首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High temperature stress reduces grain growth in wheat (Triticum aestivum L.) by altering source activity and sink capacity. The impact of stress on source and sink interactions in two wheat cultivars of differing source thermotolerance was monitored by analysis of chlorophyll fluorescence transients, Fv (variable fluorescence) and PSM (peak, stationary, maximum), of attached flag leaves on intact and decapitated tillers grown at optimum (20°C) and stress (35°C) temperatures after anthesis. The thermotolerant cultivar Waverly had reduced Fv and PS quenching and a large increase of SM during heat stress. The less thermotolerant cultivar, Len, exhibited increased Fv and PS quenching and a small increase of SM. Fluorescence induction was similar in intact and decapitated tillers of Len, indicating diminished sinksource interaction during heat stress. The present results and previous observations of photosynthetic activities indicate that cyclic electron transport and photophosphorylation in flag leaves of the thermotolerant cultivar were stimulated by sink demand (increased SM in intact plants). Reduced grain development in the thermolabile cultivar resulted from limited capacity to support cyclic electron transport and photophosphorylation (slight increase in SM of intact plants and large reduction of Cytochrome f/b6-mediated electron transport capacity). It was concluded that heat stress injures the photosynthetic apparatus during reproductive growth of wheat and that diminished source activity and sink capacity may be equally important in reducing productivity.  相似文献   

2.
Thermal inhibition and photoinhibition of plants, which may occur simultaneously in nature, were investigated to determine whether the two causal stresses interact and to characterize any interactions that occurred. Photosynthetic rates of wheat (Triticum aestivum L. cv Len) seedlings declined gradually after temperature treatment increased from 22 to 42°C or after photosynthetically active radiation (PAR) treatment increased from 450 to 2000 micromoles per square meter per second and fell rapidly after the stresses were simultaneously imposed. Stomatal conductance and internal CO2 were affected little, indicating the interaction occurred in chloroplasts. Thylakoid whole chain electron transport, quantum yield, and saturating PAR intensity were decreased by high temperature and an additional amount by high PAR treatments. Photosystem reactions involving water oxidation were inhibited more than other reactions, and chlorophyll fluorescence transients indicated most inhibition was on the photooxidizing side of photosystem II. Injury was influenced little by the order in which the stresses were imposed and was always most severe when they were combined. Release of proteins from thylakoid membranes was not detected. Lability to the stresses was lowest in thylakoids from vegetative stage plants and increased as plants matured. We concluded that thermal injury is accentuated by high PAR, the two stresses may act at a common site near the water oxidizing complex, and their interaction may be involved in photosynthetic decline during adverse conditions.  相似文献   

3.
应用蛋白质免疫杂交技术分析了永绿色基因(Stay-green Rice,SGR)突变和超表达对水稻(Oryza sativa)叶片类囊体蛋白质降解的影响.结果表明,在正常生长条件下,SGR超表达降低了光系统Ⅱ(PSⅡ)、光系统Ⅰ(PS Ⅰ)和电子传递链等的蛋白质含量.暗诱导衰老处理时,SGR突变延缓了PSⅠ和PSⅡ的蛋...  相似文献   

4.
Thermal acclimation by Saxifraga cernua to low temperatures results in a change in the optimum temperature for gross photosynthetic activity and may directly involve the photosynthetic apparatus. In order to test this hypothesis photosynthetic electron transport activity of S. cernua thylakoids acclimated to growth temperatures of 20°C and 10°C was measured in vitro. Both populations exhibited optimum temperatures for whole chain and PSII electron transport activity at temperatures close to those at which the plants were grown. Chlorophyll a fluorescence transients from 10°C-acclimated leaves showed higher rates in the rise and subsequent quenching of variable fluorescence at low measuring temperatures; 20°C-acclimated leaves showed higher rates of fluorescence rise at higher measuring temperatures. At these higher temperatures, fluorescence quenching rates were similar in both populations. The kinetics of State 1-State 2 transitions in 20°C- and 10°C-acclimated leaf discs were measured as changes in the magnitude of the fluorescence emission maxima measured at 77K. Leaves acclimated at 10°C showed a larger F730/F695 ratio at low temperatures, while at higher temperatures, 20°C-acclimated leaves showed a higher F730/F695 ratio after the establishment of State 2. High incubation temperatures also resulted in a decrease in the F695/F685 ratio for 10°C-acclimated leaves, suggesting a reduction in the excitation transfer from the light-harvesting complex of photosystem II to photosystem II reaction centers. The relative amounts of chlorophyll-protein complexes and thylakoid polypeptides separated electro-phoretically were similar for both 20°C- and 10°C-acclimated leaves. Thus, photosynthetic acclimation to low temperatures by S. cernua is correlated with an increase in photosynthetic electron transport activity but does not appear to be accompanied by major structural changes or different relative amounts in thylakoid protein composition.  相似文献   

