首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of tail tendon from a young rat in solutions containing D-ribose resulted in attachment of the monosaccharide to collagen and subsequent cross-link formation at a rate much faster than found for glucose. The collagen rapidly became resistant to solubilization and showed increasing fluorescence. Ribose bound to all major CNBr peptides of collagen, with some preference for the alpha 2-CB3,5 peptide and the triple-helical region of alpha 1-CB6, and was incorporated into higher molecular weight material. Extensive pepsin digestion permitted isolation of dimers of alpha chains cross-linked in triple-helical regions as a result of incubation with ribose. The dimers were identified as beta 11, beta 12, and beta 22 components, and the limited degree of heterogeneity of these components indicated that cross-linking occurred at several sites, some of which must be intermolecular. Isolated beta components were strongly fluorescent with a spectrum similar to that of collagen in aged tissues. Fluorescent dimers with similar characteristics were found in pepsin digests of tail tendons from older rats.  相似文献   

2.
The acid solubility of Type I collagen from rat tail tendons decreases due to diabetes. This finding has been taken as evidence that collagen from diabetics may be more cross-linked than normal. We compared CNBr peptide maps prepared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for [3H] NaBH4-reduced tail tendons from streptozotocin-diabetic rats with maps from age-matched control rats. At least through 30 weeks of diabetes, the distribution of mass of both cross-linked and uncross-linked CNBr peptides was identical in diabetic and control tendons. Therefore, the number of cross-linked peptides did not increase due to diabetes. We analyzed the 3H-cross-linking compounds present on the CNBr peptides and found that the 3H content of peptides cross-linked in control tendons through the bivalent, reduced cross-links hydroxylysinonorleucine and lysinonorleucine was diminished on corresponding peptides from diabetic tendons as a function of duration of diabetes. The cross-linked peptides, however, persisted. Therefore, we conclude that a larger fraction of these bivalent cross-links is found in an unknown, non-reducible form in tendons from diabetic compared with control rats. This resembles a phenomenon normally associated with maturation and/or aging where the non-reducible form of the cross-links is acid-stable. An increase in the fraction of the cross-links that is non-reducible and acid-stable would explain, at least in part, the decrease in acid solubility of the collagen. Non-enzymatic glycation (NEG) was not very specific, since most CNBr peptides bound some glucose. However, peptides from the alpha 2-chain seemed to be preferential targets for NEG. While NEG clearly increased due to diabetes, we found no evidence that increased NEG led to an increased number of cross-links in tail tendon collagen from streptozotocin diabetic rats.  相似文献   

3.
The denatured alpha1(I) chain and the cyanogen bromide peptide, alpha1(I)-CB5, of chick skin collagen cause the relaese of serotonin and leakage of lactic dehydrogenase from human platelets in a manner similar to the release reaction mediated by adenosine diphosphate and native collagen. These peptides also cause a decrease in the level of adenosine 3':5'-monophosphate (cAMP) in platelets. Adenylate cyclase activity of platelets is partially inhibited by these peptides as well as by native collagen, ADP, and epinephrine, but cAMP phosphodiesterase activity is unaltered by these substances. In contrast, the level of platelet guanosine 3':5'-monophosphate (cGMP) is increased by the collagen peptides as well as the other aggregating agents. The increase is associated with increased guanylate cyclase, but normal cGMP phosphodiesterase activities of platelets. Optical rotatory and viscometric measurements of the alpha1 chains and alpha1-CB5 of chick skin in 0.01 M phosphate/0.15 M sodium chloride, pH 7.4, at various temperatures as a function of time indicate that no detectable renaturation occurs at 37 degrees for at least 30 min of observation. Molecular sieve chromatography of alpha1-CB5 in the phosphate buffer at 37 degrees shows that its elution position is identical to that performed under denaturing conditions (at 45 degrees) with no evidence of higher molecular weight aggregates, and the alpha1-CB5 glycopeptide fraction eluting from the column at the position of its monomer retains the platelet aggregating activity. Additionally, electron microscopic examination of the platelet-rich plasma that had been reacted with these peptides fail to show any ordered collagen structures. These data indicate that the denatured alpha1 chain and alpha1-CB5 glycopeptide of chick skin collagen mediate platelet aggregation through the "physiologic" release reaction in a manner similar to that induced by other aggregating agents such as ADP, epinephrine, or native collagen, and support the conclusion that the aggregating activity of the alpha1 chain and alpha1-CB5 is not likely to be due to the formation of polymerized products.  相似文献   

