首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure of microbial cells was studied in situ in natural biotopes by high-resolution transmission electron microscopy using the known methods of cryofractography, thin sectioning, and the negative staining of total cell specimens, as well as the new methods of the low-temperature fractionation of microbial cells (providing for the recovery of cells from natural sources and their concentration), the preparation of micromonoliths, and aimed electron microscopy. Among the natural biotopes studied were permafrost ground and oil sludge. Most of the microorganisms found in the 1- to 3-million-year-old permafrost ground were represented by resting forms (spores, cysts, and cystlike cells with specific organomineral envelopes). Oil sludge older than 35 years contained bacteria of atypical morphology and ultrastructure, including various resting forms and ultramicrobacteria. The data obtained is indicative of considerable promise of high-resolution electron microscopy for studying microbial communities in situ.Translated from Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 832–840.Original Russian Text Copyright © 2004 by Dmitriev, Suzina, Barinova, Duda, Boronin.  相似文献   

2.
The morphology, ultrastructure, and quantity of bacterial nanoforms were studied in extreme biotopes: East Siberia permafrost soil (1–3 Ma old), petroleum-containing slimes (35 years old), and biofilms from subsurface oil pipelines. The morphology and ultrastructure of microbial cells in natural biotopes in situ were investigated by high-resolution transmission electron microscopy and various methods of sample preparation: ultrathin sectioning, cell replicas, and cryofractography. It was shown that the biotopes under study contained high numbers of bacterial nanoforms (29–43% of the total number of microorganisms) that could be assigned to ultramicrobacteria due to their size (diameter of ≤ 0.3 μm and volume of ≤ 0.014 μm3) and structural characteristics (the presence of the outer and cytoplasmic membranes, nucleoid, and cell wall, as well as their division patterns). Seven different morphostructural types of nanoforms of vegetative cells, as well as nanospores and cyst-like cells were described, potentially representing new species of ultramicrobacteria. In petroleum-containing slimes, a peculiar type of nanocells was discovered, gram-negative cells mostly 0.18–0.20 × 0.20–0.30 μm in size, forming in situ spherical aggregates (microcolonies) of dividing cells. The data obtained promoted the isolation of pure cultures of ultramicrobacteria from petroleum-containing slimes; they resembled the ultramicrobacterium observed in situ in their morphology and ultrastructure.  相似文献   

3.
The morphology, ultrastructure, and quantity of bacterial nanoforms were studied in extreme biotopes: East Siberia permafrost soil (1-3 Ma old), petroleum-containing slimes (35 years old), and biofilms from subsurface oil pipelines. The morphology and ultrastructure of microbial cells in natural biotopes in situ were investigated by high-resolution transmission electron microscopy and various methods of sample preparation: ultrathin sectioning, cell replicas, and cryofractography. It was shown that the biotopes under study contained high numbers of bacterial nanoforms (29-43% of the total number of microorganisms) that could be assigned to ultramicrobacteria due to their size (diameter of < or =0.3 microm and volume of < or =0.014 microm3) and structural characteristics (the presence of the outer and cytoplasmic membranes, nucleoid, and cell wall, as well as their division patterns). Seven different morphostructural types of nanoforms of vegetative cells, as well as nanospores and cyst-like cells were described, potentially representing new species of ultramicrobacteria. In petroleum-containing slimes, a peculiar type of nanocells was discovered, gram-negative cells mostly 0.18-0.20 x 0.20-0.30 microm in size, forming spherical aggregates (microcolonies) of dividing cells in situ. The data obtained promoted the isolation of pure cultures of ultramicrobacteria from petroleum-containing slimes; they resembled the ultramicrobacterium observed in situ in their morphology and ultrastructure.  相似文献   

4.
Under conditions of spontaneous or induced autolysis of thick cell suspensions, Arthrobacter globiformis strains produced cells exhibiting features typical of resting microbial forms. The number of viable resting cells was greater under conditions of induced rather than spontaneous autolysis. The thermoresistance of the resting cells of A. globiformis strains isolated from 2- to 3 million-year-old permafrost was higher than that of the collection A. globiformis strain.  相似文献   