5.
The effect of spermine on photochemical activity and polypeptide composition of chloroplasts from barley leaf discs during senescence in the dark was studied. Chloroplast membranes did not show photosystem II activity after spermine treatment when water was the electron donor, but in the presence of diphenylcarbazide, this activity was observed. The diphenylcarbazide-stimulated photoreduction of dichloroindophenol was 3-fold greater in leaf discs incubated for 72 hours in spermine than in water. Photosystem I activity was reduced by about 90% within the first 24 hours in the spermine-treated samples. This reduction, however, was not due to a decrease in the photosynthetic unit size. A preferential loss of polypeptides other than those associated with photosystem II was observed during senescence of the leaf discs in water, but this loss was reduced by spermine. Spermine treatment also prevented the appearance of several additional chlorophyll proteins found in the controls during senescence. The results have been interpreted on the basis of the interaction of spermine with thylakoid membranes resulting in stabilization of membrane function during senescence.  相似文献   

6.
We investigated the effect of growth light intensity on the photosynthetic apparatus of pea (Pisum sativum) thylakoid membranes. Plants were grown either in a growth chamber at light intensities that ranged from 8 to 1050 microeinsteins per square meter per second, or outside under natural sunlight. In thylakoid membranes we determined: the amounts of active and inactive photosystem II, photosystem I, cytochrome b/f, and high potential cytochrome b559, the rate of uncoupled electron transport, and the ratio of chlorophyll a to b. In leaves we determined: the amounts of the photosynthetic components per leaf area, the fresh weight per leaf area, the rate of electron transport, and the light compensation point. To minimize factors other than growth light intensity that may alter the photosynthetic apparatus, we focused on peas grown above the light compensation point (20-40 microeinsteins per square meter per second), and harvested only the unshaded leaves at the top of the plant. The maximum difference in the concentrations of the photosynthetic components was about 30% in thylakoids isolated from plants grown over a 10-fold range in light intensity, 100 to 1050 microeinsteins per square meter per second. Plants grown under natural sunlight were virtually indistinguishable from plants grown in growth chambers at the higher light intensities. On a leaf area basis, over the same growth light regime, the maximum difference in the concentration of the photosynthetic components was also about 30%. For peas grown at 1050 microeinsteins per square meter per second we found the concentrations of active photosystem II, photosystem I, and cytochrome b/f were about 2.1 millimoles per mol chlorophyll. There were an additional 20 to 33% of photosystem II complexes that were inactive. Over 90% of the heme-containing cytochrome f detected in the thylakoid membranes was active in linear electron transport. Based on these data, we do not find convincing evidence that the stoichiometries of the electron transport components in the thylakoid membrane, the size of the light-harvesting system serving the reaction centers, or the concentration of the photosynthetic components per leaf area, are regulated in response to different growth light intensities. The concept that emerges from this work is of a relatively fixed photosynthetic apparatus in thylakoid membranes of peas grown above the light compensation point.  相似文献   