4.
It is shown that regions of unreduced, insoluble cow hide collagen, represented by the peptides alpha 1(I)-CB6, alpha 2(I)-CB4 and the alpha 2(I)-CB3,5, are involved in the formation of unreducible acid-stable and mature-type crosslinks. The characteristic ratio of the CNBr peptides in soluble type I collagen was found to be changed in the insoluble collagen of cow hides. The intensity of the bands of alpha 1(I)-CB6, alpha 2(I)-CB4 and alpha 2(I)-CB3,5, shown by dodecyl sulfate polyacrylamide gel electrophoresis, is significantly reduced in such samples, which indicates an involvement of these peptides in crosslink formation. The purified highly polymeric CNBr peptide fraction was also investigated to confirm the participation of the alpha 2 chain of type I collagen in mature crosslink formation. Chymotryptic digests of such material contain peptides which originate from alpha 2(I)-CB4, alpha 2(I)-CB3,5, and alpha 1(I)-CB6. Finally, acid hydrolysates of crosslinked material were screened carefully for crosslinks down to concentrations of 1 in 1000 amino acids. Only two compounds were detected, one identified as "hydroxyaldol-histidine" and the other an as yet unknown compound. These results indicate that both the alpha 1(I) and the alpha 2(I) chains are involved in mature crosslink formation and that the polymeric CNBr peptide fraction contains components crosslinked by so far uncharacterized, nonreducible crosslinks.  相似文献   

5.
J M Seyer  A H Kang 《Biochemistry》1977,16(6):1158-1164
Human liver type III collagen was prepared by limited pepsin digestion, differential salt precipitation, and carboxymethylcellulose chromatography. Cyanogen bromide digestion of purified type III collagen chains yielded nine distinct peptides. Three peptides, alpha1(III)-CB3, alpha1(III)-CB7, and alpha1(III)-CB6, were isolated by carboxymethylcellulose chromatography and Sephadex G-50 SF gel filtration. Automated Edman degradation together with selective hydroxylamine cleavage and chymotrypsin and trypsin digestion enabled determination of their complete amino acid sequence. Compared with type I collagen, the data show tentative homology of alpha1(III)-CB3 with alpha1(I)-CB1, alpha1(I)-CB2, and alpha1(I)-CB4; alpha1(III)-CB7 with alpha1(I)-CB5; and alpha1(III)-CB6 with the amino-terminal portion of alpha1(I)-CB8. Close interspecies homology was found between the sequences presented here with 90 residues of alpha1(III)-CB3 and 26 of alpha1(III)-CB8 of calf aorta. The present study establishes the amino acid sequence of 229 residues near the amino terminus or nearly one-quarter of the type III collagen chains. The disaccharide, Glc-Gal, was convalently bound to hydroxylysine at a position corresponding to the same location in the alpha1(I) chain.  相似文献   

6.
The degree of hydroxylation of the lysine residue located in both alpha(1)- and alpha(2)-chains of collagen in the N-terminal, non-helical telopeptide region of the molecule has been determined in collagen from various sources after isolation of the peptides (alpha(1)- and alpha(2)-CB1) that contain the lysine residue in question and are obtained by cyanogen bromide cleavage of collagen alpha(1)- and alpha(2)-chains respectively. As with collagen from chick tibia, bone collagens from rat tibia and femur and embryonic chick frontal bone, have a high degree of hydroxylation (approx. 50% or more) of the lysine residue in both alpha(1)- and alpha(2)-CB1 peptides. This is in contrast with the lack of hydroxylation of this residue in both alpha(1)- and alpha(2)-chains of all skin collagens so far examined. The presence of hydroxylysine in alpha(1)- and alpha(2)-CB1 peptides from tendon collagen is also indicated. In rat tail tendon collagen the amount of hydroxylation is only slight but in the much less soluble tendon collagen from embryonic chick leg tendons, approximately one-third of the lysine is hydroxylated.  相似文献   

