy atoms. We have found that there is considerable variation among the solvent models when evaluated in terms of concordance between the solvation free energy and the rms deviations from the crystallographically determined conformation. The solvation model for which the best concordance (0.939) with the rms deviations of the C alpha atoms was found was derived from NMR coupling constants of peptides in water combined with an exponential site-site distance dependence of the potential of mean force. Our results indicate that solvation free energy parameters derived from nonpeptide free energies of hydration may not be transferrable to peptides. Parameters derived from peptide and protein data may be more applicable to conformational analysis of proteins. A general approach to derive parameters for free energy of hydration from ensemble-averaged properties of peptides in solution is described.  相似文献   

5.
The possible conformations of sialic acid were analysed using semi-empirical potential functions. The solid state conformation has approx. 0.2 kcal/mol higher energy than the minimum energy conformation. These studies suggest that in solution sialic acid may exist preponderantly in two different conformations which differ in the orientation of the terminal hydroxymethyl group of glycerol side-chain. The present model is consistent with 1H- and 13C-NMR data, but differs from the earlier models.  相似文献   

6.
We recently reported the first crystal structure of a paramyxovirus hemagglutinin-neuraminidase (HN) from Newcastle disease virus. This multifunctional protein is responsible for binding to cellular sialyl-glycoconjugate receptors, promotion of fusion through interaction with the second viral surface fusion (F) glycoprotein, and processing progeny virions by removal of sialic acid from newly synthesized viral coat proteins. Our structural studies suggest that HN possesses a single sialic acid recognition site that can be switched between being a binding site and a catalytic site. Here we examine the effect of mutation of several conserved amino acids around the binding site on the hemagglutination, neuraminidase, and fusion functions of HN. Most mutations around the binding site result in loss of neuraminidase activity, whereas the effect on receptor binding is more variable. Residues E401, R416, and Y526 appear to be key for receptor binding. The increase in fusion promotion seen in some mutants that lack receptor binding activity presents a conundrum. We propose that in these cases HN may be switched into a fusion-promoting state through a series of conformational changes that propagate from the sialic acid binding site through to the HN dimer interface. These results further support the single-site model and suggest certain residues to be important for the triggering of fusion.  相似文献   

7.
Vicinal coupling constants between various nuclei provide backbone and side-chain conformational information for a series of asparagine- and tyrosine-containing peptides in DMSO and in H2O. By enriching Tyr of Ac-Asn-Pro-Tyr-NHMe with 15N, it has been possible to distinguish between the resonances of the two side-chain beta protons of Tyr. Analysis of the coupling constants in terms of the distributions of side-chain conformations in these peptides indicates that the addition of Asn to the Pro-Tyr sequence leads to a less random conformational distribution. When compared to the side-chain rotamer distribution of Ac-Asn-NHMe and Ac-Tyr-NHMe, particular Asn and Tyr side-chain conformations of Ac-Asn-Pro-Tyr-NHMe are stabilized in dimethylsulfoxide solution. The interaction(s) which stabilize a unique Tyr side-chain conformation of Ac-Asn-Pro-Tyr-NHMe in dimethylsulfoxide are not present in Ac-Ala-Pro-Tyr-NHMe and are unaffected by the addition of Val-Pro to the C-terminus of Asn-Pro-Tyr. In water, a preferential stabilization of one Asn side-chain conformation of Ac-Asn-Pro-Tyr-NHMe is also observed, while the Tyr side-chain rotamer distribution is similar to that of Ac-Tyr-NHMe. An interaction between the Asn side chain and the Pro-Tyr-NHMe backbone was previously shown to stabilize a beta-bend conformation at Pro-Tyr in water. Data are also presented for Ac-Tyr-Pro-Asn-NHMe, for which local interactions do not stabilize particular backbone conformations in dimethylsulfoxide or in water. The conformations of the peptides studied here are relatively insensitive to temperatures between 27 degrees and 62 degrees, both in dimethylsulfoxide and in water. The sequences Asn-Pro-Tyr and Tyr-Pro-Asn occur in ribonuclease A, and these tripeptides serve as models for the interactions involved in the folding of this protein.  相似文献   