7.
Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low.  相似文献   

8.
Photosynthetic complexes in the thylakoid membrane of plant leaves primarily function as energy-harvesting machinery during the growth period. However, leaves undergo developmental and functional transitions along aging and, at the senescence stage, these complexes become major sources for nutrients to be remobilized to other organs such as developing seeds. Here, we investigated age-dependent changes in the functions and compositions of photosynthetic complexes during natural leaf senescence in Arabidopsis thaliana. We found that Chl a/b ratios decreased during the natural leaf senescence along with decrease of the total chlorophyll content. The photosynthetic parameters measured by the chlorophyll fluorescence, photochemical efficiency (F v/F m) of photosystem II, non-photochemical quenching, and the electron transfer rate, showed a differential decline in the senescing part of the leaves. The CO2 assimilation rate and the activity of PSI activity measured from whole senescing leaves remained relatively intact until 28 days of leaf age but declined sharply thereafter. Examination of the behaviors of the individual components in the photosynthetic complex showed that the components on the whole are decreased, but again showed differential decline during leaf senescence. Notably, D1, a PSII reaction center protein, was almost not present but PsaA/B, a PSI reaction center protein is still remained at the senescence stage. Taken together, our results indicate that the compositions and structures of the photosynthetic complexes are differentially utilized at different stages of leaf, but the most dramatic change was observed at the senescence stage, possibly to comply with the physiological states of the senescence process.  相似文献   

9.
The effect of natural shading on photosynthetic capacity and chloroplast thylakoid membrane function was examined in soybean (Glycine max. cv Young) under field conditions using a randomized complete block design. Seedlings were thinned to 15 plants per square meter at 20 days after planting. Leaves destined to function in the shaded regions of the canopy were tagged during early expansion at 40 days after planting. To investigate the response of shaded leaves to an increase in available light, plants were removed from certain plots at 29 or 37 days after tagging to reduce the population from 15 to three plants per square meter and alter the irradiance and spectral quality of light. During the transition from a sun to a shade environment, maximum photosynthesis and chloroplast electron transport of control leaves decreased by two- to threefold over a period of 40 days followed by rapid senescence and abscission. Senescence and abscission of tagged leaves were delayed by more than 4 weeks in plots where plant populations were reduced to three plants per square meter. Maximum photosynthesis and chloroplast electron transport activity were stabilized or elevated in response to increased light when plant populations were reduced from 15 to three plants per square meter. Several chloroplast thylakoid membrane components were affected by light environment. Cytochrome f and coupling factor protein decreased by 40% and 80%, respectively, as control leaves became shaded and then increased when shaded leaves acclimated to high light. The concentrations of photosystem I (PSI) and photosystem II (PSII) reaction centers were not affected by light environment or leaf age in field grown plants, resulting in a constant PSII/PSI ratio of 1.6 ± 0.3. Analysis of the chlorophyll-protein composition revealed a shift in chlorophyll from PSI to PSII as leaves became shaded and a reversal of this process when shaded leaves were provided with increased light. These results were in contrast to those of soybeans grown in a growth chamber where the PSII/PSI ratio as well as cytochrome f and coupling factor protein levels were dependent on growth irradiance. To summarize, light environment regulated both the photosynthetic characteristics and the timing of senescence in soybean leaves grown under field conditions.  相似文献   

10.
Mannan RM  Bose S 《Plant physiology》1986,80(1):264-268
When Triticum vulgare cv HD 2189 seedlings were grown in the presence of 125 micromolar BASF 13.338 (4-chloro-5-dimethylamino-2-phenyl-3(2H)pyridazinone), the rate of electron transport (H2O → methyl viologen) in chloroplast thylakoids isolated from the treated seedlings was higher (by 50%) as compared to the control at assay temperatures above 30°C. Below 30°C, however, the rate with the treated seedlings was lower than the control rate. The temperature dependence of the rate of photosystem I electron transport (2-6-dichlorophenol indophenol-reduced → methyl viologen) in the treated system was similar to that in the control. At high temperatures (>30°C), with diphenyl carabazide as electron donor, the rates of electron transfer (diphenyl carbazide → methyl viologen) were similar in the treated and in the control thylakoids. Direct addition of BASF 13.338 to the assay mixture for the measurement of rate of electron transport (H2O → methyl viologen) in the thylakoids isolated from the control plants did not cause any change in the temperature dependence of photosynthetic electron transport. These results suggested that the donor side of photosystem II became tolerant to heat in the treated plants. Chlorophyll a fluorescence emission was monitored continuously in the leaves of control and BASF 13.338 treated wheat seedlings during continuous increase in temperature (1°C per minute). The fluorescence-temperature profile showed a decrease in the fluorescence yield above 55°C; this decrease was biphasic in the control and monophasic in the treated plants.  相似文献   