7.
Two cyanogen bromide fragments (alpha 1-CB7 and alpha 1-CB8) of bovine corneal stromal collagen have been isolated and characterized. These added to those characterized in our previous work account for 95% of the amino acid sequence of the alpha 1(1)-chain. The hydroxylysine glycoside content of each fragment was determined and in this way the general distribution of glycoside over the entire molecule was deduced accounting for all the galactosylhydroxylysine and most of the glucosylgalactosylhydroxylysine of this heavily glycosylated type I collagen. The characterization of fragments alpha 1-CB7 and alpha 1-CB8 has enabled us to resolve the controversy over the relative mobilities of these fragments on SDS gels. Fragment alpha 1-CB7 of bovine corneal collagen was digested by trypsin and by staphylococcal proteinase V8. The resultant peptides were isolated by gel and ion-exchange chromatography and identified in relation to the known amino acid sequence of type I collagen. The hydroxylysine glycosides were determined in the relevant peptides providing a complete account of their distribution along this part of the collagen molecule. Most of the glycoside was found in the gap region of collagen especially near the edges of the axial holes where it could act as a peg to facilitate fibre formation. In addition, some glycoside was found in the overlap region where, being unable to fit into axial holes, it might impede the growth of the fibre and, with other glycoside of the overlap region, might be responsible for the narrow fibres of corneal collagen that are essential for corneal transparency. This glycoside, with that previously found in the peptide alpha 1-CB3 is the only hydroxylysine glycoside identified in the overlap region of a type I collagen.  相似文献   

8.
The collagenous protein synthesized by cultured Chinese hamster lung (CHL) cells and present in the culture medium has been isolated after limited pepsin digestion and differential salt precipitation. Molecular size analysis of this material indicates that the CHL cell medium collagen contains chains which exhibit an apparent molecular mass of approximately 85,000 Da. When chromatographed on CM-cellulose under denaturing conditions, the reduced and alkylated CHL cell medium collagen chains elute slightly after the human alpha1(I) chain but well before the pepsin-derived alpha1(V) chain, which is the constituent chain present in the CHL cell cellular matrix collagen. Analysis of the peptides derived by CNBr cleavage of the CHL medium collagen chains by chromatography on CM-cellulose reveals, however, that these chains contain peptides which correspond both in size and in chemical properties to those derived from the alpha1(V) collagen chain, but clearly lack two peptides (alpha1(V)-CB4 and alpha1(V)-CB5) which are normally present in pepsin-derived alpha1(V) chains. Furthermore, analysis of the CHL cell culture medium collagenous material obtained without pepsin digestion indicates the presence of collagenous chains that exhibit after reduction a molecular mass of approximately 160,000 Da, which is smaller than the proposed size of the pro alpha1(V) collagen chain. These results demonstrate that the collagenous protein present in the culture medium of CHL cells is directly related at the primary structural level to the alpha1(V) collagen chain, and it is postulated that this material represents the large fragment derived from a collagenase cleavage of the [pro alpha1(V)]3 molecules present in the cell layer. Furthermore, these results and previous reports indicate that the only identifiable genetic type of procollagen chain synthesized by this cloned cell line in culture corresponds to the pro alpha1(V) chain.  相似文献   

9.
Bovine articular type II collagen was prepared by limited pepsin digestion, differential salt fractionation and carboxymethylcellulose chromatography. Cyanogen bromide digestion of purified type II collagen alpha chains yielded twelve distinct peptides designated CB1-12. The peptide alpha 1(II)-CB11 was isolated by carboxymethylcellulose chromatography and Sephadex G-75S gel filtration. Automated Edman degradation together with chymotrypsin, thermolysin and trypsin digestion enabled identification of its complete amino acid sequence. Compared with type I and type III collagen, the data show similarity with alpha 1(I)-CB8 and alpha 1(III)-CB6-1-8-10-2 peptides, respectively. The peptide is located within residues 124-402 of the alpha 1(II) collagen chain and with its identification, now extends the known amino acid sequence of bovine type II cartilage collagen to 660 amino acid residues including alpha 1(II)-CB1-2-6-12-11-8-10 (partial). This corresponds to alpha 1(I)-CB0-1-2-4-5-8-3-7 (partial; 1-660) and alpha 1(III)-CB3A-3B-3C-7-6-1-8-10-2-4-5 (partial; 1-660) of bovine alpha 1(I) and alpha 1(III) collagen chains.  相似文献   

