首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The products of three genes are involved in cyanocobalamin (B(12)) uptake in Escherichia coli. btuB (formerly bfe), located at min 88 on the Escherichia coli linkage map, codes for a protein component of the outer membrane which serves as receptor for B(12), the E colicins, and bacteriophage BF23. Four phenotypic classes of mutants varying in response to these agents were found to carry mutations that, based on complementation and reversion analyses, reside in the single btuB cistron. In one mutant class, ligand binding to the receptor appeared to be normal, but subsequent B(12) uptake was defective. The level of receptor and rate of uptake were responsive to btuB gene dosage. Previous studies showed that the tonB product was necessary for energy-dependent B(12) uptake but not for its binding. Other than those in tonB, no mutations that conferred insensitivity to group B colicins affected B(12) utilization. The requirement for the btuB and tonB products could be bypassed by elevated levels of B(12) (>1 muM) or by mutations compromising the integrity of the outer membrane as a permeability barrier. Utilization of elevated B(12) concentrations in strains lacking the btuB-tonB uptake system was dependent on the function of the btuC product. This gene was located at 37.7 min on the linkage map, with the order pps-btuC-pheS. Strains altered in btuC but with an intact btuB-tonB system were only slightly impaired in B(12) utilization, being defective in its accumulation. This defect was manifested as inability to retain B(12), such that intracellular label was almost completely lost by exchange or efflux. It is proposed that btuC encodes a transport system for B(12) in the periplasm.  相似文献   

2.
The involvement of an outer membrane transport component for vitamin B12 uptake in Salmonella typhimurium, analogous to the btuB product in Escherichia coli, was investigated. Mutants of S. typhimurium selected for resistance to bacteriophage BF23 carried mutations at the btuB locus (butBS) (formerly called bfe, at the analogous map position as the E. coli homolog) and were defective in high-affinity vitamin B12 uptake. The cloned E. coli btuB gene (btuBE) hybridized to S. typhimurium genomic DNA and restored vitamin B12 transport activity to S. typhimurium btuBS mutants. An Mr-60,000 protein in the S. typhimurium outer membrane was repressed by growth with vitamin B12 and was eliminated in a btuBS mutant. The btuBS product thus appears to play the same role in vitamin B12 transport by S. typhimurium as does the E. coli btuBE product. A second vitamin B12 transport system that is not present in E. coli was found by cloning a fragment of S. typhimurium DNA that complemented btuB mutants for vitamin B12 utilization. In addition to this plasmid with a 6-kilobase insert of S. typhimurium DNA, vitamin B12 utilization by E. coli btuB strains required the btuC and btuD products, necessary for transport across the cytoplasmic membrane, but not the btuE or tonB product. The plasmid conferred low levels of vitamin B12-binding and energy-dependent transport activity but not susceptibility to phage BF23 or utilization of dicyanocobinamide. The cloned S. typhimurium DNA encoding this new transport system did not hybridize to the btuBE gene or to E. coli chromosomal DNA and therefore does not carry the S. typhimurium btuBS locus. Increased production of an Mr -84,000 polypeptide associated with the outer membrane was seen. The new locus appears to be carried on the large plasmid in most S. typhimurium strains. Thus S. typhimurium possesses both high- and low-affinity systems for uptake of cobalamins across the outer membrane.  相似文献   

3.
Passage of vitamin B12 across the outer and cytoplasmic membranes of Escherichia coli occurs in two steps, each involving independent transport systems. Since the vitamin accumulated in btuC or btuD mutants is readily released from the cell by chase or osmotic shock and does not undergo the usual metabolic conversions, the products of these genes might participate in transport across the cytoplasmic membrane. Mutations in btuC and btuD are complemented by recombinant plasmids carrying a 3,410-base-pair HindIII-HincII DNA fragment. Transposon Tn1000 mutagenesis and subcloning defined the location of these two genes and showed that they are separated by approximately 800 base pairs. The polypeptides elicited by this fragment and its derivatives were identified by using a maxicell system. The apparent molecular weight of the btuC product was approximately 26,000, that of the btuD product was 29,000. Both polypeptides were associated with the cell membrane. Transposon insertions in the region between btuC and btuD, as well as those in the two genes, conferred a deficiency in vitamin B12 utilization and transport when they were crossed onto the chromosome. This region, termed btuE, encoded a 22,000-Mr polypeptide and lesser amounts of a 20,000-Mr species. A portion of the BtuE protein was released from maxicells by osmotic shock or spheroplast formation. The relative production of BtuE and BtuD in response to plasmids carrying transposon insertions suggested that the three genes are arranged in an operon in the order btuC-btuE-btuD and that internal promoters exist since polarity was incomplete. Substantial elevation of transport activity was engendered by plasmids carrying the intact btu region, but not when any of the btu genes was disrupted. The btuCED region thus may encode a transport system for passage of vitamin B12 across the cytoplasmic membrane. This system bears similarities to periplasmic binding protein-dependent transport systems, although the putative periplasmic component is not required for its function.  相似文献   