8.
The objective of the present study is to model the analogues of monosialoganglioside (GM3) by making modifications in its sialic acid residue with different substitutions in aqueous environment and to determine their structural stability based upon computational molecular dynamics. Molecular mechanics and molecular dynamics investigation was carried out to study the conformational preferences of the analogues of GM3. Dynamic simulations were carried out on the analogues of GM3 varying in the substituents at C-1, C-4, C-5, C-8 and C-9 positions of their sialic acid or Neuraminic acid (NeuAc) residue. The analogues are soaked in a periodic box of TIP3P water as solvent and subjected to a 10 ns molecular dynamics (MD) simulation using AMBER ff03 and gaff force fields with 30 ps equilibration. The analogue of GM3 with 9-N-succNeuAc (analogue5, C9 substitution) was observed to have the lowest energy of ?6112.5 kcal/mol. Graphical analysis made on the MD trajectory reveals the direct and water mediated hydrogen bonds existing in these sialic acid analogues. The preferable conformations for glycosidic linkages of GM3 analogues found in different minimum energy regions in the conformational maps were identified. This study sheds light on the conformational preferences of GM3 analogues which may be essential for the design of GM3 analogues as inhibitors for different ganglioside specific pathogenic proteins such as bacterial toxins, influenza toxins and neuraminidases.  相似文献   

9.
Infection by some rotavirus strains requires the presence of sialic acid on the cell surface, its infectivity being reduced in cells treated with neuraminidase. A neuraminidase treatment-resistant mutant was isolated from the porcine rotavirus strain OSU. In reassortant strains, the neuraminidase-resistant phenotype segregated with the gene coding for VP4. The mutant retained its capacity to bind to sialic acid. The VP4 sequence of the mutant differed from that of the parental OSU strain in an Asp-to-Asn substitution at position 100. Neutralization escape mutants selected from an OSU neuraminidase-sensitive clone by monoclonal antibodies that failed to recognize the neuraminidase-resistant mutant strain carried the same mutation at position 100 and were also neuraminidase resistant. Neuraminidase sensitivity was restored when the mutation at position 100 was compensated for by a second mutation (Gln to Arg) at position 125. Molecular mechanics simulations suggest that the neuraminidase-resistant phenotype associated with mutation of OSU residue 100 from Asp to Asn reflects the conformational changes of the sialic acid cleft that accompany sialic acid binding.  相似文献   

10.
The avian influenza H5N1 virus has emerged as an important pathogen, causing severe disease in humans and posing a pandemic threat. Substrate specificity is crucial for the virus to obtain the ability to spread from avian to human. Therefore, an investigation of the binding properties of ligands at the molecular level is important for understanding the catalytic mechanism of the avian influenza virus neuraminidase and for designing novel and specific inhibitors of H5N1 neuraminidase. Based on the available crystal structure of H5N1, we have characterized the binding properties between sialic acid, methyl 3’sialyllactoside, methyl 6’sialyllactoside and the H5N1 influenza virus neuraminidase using molecular docking and molecular dynamics simulations. Obtained molecular dynamics trajectories were analyzed in terms of ligand conformations, N1-ligand interactions, and in terms of loop flexibility. It was found that in the N1-SA complex the sialic acid ring undergoes a transition from the B 2,5 to the 2 C 5 conformation. However, in the N1-3SL and N1-6SL complexes sialic acid remained in the distorted boat conformation. The obtained results indicate that 3SL has only weak interactions with the 150-loop, whereas the N1-6SL complex shows strong interactions. Most of the differences arise from the various conformations around the glycosidic linkage, between the sialic acid and galactose, which facilitate the above interactions of 6SL with the enzyme, and as a consequence the interactions between the 150- and 430- loops. This finding suggests that the altered flexibility of loops in and around the active site is one of the reasons why the avian N1 preferentially cleaves sialic acid from α-(2-3)-Gal glycoconjugates over α-(2-6)-Gal. These molecular modeling results are consistent with available experimental results on the specificity of N1.  相似文献   

11.
The synthesis of the cyclo-hexadepsipeptide [l-valyl-d-hexahydromandelyl]3 is described. Examination of this macrocyclic compound by 220-MHz nuclear magnetic resonance spectroscopy shows that symmetrical conformations are stabilized in strongly polar solvents (trifluoroacetic acid, acetonitrile), whereas asymmetric conformations are preferred in nonpolar or slightly polar media such as carbon tetrachloride, chloroform, cyclohexane, and benzene.From analysis of the temperature dependence of the chemical shift and of the coupling constants, together with conformational energy calculations, a model is proposed for the preferred conformation of this molecule in nonpolar solvents.  相似文献   

12.
H nuclear magnetic resonance spectroscopy has been applied to a study of the conformations of a variety of purine and pyrimidine beta-D-arabinofuranosyl nucleosides. The experimental results, together with data collected from the literature, demonstrated the existence of reasonably good correlations between the coupling constants made it possible to define more accurately, than hitherto possible, the conformational states between which equilibria exist in solution. The equilibrium for the arabinonucleosides differs from that previously established for ribonucleosides; in particular, structural modifications and solvent effects may appreciably modify the conformational states between which equilibria exist. Preliminary measurements on some arabinosides in the syn conformation about the glycosidic bond indicated that these do not conform to the foregoing correlations, and will require separate study. A correlation has also been established between the conformation of the arabinose ring and that of the exocyclic 5'-CH2OH group. For both purine and pyrimidine arabinonucleosides, the conformational state 3E of the arabinose ring coexists to some extent with a gauche-gauche conformation of the exocyclic 5'-CH2OH, as in the case of pyrimidine (but not purine) ribonucleosides. Application of the foregoing to some biological problems is described.  相似文献   