10.
Cross-linked peptides were isolated from chicken bone collagen that had been digested with CNBr or with bacterial collagenase. Analyses of (3)H radioactivity in disc electrophoretic profiles of the CNBr peptides from bone collagens that had been treated with NaB(3)H indicated that a major site of intermolecular cross-linking in chicken bone collagen is located between the carboxy-terminal region of an alpha1 chain and a small CNBr peptide, probably situated near the amino-terminus of an alpha1 or alpha2 chain in an adjacent collagen molecule. A small amount of this cross-linked CNBr peptide was isolated from a CNBr digest of chicken bone collagen by column chromatography. Amino acid analysis showed that the CNBr peptide, alpha1CB6B, the carboxy-terminal peptide of the alpha1 chain, was the major CNBr peptide in the preparation, and the reduced cross-linking components were identified as hydroxylysinohydroxynorleucine (HylOHNle), with a smaller amount of hydroxylysinonorleucine (HylNle). However, the composition and the low recovery of the cross-linking amino acids suggested that the preparation was a mixture of CNBr peptides alpha1CB6B and alpha1CB6B cross-linked to a small CNBr peptide whose identity could not be determined. A small cross-linked peptide was isolated from chicken bone collagen that had been reduced with NaB(3)H(4) and digested with bacterial collagenase. This peptide was the major cross-linked peptide in the digest and contained a stoicheiometric amount of the reduced cross-linking compounds. A peptide which had the same amino acid composition, but contained the cross-linking compounds in their reducible forms, was isolated from a collagenase digest of chicken bone collagen that had not been treated with NaBH(4). The absence of the reduced cross-links from this peptide indicates that, at least for the cross-linking site from which the peptide derives, natural reduction is not a significant pathway for biosynthesis of stable cross-links. However, most of the reducible cross-linking component in the peptide appeared to stabilize in the bone collagen by rearrangement from aldimine to ketoamine form.  相似文献   

11.
PZ-peptidase is an endopeptidase that cleaves the synthetic substrate developed for clostridial collagenase, 4-phenylazobenzyloxycarbonyl-L-Pro-L-Leu-Gly-L-Pro-D-Arg (PZ-peptide). The peptidase has been purified to homogeneity from chicken embryos. The enzyme has a pH optimum of 7.5 to 8.5, and isoelectric point of 5.0, and a molecular weight of 77,000. The kinetic parameters at pH 8 and 37 degrees are: Km = 2 X 10(-4) M and Vmax = 4.2 mumol/min/mg of protein. The enzyme is inhibited by p-hydroxymercuribenzoate (100%), N-ethylmaleimide (60%), and chelating agents (40 to 60%). Maximum activity is attained in the presence of reducing agents and Ca2+, Sr2+, or Mg2+. The peptidase has no detectable action on casein, serum albumin, collagen, collagen alpha chains, various collagen peptides (alpha1)(I)-CB2, alpha1(I)-CB3, alpha1(I)-CB4), (Gly-Pro-Pro)10, or (Gly-Pro-Pro)5. It does catalyze the hydrolysis of the Hyp--Gly bond in the 17-residue collagen peptide alpha1(II)-CB6-C2 and it partially digested a mixture of collagen peptides of molecular weight 350 to 2500. A role of this peptidase in collagen breakdown appears to be restricted to a late stage when degradation products would fall in the range of 5 to 30 residues.  相似文献   

12.
The controlled assembly of collagen monomers into fibrils, with accompanying intermolecular cross-linking by lysyl oxidase-mediated bonds, is vital to the structural and mechanical integrity of connective tissues. This process is influenced by collagen-associated proteins, including small leucine-rich proteins (SLRPs), but the regulatory mechanisms are not well understood. Deficiency in fibromodulin, an SLRP, causes abnormal collagen fibril ultrastructure and decreased mechanical strength in mouse tendons. In this study, fibromodulin deficiency rendered tendon collagen more resistant to nonproteolytic extraction. The collagen had an increased and altered cross-linking pattern at an early stage of fibril formation. Collagen extracts contained a higher proportion of stably cross-linked α1(I) chains as a result of their C-telopeptide lysines being more completely oxidized to aldehydes. The findings suggest that fibromodulin selectively affects the extent and pattern of lysyl oxidase-mediated collagen cross-linking by sterically hindering access of the enzyme to telopeptides, presumably through binding to the collagen. Such activity implies a broader role for SLRP family members in regulating collagen cross-linking placement and quantity.  相似文献   