4.
Transport of vitamin B12 in tonB mutants of Escherichia coli.   总被引:8,自引:23,他引:8       下载免费PDF全文
It is known that the tonB mutation in Escherichia coli is responsible for a defect in the transport of iron chelates. These are transported by systems that involve outer membrane components. We found that tonB mutants were also deficient in the secondary, energy-dependent phase of vitamin B12 transport, although the mutants have normal levels of B12 receptors on their cell surface. In addition, tonB mutants derived from vitamin B12 auxotrophs required elevated levels of B12 for normal growth. Maltose uptake, mediated by another transport system involving an outer membrane component, was unaffected by the tonB mutation.  相似文献   

5.
Energy-coupled reactions of the Escherichia coli outer membrane transport proteins BtuB and Cir require the tonB product. Some point mutations in a region of btuB and cir that is highly conserved in TonB-dependent transport proteins led to loss of TonB-coupled uptake of vitamin B12 and colicin Ia, whereas binding was unaffected. Most other point mutations in this region had no detectable effect on transport activity. Mutations in tonB that suppressed the transport defect phenotype of these btuB mutations were isolated. All carried changes of glutamine 165 to leucine, lysine, or proline. The various tonB mutations differed markedly in their suppression activities on different btuB or cir mutations. This allele specificity of suppression indicates that TonB interacts directly with the outer membrane transport proteins in a manner that recognizes the local conformation but not specific side chains within this conserved region. An effect of the context of the remainder of the protein was seen, since the same substitution (valine 10----glycine) in btuB and cir responded differently to the suppressors. This finding supports the proposal that TonB interacts with more of the transport proteins than the first conserved domain alone.  相似文献   

6.
Abstract The tonB gene product is necessary for the energy-dependent transport of ferric chelates and vitamin B12 across the Escherichia coli outer membrane. When carried on multicopy plasmids, the cloned tonB gene complemented tonB hosts, restoring transport of ferri-siderophone complexes and vitamin B12, and susceptibility to the group B colicins and phage ф80. The levels of these activities were all markedly lower than when the tonB + gene was present in single copy. This depression of TonB function occurred even when the chromosome carried the normal tonB + allele, but plasmids carrying only a portion of the tonB gene, including the 5'-regulatory region, were not inhibitory.  相似文献   

7.
K J Heller  R J Kadner  K Günther 《Gene》1988,64(1):147-153
In cells of Escherichia coli, the function of the tonB gene is needed for energy-dependent transport processes mediated by the outer-membrane receptors for iron siderophore complexes and vitamin B12. The btuB451 mutation has the same effect on vitamin B12 transport as does a tonB mutation. When a btuB451 strain carried a plasmid with the intact tonB gene, partial revertant strains were isolated which had acquired the ability to grow on 5 nM vitamin B12. This suppression activity was associated with the plasmid, suggesting that a mutation within the tonB gene on the plasmid allowed the mutant BtuB receptor to function in the transport of the vitamin. The nucleotide sequence of the entire tonB gene of ten independently isolated suppressing plasmids was determined. Only a single nucleotide change had occurred in each of the cases. The same codon was always affected resulting in the conversion of glutamine-165 to a leucine in seven of the ten isolates and to a lysine in the other three. The phenotype of strains carrying both types of altered tonB genes showed the retention of their function for other TonB-dependent processes in addition to their suppressor properties with respect to the btuB451 mutation. The fact that mutations suppressing the btuB451 mutation occurred in the tonB gene suggests that there is a direct interaction between TonB and TonB-dependent receptors in the outer membrane of E. coli.  相似文献   