11.
Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low.  相似文献   

12.
The diffusion of plastoquinol and its binding to the cytochrome bf complex, which occurs during linear photosynthetic electron transport and is analogous to reaction sequences found in most energy-converting membranes, has been studied in intact thylakoid membranes. The flash-induced electron transfer between the laterally separated photosystems II and photosystems I was measured by following the sigmoidal reduction kinetics of P-700+ after previous oxidation of the intersystem electron carriers. The amount of flash-induced plastoquinol produced at photosystem II was (a) reduced by inhibition with dichlorophenyl-dimethylurea and (b) increased by giving a second saturating flash. These signals were simulated by a new model which combines a deterministic simulation of reaction kinetics with a Monte Carlo approach to the diffusion of plastoquinol, taking into account the known structural features of the thylakoid membrane. The plastoquinol molecules were assumed to be oxidized by either a diffusion-limited or a nondiffusion-limited step in a collisional mechanism or after binding to the cytochrome bf complex. The model was able to account for the experimental observations with a nondiffusion-limited collisional mechanism or with a binding mechanism, giving minimum values for the diffusion coefficient of plastoquinol of 2 × 10-8 cm2s-1 and 3 × 10-7 cm2s-1, respectively.  相似文献   

13.
This investigation determined whether thylakoid proteins would be degraded more rapidly or not in senescing wheat (Triticum aestivum L. em. Thell.) leaves concurrently exposed to high temperatures. Excised leaves were pulse-labelled with [35S]-methionine for a 12 h period, and then incubated at 22,32 or 42°C for 0, 1, 2, or 3 d, before extracting a thylakoid enriched membrane sample. After electrophoretic separation, two prominent [35S]-labelled protein bands were chosen for further analyses. Band A contained the D-1 thylakoid protein and band B contained thylakoid proteins of the light harvesting complex (LHCII) associated with photosystem II (PSII). Total protein, [35S]-labelled protein, band A protein, and band B protein within the thylakoid enriched membrane samples were measured. Unlabelled thylakoid enriched membrane samples, extracted from leaves given similar treatments, were used to measure uncoupled whole-chain and photosystem II (PSII) electron transport and chlorophyll fluorescence. Accentuated decline in whole-chain and PSII electron transport, increasing Fo values, and decreasing Fmax values were a result of high temperature injury in leaves treated at 42°C. None of the thylakoid enriched membrane protein fractions were degraded more rapidly in high-temperature treated leaves. Degradation of the total [35S]-labelled membrane proteins and band B was inhibited by the 42°C treatment. The results indicate that high temperature stress may disrupt some aspects of normal senescence.  相似文献   

14.
The mechanism of chilling resistance was investigated in 4-week-old plants of the chilling-sensitive cultivated tomato, Lycopersicon esculentum Mill. cv H722, and rooted cuttings of its chilling-resistant wild relative, L. hirsutum Humb. and Bonpl., which were chilled for 3 days at 2°C with a 14-hour photoperiod and light intensity of 250 micromoles per square meter per second. This chilling stress reduced the chlorophyll fluorescence ratio, stomatal conductance, and dry matter accumulation more in the sensitive L. esculentum than in the resistant L. hirsutum. Photosynthetic CO2 uptake at the end of the chilling treatment was reduced more in the resistant L. hirsutum than in L. esculentum, but recovered at a faster rate when the plants were returned to 25°C. The reduction of the spin trap, Tiron, by isolated thylakoids at 750 micromoles per square meter per second light intensity was taken as a relative indication of the tendency for the thylakoids to produce activated oxygen. Thylakoids isolated from the resistant L. hirsutum with or without chilling treatment were essentially similar, whereas those from chilled leaves of L. esculentum reduced more Tiron than the nonchilled controls. Whole chain photosynthetic electron transport was measured on thylakoids isolated from chilled and control leaves of the two species at a range of assay temperatures from 5 to 25°C. In both species, electron transport of the thylakoids from chilled leaves was lower than the controls when measured at 25°C, and electron transport declined as the assay temperature was reduced. However, the temperature sensitivity of thylakoids from chilled L. esculentum was altered such that at all temperatures below 20°C, the rate of electron transport exceeded the control values. In contrast, the thylakoids from chilled L. hirsutum maintained their temperature sensitivity, and the electron transport rates were proportionately reduced at all temperatures. This sublethal chilling stress caused no significant changes in thylakoid galactolipid, phospholipid, or protein levels in either species. Nonchilled thylakoid membranes from L. hirsutum had fourfold higher levels of the fatty acid 16:1, than those from L. esculentum. Chilling caused retailoring of the acyl chains in L. hirsutum but not in L. esculentum. The chilling resistance of L. hirsutum may be related to an ability to reduce the potential for free radical production by close regulation of electron transport within the chloroplast.  相似文献   