5.
Methods of reactivating the dormant forms (DFs) and nonculturable cells (NCs) of the bacterial communities of buried paleosoils and subsoil permafrost stored for long periods of time (thousands to millions of years), including completely sterile samples (CFU = 0), were developed. They were based on washing the DFs and NCs to remove anabiosis autoinducers (spore germination autoinhibitors) and introducing low molecular weight extracellular growth regulators of microbial or plant origin, such as alkylhydroxybenzenes of the alkylresorcinol subtype, indoleacetic acid, and wheat germ agglutinin. It was revealed that the dormant communities of permafrost and buried soils differed in their sensitivity to reactivating factors, probably due to different natural storage conditions of the tested soil substrates and the heterogeneity of dormant populations. The latter was confirmed by FISH (fluorescent in situ hybridization): applying the reactivation methods to the cells of the dormant permafrost community resulted in an increase in the number of metabolically active cells from 5 to 77% of their total number. In contrast, the addition of microbial anabiosis autoinducers (C12-AHB) to background surface soil and permafrost samples caused the transition of bacterial cells to the dormant or the nonculturable state, depending on the C12-AHB concentration and the sensitivity of the cells from the control soil or permafrost’ to it. The data obtained contribute to our knowledge concerning the role of intercellular communication factors and the survival of microorganisms under extreme environmental conditions.  相似文献   

6.
Under conditions of the spontaneous or induced autolysis of thick cell suspensions,Arthrobacter globiformis strains produced cells exhibiting features typical of resting microbial forms. The number of viable resting cells was greater under conditions of induced rather than spontaneous autolysis. The thermoresistance of the resting cells of A.globiformis strains isolated from 2-to 3 million-year-old permafrost was higher than that of the collectionA. globiformis strain.  相似文献   

7.
We describe a method based on fluorescence in situ hybridisation (FISH) that allows the identification of individual cells by electron microscopy. We hybridised universal and specific fluorescein-labelled oligonucleotide probes to the ribosomal RNA of prokaryotic microorganisms in heterogeneous cell mixtures. We then used antibodies against fluorescein coupled to sub-nanometer gold particles to label the hybridised probes in the ribosome. After increasing the diameter of the metal particles by silver enhancement, the specific gold-silver signal was visualised by optical microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is the first time that SEM is applied to the detection of gold nanoparticles hybridised to an intracellular target, such as the ribosome. The possibility to couple phylogenetic identification by FISH to cell surface and ultrastructure observation at electron microscopy resolution has promising potential applications in microbial ecology.  相似文献   

8.
Submerged cultures of Arthrobacter globiformis grown in media unbalanced with respect to carbon and nitrogen sources were found to contain cells exhibiting features typical of resting forms: long-term viability, specific ultrastructure, dormant metabolism, and thermoresistance. Such cells were produced not only in the collection strain VKM B-1112, but also in the A. globiformis strains isolated from 2- to 3-million-year-old permafrost sediments.  相似文献   

9.
Decho AW  Kawaguchi T 《BioTechniques》1999,27(6):1246-1252
A novel method using excision and fixation in Nanoplast, a hydrophilic embedding resin, allows confocal imaging of natural microbial communities and their extracellular polymeric secretions (EPS) while in situ. Prestaining with fluorescent probes permits the observation of specific cellular and extracellular components. Marine stromatolite sediments were examined using this method. Optical sectioning using confocal laser scanning microscopy (CLSM) permitted high-resolution imaging through sediments. Delicate arrangements of the EPS that are associated with sedimentary microbial biofilms were imaged using a fluorescein isothiocyanate (FITC)-labeled lectin (concanavalin-A) probe. Close microspatial associations of heterotrophic bacteria cells and autotrophic cyanobacteria cells were also observed. The nanoplast resin produces no detectable autofluorescence. Further coupling of multi-photon scanning laser microscopy (2P-LSM) with a conventional single photon CLSM allowed concurrent imaging of DAPI-labeled microbial cells, FITC-labeled EPS and autofluorescent carbonate sand grains. The multi-photon infrared laser permits deep (approximately 1 mm) penetration of samples and the excitation of DAPI, which normally requires UV-excitation with minimal disturbance to samples. The unique combination of Nanoplast with fluorescent probes, CLSM and 2P-LSM allows for the preservation and imaging of natural microbial communities in their in situ state, a method easily adapted for examinations of other microbial systems.  相似文献   