8.
Cells of Escherichia coli pump cobalamin (vitamin B12) across their outer membranes into the periplasmic space, and it was concluded previously that this process is potentiated by the proton motive force of the inner membrane. The novelty of such an energy coupling mechanism and its relevance to other outer membrane transport processes have required confirmation of this conclusion by studies with cells in which cobalamin transport is limited to the outer membrane. Accordingly, I have examined the effects of cyanide and of 2,4-dinitrophenol on cobalamin uptake in btuC and atp mutants, which lack inner membrane cobalamin transport and the membrane-bound ATP synthase, respectively. Dinitrophenol eliminated cobalamin transport in all strains, but cyanide inhibited this process only in atp and btuC atp mutant cells, providing conclusive evidence that cobalamin transport across the outer membrane requires specifically the proton motive force of the inner membrane. The coupling of metabolic energy to outer membrane cobalamin transport requires the TonB protein and is stimulated by the ExbB protein. I show here that the tolQ gene product can partly replace the function of the ExbB protein. Cells with mutations in both exbB and tolQ had no measurable cobalamin transport and thus had a phenotype that was essentially the same as TonB-. I conclude that the ExbB protein is a normal component of the energy coupling system for the transport of cobalamin across the outer membrane.  相似文献   

9.
Cells of Escherichia coli possess high-affinity active transport systems of vitamin B12 and iron-siderophore complexes. Specific outer-membrane proteins carry out the energy-dependent transport across the outer membrane, in conjunction with the TonB coupling protein. Mutagenesis experiments have identified a conserved region near the amino-terminus of the outer-membrane transporters that is necessary for energy-coupled transport. The ability of extragenic suppressor mutations in tonB to correct the transport defect indicates that TonB couples the proton-motive force to the outer-membrane proteins by direct contact.  相似文献   

10.
The products of the btuCED region of the Escherichia coli chromosome participate in the transport of vitamin B12 across the cytoplasmic membrane. The nucleotide sequence of the 3,410-base-pair HindIII-HincII DNA fragment carrying a portion of the himA gene and the entire btuCED region was determined. Comparison of the location of the open reading frames with the gene boundaries defined by transposon insertions allowed the assignment of polypeptide products to gene sequences. The btuC product is a highly nonpolar integral membrane protein of molecular weight 31,683. The distribution of hydrophobic regions suggests the presence of numerous membrane-spanning domains. The btuD product is a relatively polar but membrane-associated polypeptide of Mr 27,088 and contains segments bearing extensive homology to the ATP-binding peripheral membrane constituents of periplasmic binding protein-dependent transport systems. Other regions of this protein are similar to portions of the outer membrane vitamin B12 receptor. The btuE product (Mr 20,474) appears to have a periplasmic location. It has the mean hydropathy of a soluble protein but lacks an obvious signal sequence. The cellular locations and structural and sequence homologies of the Btu polypeptides point to the similarity of these three proteins to components of binding protein-dependent transport systems. However, the dependence on a periplasmic vitamin B12-binding protein has not yet been demonstrated.  相似文献   

11.
Cells of Escherichia coli take up vitamin B(12) (cyano-cobalamin [CN-Cbl]) and iron chelates by use of sequential active transport processes. Transport of CN-Cbl across the outer membrane and its accumulation in the periplasm is mediated by the TonB-dependent transporter BtuB. Transport across the cytoplasmic membrane (CM) requires the BtuC and BtuD proteins, which are most related in sequence to the transmembrane and ATP-binding cassette proteins of periplasmic permeases for iron-siderophore transport. Unlike the genetic organization of most periplasmic permeases, a candidate gene for a periplasmic Cbl-binding protein is not linked to the btuCED operon. The open reading frame termed yadT in the E. coli genomic sequence is related in sequence to the periplasmic binding proteins for iron-siderophore complexes and was previously implicated in CN-Cbl uptake in SALMONELLA: The E. coli yadT product, renamed BtuF, is shown here to participate in CN-Cbl uptake. BtuF protein, expressed with a C-terminal His(6) tag, was shown to be translocated to the periplasm concomitant with removal of a signal sequence. CN-Cbl-binding assays using radiolabeled substrate or isothermal titration calorimetry showed that purified BtuF binds CN-Cbl with a binding constant of around 15 nM. A null mutation in btuF, but not in the flanking genes pfs and yadS, strongly decreased CN-Cbl utilization and transport into the cytoplasm. The growth response to CN-Cbl of the btuF mutant was much stronger than the slight impairment previously described for btuC, btuD, or btuF mutants. Hence, null mutations in btuC and btuD were constructed and revealed that the btuC mutant had a strong impairment similar to that of the btuF mutant, whereas the btuD defect was less pronounced. All mutants with defective transport across the CM gave rise to frequent suppressor variants which were able to respond at lower levels of CN-Cbl but were still defective in transport across the CM. These results finally establish the identity of the periplasmic binding protein for Cbl uptake, which is one of few cases where the components of a periplasmic permease are genetically separated.  相似文献   