13.
Biological systems provide a complex environment that can be understood in terms of its dielectric properties. High concentrations of macromolecules and cosolvents effectively reduce the dielectric constant of cellular environments, thereby affecting the conformational sampling of biomolecules. To examine this effect in more detail, the conformational preference of alanine dipeptide, poly-alanine, and melittin in different dielectric environments is studied with computer simulations based on recently developed generalized Born methodology. Results from these simulations suggest that extended conformations are favored over alpha-helical conformations at the dipeptide level at and below dielectric constants of 5-10. Furthermore, lower-dielectric environments begin to significantly stabilize helical structures in poly-alanine at epsilon = 20. In the more complex peptide melittin, different dielectric environments shift the equilibrium between two main conformations: a nearly fully extended helix that is most stable in low dielectrics and a compact, V-shaped conformation consisting of two helices that is preferred in higher dielectric environments. An additional conformation is only found to be significantly populated at intermediate dielectric constants. Good agreement with previous studies of different peptides in specific, less-polar solvent environments, suggest that helix stabilization and shifts in conformational preferences in such environments are primarily due to a reduced dielectric environment rather than specific molecular details. The findings presented here make predictions of how peptide sampling may be altered in dense cellular environments with reduced dielectric response.  相似文献   

14.
The significant variation among solved structures of the λ Cro dimer suggests its flexibility. However, contacts in the crystal lattice could have stabilized a conformation which is unrepresentative of its dominant solution form. Here we report on the conformational space of the Cro dimer in solution using replica exchange molecular dynamics in explicit solvent. The simulated ensemble shows remarkable correlation with available x-ray structures. Network analysis and a free energy surface reveal the predominance of closed and semi-open dimers, with a modest barrier separating these two states. The fully open conformation lies higher in free energy, indicating that it requires stabilization by DNA or crystal contacts. Most NMR models are found to be unstable conformations in solution. Intersubunit salt bridging between Arg4 and Glu53 during simulation stabilizes closed conformations. Because a semi-open state is among the low-energy conformations sampled in simulation, we propose that Cro-DNA binding may not entail a large conformational change relative to the dominant dimer forms in solution.  相似文献   

15.
Molecular mechanics and dynamics calculations were carried out on the disaccharides α-L-Rhap-(1 → 2)-α-L-Rhap-(1 → OMe) (1) and α-L-Rhap-(1 → 3)-α-L-Rhap-(1 OMe) (2), and the trisaccharide α-L-Rhap-(1 → 2)-α-L-Rhap-(1 → 3)-α-L-Rhap-(1 → OMe) (3). The semiflexible conformational behavior of these molecules was characterized by the occupation of a combination of different glycosidic linkage and side-chain conformational positions whose relative occupations were sensitive to dielectric screening. Molecular dynamics simulations of the trisaccharide 3 showed little difference between the linkage conformations in the trisaccharide and the component disaccharides 1 and 2. Experimental optical rotation data of 1 and 2 were obtained as a function of temperature in varying solvents. The molecular models were combined with the semiempirical theory of Stevens and Sathyanarayana to yield calculated optical rotations. Interpretation of the data of both 1 and 2 implied that a combination of conformations, both in glycosidic and side-chain positions, could explain the experimental data. Solvents effects were important in influencing the conformational mix and averaged optical rotation. Three-bond heteronuclear coupling constants 3JC, H were obtained for the glycosidic linkages of 1 and 2 in D2O and DMSO. Analysis of the coupling constants with a Karplus curve showed that small reductions in the glycosidic torsion angles of the conformations of the models used here of ca. 10°–15° in ϕ and 5°–10° in ψ were required to give better agreement with experiment; a combination of conformations for both 1 and 2 was consistent with the data. There was a negligible influence on the coupling constants of 1 on changing the solvent from D2O to DMSO. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
The conformational properties of the tetrapeptide Ser1-Pro2-Phe3-Arg4, the C-terminal fragment of the nonapeptide hormone bradykinin, have been studied by circular dichroism and two-dimensional NMR techniques. Measurements of coupling constants, NH temperature dependence rates and nuclear Overhauser effects (performed with rotating frame nuclear Overhauser spectroscopy, ROESY) in H2O and CD3OH/D2O (80/20, v/v) reveal different conformations in the corresponding solvent. In aqueous solution the molecule exists in a random conformation or as an average of several conformations in rapid exchange. In CD3OH/D2O, however, the conformation is well-defined. The backbone of the peptide is extended, and the side-chains of Phe3 and Arg4 exhibit unusual rigidity for a peptide of this size. Evidently, the secondary structure is stabilized by a charge interaction between the guanidino group of Arg4 and the terminal carboxyl group, since experiments at various pH's show clearly that the definition of conformation decreases strongly upon protonation of the carboxyl function. A NH3+(Ser1)-COO-(Arg4) salt bridge, as well as any form of turn stabilized by hydrogen bonds can be ruled out with certainty.  相似文献   