10.
The ultrastructure of resting and stimulated human blood platelets (P) was studied by the transmission electron microscopy. The cells were chemically fixed (using tannic acid and OsFeCN mixture) 1, 3, 5 and 15 min after the addition of ADP and fibrinogen (F). Early changes in P ultrastructure consist in drastic reduction of the electron-dense layer of glycocalyx and in an increase of the plasma membrane permeability. At the early stages of P aggregation the cells contact with each other due to rapidly arising pseudopodia. Later, the extracellular network containing an exogenous F participates in the aggregation process.  相似文献   

11.
Culture‐dependent and culture‐independent methods were used in an investigation of the microbial diversity in a permafrost/massive ground ice core from the Canadian high Arctic. Denaturing gradient gel electrophoresis as well as Bacteria and Archaea 16S rRNA gene clone libraries showed differences in the composition of the microbial communities in the distinct core horizons. Microbial diversity was similar in the active layer (surface) soil, permafrost table and permafrost horizons while the ground ice microbial community showed low diversity. Bacteria and Archaea sequences related to the Actinobacteria (54%) and Crenarchaeota (100%) respectively were predominant in the active layer while the majority of sequences in the permafrost were related to the Proteobacteria (57%) and Euryarchaeota (76%). The most abundant phyla in the ground ice clone libraries were the Firmicutes (59%) and Crenarchaeota (82%). Isolates from the permafrost were both less abundant and diverse than in the active layer soil, while no culturable cells were recovered from the ground ice. Mineralization of [1‐14C] acetic acid and [2‐14C] glucose was used to detect microbial activity in the different horizons in the core. Mineralization was detected at near ambient permafrost temperatures (?15°C), indicating that permafrost may harbour an active microbial population, while the low microbial diversity, abundance and activity in ground ice suggests a less hospitable microbial habitat.  相似文献   

12.
Ochreous sludge deposited in the course of aeration of ground water contained an assortment of bacterial forms and structures which were investigated by light microscopy, scanning electron microscopy, and transmission electron microscopy. Bacterial structures were often covered by iron deposition which could be removed by acidification of the samples. Sulfuric acid treatment was consistently better than hydrochloric acid to dissolve iron without a considerable damage to the bacterial cells. Partial dissolution of amorphous ferric iron was achieved by acidifying the samples with oxalic acid or citric acid prior to the preparation for electron microscopy.  相似文献   

13.
Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. In microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator (3.5 mA) was 10-fold more than the amount produced when thionin was the electron mediator (0.4 mA). The amount of electrical energy generated (expressed in joules per mole of substrate) and the amount of current produced from glucose (expressed in milliamperes) in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge (i.e., a mixed culture of anaerobic bacteria) was used in the fuel cell, stable (for 120 h) and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Our results are discussed in relation to factors that may improve the relatively low electrical efficiencies (1.2 kJ/mol) obtained with microbial fuel cells.  相似文献   

14.
The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH(4)/g of volatile suspended solids [VSS].day or 1.1 g of CH(4) chemical oxygen demand/g of VSS.day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates.  相似文献   

15.
Submerged cultures ofArthrobacter globiformis grown in media unbalanced with respect to carbon and nitrogen sources were found to contain cells exhibiting features typical of resting forms: long-term viability, specific ultrastructure, dormant metabolism, and thermoresistance. Such cells were produced not only in the collection strain VKM B-l 112, but also in the Aglobiformis strains isolated from 2-to 3-million-year-old permafrost sediments.  相似文献   

16.
Chemolithotrophic nitrite oxidizers were enriched from five different soils including freshwater marsh, permafrost, garden, agricultural, and desert soils and monitored during the cultivation procedure. Immunoblot analysis was used to identify the nitrite oxidizing organisms with monoclonal antibodies, which recognize the key enzyme of nitrite oxidation in a genus-specific reaction [Bartosch et al. (1999) Appl Environ Microbiol 65:4126-4133]. The morphological characteristics of the enriched nitrite oxidizers were additionally studied using transmission electron microscopy (TEM) and fluorescence microscopy. By means of the antibodies and TEM analysis Nitrospira could be clearly identified in enrichment cultures derived from freshwater marsh and from permafrost soil. Nitrospira cells were enriched simultaneously with cells of the genus Nitrobacter when nitrite concentrations of 0.2 g of NaNO2 L(-1) were used. However, in enrichment cultures containing 2 g of NaNO2 L(-1) Nitrobacter was exclusively detected. During fluorescence microscopic observations of DAPI stained samples microcolonies were found in enrichment cultures from freshwater marsh, permafrost, garden, and agricultural soil. They had a similar morphology to Nitrospira-like microcolonies from activated sludge. In conclusion, Nitrospira seems to be not only a common aquatic but also a usual soil bacterium.  相似文献   