12.
The transport of cyanocobalamin (vitamin B12) in cells of Escherichia coli is dependent on a receptor protein (BtuB protein) located in the outer membrane. A 9.1-kilobase pair BamHI fragment carrying the btuB gene was cloned from a specialized transducing phage into multicopy plasmids. Insertions of transposon Tn1000 which prevented production of the receptor localized btuB to a 2-kilobase pair region. Further subcloning allowed isolation of this region as a 2.3-kilobase pair Sau3A fragment. The BtuB+ plasmids were shown by maxicell analysis to encode a polypeptide with a molecular weight of 66,000 in the outer membrane. This polypeptide was missing in cells with Tn1000 insertions in btuB and was reduced in amount upon growth of plasmid-bearing cells in repressing concentrations of vitamin B12. Several Tn1000 insertions outside the 5' end of the coding region exhibited reduced production of receptor. A deletion at the 3' end of btuB resulted in formation of an altered receptor. Amplified production of this polypeptide was associated with increased levels of binding of the receptor's ligands (vitamin B12 and phage BF23), increased rates of vitamin B12 uptake, and altered susceptibility to the group E colicins. Deficiency in various major outer membrane proteins did not affect production of the btuB product, and the amplified levels of this protein partially reversed the tolerance to E colicins seen in these mutants.  相似文献   

13.
E Fischer  K Günter    V Braun 《Journal of bacteriology》1989,171(9):5127-5134
The exb locus in Escherichia coli consists of two genes, termed exbB and exbD. Exb functions are related to TonB function in that most TonB-dependent processes are enhanced by Exb. Like tonB mutants, exb mutants were resistant to colicin M and albomycin but, in contrast to tonB mutants, showed only reduced sensitivity to colicins B and D. Overexpressed tonB on the multicopy vector pACYC177 largely restored the sensitivity of exb mutants to colicins B, D, and M but only marginally increased sensitivity to albomycin. Suppression of the btuB451 mutation in the structural gene for the vitamin B12 outer membrane receptor protein by a mutation in tonB occurred only in an exb+ strain. Degradation of the unstable overproduced TonB protein was prevented by overproduced ExbB protein. The ExbB protein also stabilized the ExbD protein. Pulse-chase experiments with radiolabeled ferrichrome revealed release of ferrichrome from exbB, tonB, and fhuC mutants, showing that ferrichrome had not crossed the cytoplasmic membrane. It is concluded that the ExbB and ExbD proteins contribute to the activity of TonB and, like TonB, are involved in receptor-dependent transport processes across the outer membrane.  相似文献   

14.
Import-defective colicin B derivatives mutated in the TonB box   总被引:13,自引:5,他引:8  
The pore-forming colicin B is taken up into Escherichia coli by a receptor and TonB-dependent process. The receptor and colicin B both contain a similar amino acid sequence, close to the N-terminal end, termed the TonB box. Point mutations were introduced into the TonB-box region of the colicin B structural gene cba resulting in colicin B derivatives which were partially or totally inactive against E. coli cells. All derivatives still bound to the receptor. An inactive derivative killed cells when translocated across the outer membrane by osmotic shock treatment, and formed pores in planar lipid bilayer membranes identical to the wild-type colicin. Some of the mutations were partially suppressed by mutations in the tonB structural gene. It was concluded that the TonB-box mutations define a region that is involved in the uptake of colicin B across the outer membrane.  相似文献   