13.
Tryptic peptides of citraconylated fragment alpha1-CB3 and chymotryptic peptides of fragment alpha1-CB3 of bovine corneal collagen were prepared, isolated and characterized. Their amino acid compositions were consistent with the amino acid sequence of fragment alpha1-CB3 from calf skin collagen. Two glycoside sites were identified in bovine corneal fragment alpha1-CB3, one of them being the first located in the overlap region of collagen. The results are related to the uniformly narrow collagen fibres found in cornea and essential for its transparency.  相似文献   

14.
The alpha2 chain of guinea pig skin collagen contains two additional methionyl residues in comparison with the alpha2 chain of other vertebrate species. The order of the three CNBr peptides unique to the alpha2 chain was established on the basis of the homology of their primary structures to sequences of previously ordered regions in the alpha1 and alpha2 chains of other colagens. The two larger peptides, 4A + 4B, were found to correspond to the region homologous to alpha2-CB4 of other species, while the smaller peptide, 3A, was homologous to the NH2-terminal portion of alpha2-CB3. Thus, the order of the peptides in the alpha2 chain of this collagen is 1-O-4A-4B-2-3A-3B-5. Periodate oxidation and alkaline or acid hydrolysis of the CNBr fragments showed that all of the hydroxlysine-linked carbohydrate in the alpha2 chain was present in alpha2-CB4B. Carbohydrate analyses were most consistent with the existence of single monosaccharide and disaccharide units in this region.  相似文献   

15.
Significant amounts of native collagen can be extracted from bovine articular cartilage after removal of the acid mucopolysaccharides by controlled proteolysis. The fraction thus solubilized upon denaturation gives rise to three identical alpha chains. Cleavage of these chains with CNBr generated nine peptides, all of which contain glycine as one-third of their total amino acid residues. Two of the smaller peptides CB-1 and CB-2 contain partially hydroxylated proline. A similar CNBr digest of intact cartilage also gives a series of peptides identical with those obtained from the soluble cartilage collagen. The absence of cross-linking peptides, the fact that only few beta components are seen in articular cartilage collagen and the similarity in peptide pattern between the two collagen fractions investigated, suggests that this collagen is stabilized by a different cross-linking mechanism, possibly involving an association with the tissue proteoglycans.  相似文献   

16.
The effectiveness of photomediated cross-linking of type I collagen gels in the presence of rat aortic smooth muscle cells (RASMC) as a method to enhance gel mechanical properties while retaining native collagen triple helical structure and maintaining high cell viability was investigated. Collagen was chemically modified to incorporate an acrylate moiety. Collagen methacrylamide was cast into gels in the presence of a photoinitiator along with RASMC. The gels were cross-linked using visible light irradiation. Neither acrylate modification nor the cross-linking reaction altered collagen triple helical content. The cross-linking reaction, however, moved the denaturation temperature beyond the physiologic range. A twelve-fold increase in shear modulus was observed after cross-linking. Cell viability in the range of 70% (n = 4, p > 0.05) was observed in the photo-cross-linked gels. Moreover the cells were able to contract the cross-linked gel in a manner commensurate with that observed for natural type I collagen. Methacrylate-mediated photo-cross-linking is a facile route to improve mechanical properties of collagen gels in the presence of cells while maintaining high cell viability. This enhances the potential for type I collagen gels to be used as scaffolds for tissue engineering.  相似文献   

17.
The amino acid sequence of 120 residues in the N-terminal region of the alpha1-chain of calf skin collagen (comprising the cyanogen-bromide-derived peptides alpha1-CB2, alpha1-CB4 and alpha1-CB5) has been determined by automated Edman degradation. The lysyl residue in position 87 is completely hydroxylated, while those in positions 99 and 108 partially hydroxylated. Two substitutions are found with respect to the homologous region of the alpha1-chain from rat skin collagen. Positions 101 and 102 of calf skin collagen are occupied by Asp-Ala, in rat skin collagen by Asn-Thr. The extensive homology in this region is remarkable and is not found in other regions of the alpha1 and alpha2-chain.  相似文献   