17.
Scanning electron microscopy (SEM), especially low-voltage (1 KeV) high-resolution SEM, can be used in conjunction with stereo pair high-voltage (1 MeV) transmission electron microscopy (HVEM) of whole spread cells or thick sections effectively to correlate surface structure with internal structure. Surface features such as microvilli, pits, pseudopodia, ruffles, attached virus, and other surface-related morphologic characteristics can be identified using SEM, while underlying cytoskeletal structure and organelle organization can be viewed by HVEM of the same preparation. However, the need to "prepare" cells for electron microscopy precludes observation in the living state. The use of several types of video-enhanced light microscopy (VLM) permits observation of living cells such that certain surface and internal features can be observed at a relatively high level of resolution or detection. Thus, changes in living cells can be followed, and at appropriate times the cells may be chemically fixed or rapidly frozen and prepared for ultrastructural examination by electron microscopy. We have utilized VLM in conjunction with SEM and HVEM to correlate changes in shape and surface structure with changes in the internal structure of platelets. In addition, we have found it advantageous to use colloidal gold-labeling procedures, because these markers are detectable by all three forms of microscopy. Using this approach we have labeled platelet membrane GPIIb/IIIa, a receptor for RGD-containing adhesive proteins, with gold-fibrinogen or gold-anti-IIb/IIIa. The initial binding and subsequent movement of gold-fibrinogen-IIb/IIIa complexes in living platelets was followed by VLM. The movement of individual labels could be mapped. Subsequent observation by low-voltage (1 KeV) high-resolution SEM and HVEM permits visualization of the same individual receptors tracked by LM. The final position on the membrane or the position-in-transit when fixative was added was determined relative to surface ultrastructure (SEM) and internal, particularly cytoskeletal, ultrastructure (HVEM).  相似文献   

18.
Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. In microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator (3.5 mA) was 10-fold more than the amount produced when thionin was the electron mediator (0.4 mA). The amount of electrical energy generated (expressed in joules per mole of substrate) and the amount of current produced from glucose (expressed in milliamperes) in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge (i.e., a mixed culture of anaerobic bacteria) was used in the fuel cell, stable (for 120 h) and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Our results are discussed in relation to factors that may improve the relatively low electrical efficiencies (1.2 kJ/mol) obtained with microbial fuel cells.  相似文献   

19.
The composition of the microbial community present in the nitrifying-denitrifying activated sludge of an industrial wastewater treatment plant connected to a rendering facility was investigated by the full-cycle rRNA approach. After DNA extraction using three different methods, 94 almost full-length 16S rRNA gene clones were retrieved and analyzed phylogenetically. 59% of the clones were affiliated with the Proteobacteria and clustered with the beta- (29 clones), alpha- (24), and delta-class (2 clones), respectively. 15 clones grouped within the green nonsulfur (GNS) bacteria and 11 clones belonged to the Planctomycetes. The Verrucomicrobia, Acidobacteria, Nitrospira, Bacteroidetes, Firmicutes and Actinobacteria were each represented by one to five clones. Interestingly, the highest 'species richness' [measured as number of operational taxonomic units (OTUs)] was found within the alpha-class of Proteobacteria, followed by the Planctomycetes, the beta-class of Proteobacteria, and the GNS-bacteria. The microbial community composition of the activated sludge was determined quantitatively by using 36 group-, subgroup-, and OTU-specific rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization (FISH), confocal laser scanning microscopy and digital image analysis. 89% of all bacteria detectable by FISH with a bacterial probe set could be assigned to specific divisions. Consistent with the 16S rRNA gene library data, members of the beta-class of Proteobacteria dominated the microbial community and represented almost half of the biovolume of all bacteria detectable by FISH. Within the beta-class, 98% of the cells could be identified by the application of genus- or OTU-specific probes demonstrating a high in situ abundance of bacteria related to Zoogloea and Azoarcus sensu lato. Taken together, this study provides the first encompassing, high-resolution insight into the in situ composition of the microbial community present in a full-scale, industrial wastewater treatment plant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号