15.
Abstract The current model of TonB-dependent colicin transport through the outer membrane of Escherichia coli proposes initial binding to receptor proteins, vectorial release from the receptors and uptake into the periplasm from where the colicins, according to their action, insert into the cytoplasmic membrane or enter the cytoplasm. The uptake is energy-dependent and the TonB protein interacts with the receptors as well as with the colicins. In this paper we have studied the uptake of colicins B and Ia, both pore-forming colicins, into various tonB point mutants. Colicin Ia resistance of the tonB mutant (G186D, R204H) was consistent with a defective Cir receptor-TonB interaction while colicin Ia resistance of E. coli expressing TonB of Serratia marcescens , or TonB of E. coli carrying a C-terminal fragment of the S. marcescens TonB, seemed to be caused by an impaired colicin Ia-TonB interaction. In contrast, E. coli tonB (G174R, V178I) was sensitive to colicin Ia and resistant to colicin B unless TonB, ExbB and ExbD were overproduced which resulted in colicin B sensitivity. The differential effects of tonB mutations indicate differences in the interaction of TonB with receptors and colicins.  相似文献   

16.
Analysis of the genome sequence of Caulobacter crescentus predicts 67 TonB-dependent outer membrane proteins. To demonstrate that among them are proteins that transport nutrients other than chelated Fe(3+) and vitamin B(12)-the substrates hitherto known to be transported by TonB-dependent transporters-the outer membrane protein profile of cells grown on different substrates was determined by two-dimensional electrophoresis. Maltose induced the synthesis of a hitherto unknown 99.5-kDa protein, designated here as MalA, encoded by the cc2287 genomic locus. MalA mediated growth on maltodextrins and transported [(14)C]maltodextrins from [(14)C]maltose to [(14)C]maltopentaose. [(14)C]maltose transport showed biphasic kinetics, with a fast initial rate and a slower second rate. The initial transport had a K(d) of 0.2 microM, while the second transport had a K(d) of 5 microM. It is proposed that the fast rate reflects binding to MalA and the second rate reflects transport into the cells. Energy depletion of cells by 100 microM carbonyl cyanide 3-chlorophenylhydrazone abolished maltose binding and transport. Deletion of the malA gene diminished maltose transport to 1% of the wild-type malA strain and impaired transport of the larger maltodextrins. The malA mutant was unable to grow on maltodextrins larger than maltotetraose. Deletion of two C. crescentus genes homologous to the exbB exbD genes of Escherichia coli abolished [(14)C]maltodextrin binding and transport and growth on maltodextrins larger than maltotetraose. These mutants also showed impaired growth on Fe(3+)-rhodotorulate as the sole iron source, which provided evidence of energy-coupled transport. Unexpectedly, a deletion mutant of a tonB homolog transported maltose at the wild-type rate and grew on all maltodextrins tested. Since Fe(3+)-rhodotorulate served as an iron source for the tonB mutant, an additional gene encoding a protein with a TonB function is postulated. Permeation of maltose and maltotriose through the outer membrane of the C. crescentus malA mutant was slower than permeation through the outer membrane of an E. coli lamB mutant, which suggests a low porin activity in C. crescentus. The pores of the C. crescentus porins are slightly larger than those of E. coli K-12, since maltotetraose supported growth of the C. crescentus malA mutant but failed to support growth of the E. coli lamB mutant. The data are consistent with the proposal that binding of maltodextrins to MalA requires energy and MalA actively transports maltodextrins with K(d) values 1,000-fold smaller than those for the LamB porin and 100-fold larger than those for the vitamin B(12) and ferric siderophore outer membrane transporters. MalA is the first example of an outer membrane protein for which an ExbB/ExbD-dependent transport of a nutrient other than iron and vitamin B(12) has been demonstrated.  相似文献   

17.
Plant growth-promoting Pseudomonas B10 produces its yellow-green, fluorescent siderophore (microbial iron transport agent) pseudobactin under iron-limiting conditions. A structural gene encoding the 85,000-Da putative outer membrane receptor protein for ferric pseudobactin was identified in a gene bank from Pseudomonas B10 prepared with the broad host-range conjugative cosmid cloning vector pLAFR1. Transposon Tn5 mutagenesis of recombinant plasmid pJLM300 localized the functional gene to a region of approximately 2.4 kilobases consistent with the apparent molecular weight of the receptor protein. Mobilization of pJLM300 into Pseudomonas A124 and A225, whose growth was inhibited by Pseudomonas B10 or pseudobactin, rendered these strains no longer susceptible to iron starvation by pseudobactin because they were now able to transport ferric pseudobactin. Pseudobactin biosynthetic genes flanked this receptor gene on both sides and were on separate operons. Transposon Tn5 insertion mutants of Pseudomonas B10 lacking this receptor protein were generated by a marker exchange technique and were defective in ferric pseudobactin transport. Such mutants could be complemented in trans by pJLM300. The production of pseudobactin, the receptor protein, and four other outer membrane proteins in Pseudomonas B10 was coordinately regulated by the level of intracellular iron.  相似文献   