18.
We have previously shown that platelets adhere to collagen substrates via a Mg2(+)-dependent mechanism mediated by the surface glycoprotein Ia-IIa (human leukocyte very late activation protein 2, alpha 2 beta 1 integrin) complex. The adhesion is specific for collagen and is supported by collagen types I, II, III, IV, and VI. Several other members of the integrin family of adhesive protein receptors recognize discrete linear amino acid sequences within their adhesive glycoprotein ligands. Experiments with both intact platelets and with liposomes containing the purified receptor complex indicated that the alpha 2 beta 1 receptor recognized denatured type I collagen in a Mg2(+)-dependent manner. To further localize the binding site, the alpha 1 and alpha 2 chains of type I collagen were purified by gel filtration and ion exchange chromatography and tested as adhesive substrates. Both the alpha 1(I) and alpha 2(I) chains effectively supported Mg2(+)-dependent platelet adhesion. The purified alpha 1(I) collagen chain was then subjected to cleavage with cyanogen bromide, and the resultant peptides were separated by chromatography on carboxymethylcellulose. Only the alpha 1(I)-CB3 fragment supported Mg2(+)-dependent platelet adhesion. The monoclonal antibody P1H5 which recognizes an epitope on the alpha 2 subunit of the integrin receptor and which inhibits the adhesion of both intact platelets and liposomes bearing the purified receptor to collagen also inhibited platelet adhesion to the alpha 1(I)-CB3 fragment. These results indicate that the alpha 2 beta 1 receptor recognizes a sequence of amino acids present in the alpha 1(I)-CB3 fragment of type I collagen. An identical or similar sequence likely mediates binding of the receptor to other collagen polypeptides.  相似文献   

19.
The loci of the three amino acid residues that contribute their prosthetic groups to form the stable, nonreducible, trifunctional intermolecular cross-link histidinohydroxylysinonorleucine in skin collagen fibrils were identified. Two apparently homogeneous three-chained histidinohydroxylysinonorleucine cross-linked peptides were chromatographically isolated. They were obtained from a tryptic digest of denatured unreduced 6 M guanidine hydrochloride insoluble bovine skin collagen. Amino acid and sequence analyses demonstrated that the prosthetic groups of alpha 1(I)-chain Hyl-87, alpha 1(I)-chain Lys-16c, and alpha 2(I)-chain His-92 formed the cross-link. The latter results served to define the locus of the stable, nonreducible trifunctional moiety. Identical types of analyses were performed on the three-chained peptides isolated after bacterial collagenase digestion of the cross-linked tryptic peptides. This confirmed the initial identification and location of the three peptides linked by the cross-link. In addition, data reported here provide for a correction of the micromolecular structure for the alpha 2(I) chain. Stereochemical considerations concerning this trifunctional cross-link's specific locus indicate that the steric relationships between the alpha chains of skin and skeletal tissue collagens are fundamentally different and the intermolecular relationships in skin fibrils are specific for skin. The same molecular relationships also indicate that histidinohydroxylysinonorleucine links three molecules of collagen. The stereochemistry of cross-linking for skin collagen is in accordance with and explains the X-ray findings of a 65-nm periodicity found for this tissue [Stinson, R. H., & Sweeny, P. R. (1980) Biochim. Biophys. Acta 621, 158; Brodsky, B., Eikenberry, E. F., & Cassidy, K. (1980) Biochim. Biophys. Acta 621, 162].  相似文献   

20.
J M Seyer  A H Kang 《Biochemistry》1978,17(16):3404-3411
Type III collagen was solubilized from human liver by limited pepsin digestion and purified by differential salt precipitation and carboxymethylcellulose chromatography. Digestion with cyanogen bromide yielded the nine distinct peptides previously described and an additional tripeptide not recognized in earlier studies. Five of these peptides, alpha1 (III)-CB1, 2, 4, 8, and 10, were further purified by molecular sieve and/or ion exchange chromatography. They contained 12, 40, 149, 125 and 3 amino acid residues, respectively. The amino acid sequence of these peptides was determined by automated Edman degradation of tryptic (before and after maleylation), chymotryptic, thermolytic or hydroxylamine-derived peptide fragments as well as the intact peptides. The alignment of these five peptides within the collagen chain is deduced to be 1-8-10-2-4 by homology with known alpha1 (I) sequences. The known CNBr peptide alignment of the NH2-terminal portion of type III collagen so far would, therefore, be alpha1 (III)-CB3-7-6-1-8-10-2-4 and correspond to the homologous region of alpha1 (I)-CB0-1-2-4-5-8-3 or residues 11-567 of the alpha1 (III) collagen chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号