17.
In the present study, the conformational behaviour of methylated pectic disaccharide 4-O-alpha-D-galactopyranurosyl 1-O-methyl-alpha-D-galactopyranuronic 6,6'-dimethyl diester 1 has been completely characterized through combined n.m.r. and molecular modelling studies. The 1H-1H n.O.e. across the glycosidic bond was measured by both steady-state and transient 1D and 2D experiments. In parallel, the complete conformational analysis of the disaccharide has been achieved with the MM3 molecular mechanics method. The conformation of the pyranose ring is confirmed by the excellent agreement between the experimental and calculated intracyclic scalar coupling constants. The iso-energy contours displayed on the 'relaxed' map indicate an important flexibility about the glycosidic linkage. There is no significant influence of the methoxyl group on the conformational behaviour of the disaccharide. The theoretical n.m.r. data were calculated taking into account all the accessible conformations and using the averaging methods appropriate for slow internal motions. 3JC-H coupling constants were calculated using an equation suitable for C-O-C-H segments. The agreement between experimental and theoretical data is excellent. Within the potential energy surface calculated for the disaccharide, several conformers can be identified. When these conformations are extrapolated to a regular polymer structure, they generate pectins with right- and left-handed chirality along with a two-fold helix. These different types of helical structure are the result of small changes in conformation, without any drastic variation of the fibre repeat.  相似文献   

18.
1. The proton nuclear magnetic resonance spectrum of the sialic acid N-acetyl neuraminic acid was measured and completely assigned. The coupling constants for interactions between protons are obtained and the assignments checked by calculating the observed line intensities. 2. It was verified that the pyranose ring exists in the 1C (1-C4) conformation as the alph-D anomer and no mutarotation was detectable. Coupling constants for the glycerol side chain were interpreted to yield its most likely conformation.  相似文献   

19.
The conformational behaviour of a cyclic disaccharide, di-β-d-glucopyranose 1,6′:1′,6-dianhydride hexaacetate, has been investigated. Because this molecule can exist only with the glucose rings in the unusual flexible forms, such conformational parameters as pseudorotation phase-angles have been used. Within a given number of approximations, the conformational space available for the whole system can be explored by considering only one two-dimensional map. Detailed investigations have shown that three stable conformations may be proposed. Among these, two correspond to minima found in the solid state. In one form, the six-membered rings adopt a boat conformation, whereas a skew conformation is found for the other form. However, these two conformations cannot be considered to be unique models of the conformation in solution; they both produce sets of proton-proton coupling-constants inconsistent with observed n.m.r.-spectroscopic results. At least the third form, having the six-membered rings in skew conformations, has to be taken into account. Deviations from coupling constants-molecular conformation relationships are thought to originate from ring strain.  相似文献   

20.
αD -N-acetyl neuraminic acid (Neu5Ac, sialic acid) is a commonly occurring carbohydrate residue in various cell surface glycolipids and glycoproteins. This residue is linked terminally or internally to Gal residues via an α(2 → 3) or α(2 → 6) linkage. In the cell surface receptor, sialyl-LewisX, a terminal α(2 → 3) linkage is present. Previous studies from our laboratory have shown that in solution LewisX adopts a relatively rigid structure. In order to model the Neu5Ac residue, vacuum molecular dynamics of this monosaccharide were compared with simulations that explicitly include solvent water. The dynamical average of the monosaccharide conformation obtained from the two simulations was similar. Vacuum calculations for the disaccharide Neu5Ac α(2 → 3) Gal β-O-methyl show that a number of low energy minima are accessible to this disaccharide. Molecular dynamics simulations starting from the low energy minima show conformational transitions with a time scale of 10–50 ps among several of the minima while large barriers between other minima prevent transitions on the time scale studied. Simulations of this disaccharide in the presence of solvent show fewer conformational transitions, illustrating a dampening effect of the solvent that has been observed in some other studies. Our results are most consistent with an equilibrium among multiple conformations for the Neu5Ac α(2 → 3) Gal β linkage. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号