18.
The expression of several functional properties of the products of the bfe and tonB genes in Escherichia coli was measured after the specific termination of the synthesis of the products of these genes. This was accomplished by the use of a temperature-sensitive amber suppressor mutation, which allowed control, by manipulation of the growth temperature, of the level of product formed from suppressible mutant alleles of the bfe or tonB gene. The bfe product is an outer membrane receptor protein for vitamin B12, the E-colicins, and bacteriophage BF23. The identity of the tonB product is unknown, but it is necessary for a subsequent step of uptake of vitamin B12, iron chelates, all of the group B colicins, and bacteriophages T1 and phi 80. Results from a different experimental system had shown that the termination of expression of the bfe locus was rapidly followed by loss of sensitivity to colicins E2 and E3 and, subsequently, to bacteriophage BF23. This was confirmed with this experimental system. Receptors that were no longer functional for colicin or phage uptake remained fully effective for B12 uptake, showing that receptors are stable on the cell surface. This supports previous contentions for the presence of different functional states for colicin receptors. The functional properties of the tonB product, measured by B12 uptake or sensitivity to the group B colicin D, were unstable, declining extensively after cessation of its synthesis.  相似文献   

19.
Synthesis of the Escherichia coli outer membrane protein BtuB, which mediates the binding and transport of vitamin B12, is repressed when cells are grown in the presence of vitamin B12. Expression of btuB-lacZ fusions was also found to be repressed, and selection for constitutive production of beta-galactosidase in the presence of vitamin B12 yielded mutations at btuR. The btuR locus, at 27.9 min on the chromosome map, was isolated on a 952-base-pair EcoRV fragment, and its nucleotide sequence was determined. The BtuR protein was identified in maxicells as a 22,000-dalton polypeptide, as predicted from the nucleotide sequence. Strains mutant at btuR had negligible pools of adenosylcobalamin but did convert vitamin B12 into other derivatives. Although btuB expression in a btuR strain could not be repressed by cyano- or methylcobalamin, it was repressed by adenosylcobalamin. Growth on ethanolamine as the sole nitrogen source requires adenosylcobalamin. btuR mutants grew on ethanolamine but were affected in the length of the lag period before initiation of growth, which suggested that an alternative route for adenosylcobalamin synthesis might exist. No mutations were found that conferred constitutive btuB expression in the presence of adenosylcobalamin. Other genes near btuR may also be involved in cobalamin metabolism, as suggested from the complementation behavior of strains generated by excision of the Tn10 element in btuR. These results indicated that the btuR product is involved in the metabolism of adenosylcobalamin and that this cofactor, or some derivative, controls btuB expression.  相似文献   

20.
Growth of Escherichia coli K-12 strains in the presence of the vitamin cyanocobalamin (B12) resulted in an 80 to 90% reduction in B12 uptake activity of washed cells. Coincident with the decline in uptake activity was the depression of B12-binding activity in energy-poisoned cells, suggesting that growth in B12 resulted in the repression of synthesis of the B12 receptor protein in the outer membrane. Growth in the presence of B12 led to marked reduction in sensitivity to the E colicins, whose adsorption to cells requires the B12 receptor, and to a decrease in the amount of a band on electropherograms of outer membrane proteins. That polypeptide was also missing from mutants altered at btuB, the locus encoding the B12 receptor. Addition of B12 to growing cultures resulted in the exponential decline in specific activity of B12 uptake, as expected for dilution of functional receptors by further growth. Repression of receptor synthesis appears to be regulated by the level of intracellular, rather than extracellular, B12 and is separate from the regulation of the methionine biosynthetic pathway. Mutants altered in btuC, which are defective in accumulation and retention of B12, exhibit a much lower degree of repressibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号