15.
Peterson RB 《Plant physiology》1991,97(4):1388-1394
The interactive effects of irradiance and O2 and CO2 levels on the quantum yields of photosystems I and II have been studied under steady-state conditions at 25°C in leaf tissue of tobacco (Nicotiana tabacum). Assessment of radiant energy utilization in photosystem II was based on changes in chlorophyll fluorescence yield excited by a weak measuring beam of modulated red light. Independent estimates of photosystem I quantum yield were based on the light-dark in vivo absorbance change at 830 nanometers, the absorption band of P700+. Normal (i.e. 20.5%, v/v) levels of O2 generally enhanced photosystem II quantum yield relative to that measured under 1.6% O2 as the irradiance approached saturation. Photorespiration is suspected to mediate such positive effects of O2 through increases in the availability of CO2 and recycling of orthophosphate. Conversely, at low intercellular CO2 concentrations, 41.2% O2 was associated with lower photosystem II quantum yield compared with that observed at 20.5% O2. Inhibitory effects of 41.2% O2 may occur in response to negative feedback on photosystem II arising from a build-up in the thylakoid proton gradient during electron transport to O2. Covariation between quantum yields of photosystems I and II was not affected by concentrations of either O2 or CO2. The dependence of quantum yield of electron transport to CO2 measured by gas exchange upon photosystem II quantum yield as determined by fluorescence was unaffected by CO2 concentration.  相似文献   

16.
In vivo measurements of chlorophyll a fluorescence indicate that cold-hardened winter rye (Secale cereale L. cv Musketeer) develops a resistance to low temperature-induced photoinhibition compared with nonhardened rye. After 7.2 hours at 5°C and 1550 micromoles per square meter per second, the ratio of variable fluorescence/maximum fluorescence was depressed by only 23% in cold-hardened rye compared with 46% in nonhardened rye. We have tested the hypothesis that the principal site of this resistance to photoinhibition resides at the level of rye thylakoid membranes. Thylakoids were isolated from cold-hardened and nonhardened rye and exposed to high irradiance (1000-2600 micromoles per square meter per second) at either 5 or 20°C. The photoinhibitory response measured by room temperature fluorescence induction, photosystem II electron transport, photoacoustic spectroscopy, or [14C]atrazine binding indicates that the differential resistance to low temperature-induced photoinhibition in vivo is not observed in isolated thylakoids. Similar results were obtained whether isolated rye thylakoids were photoinhibited or thylakoids were isolated from rye leaves preexposed to a photoinhibitory treatment. Thus, we conclude that increased resistance to low temperature-induced photoinhibition is not a property of thylakoid membranes but is associated with a higher level of cellular organization.  相似文献   

17.
A study was made of linolenic acid-dependent oxidative chlorophyll bleaching (CHLOX) by thylakoid membranes from senescing leaf tissue of a normal cultivar (cv. Rossa) and a non-yellowing mutant genotype (Bf 993) of Festuca pratensis Huds. To overcome the problem of variation in levels of endogenous chlorophyll substrate in membranes from different sources, light-harvesting complex (LHC) was used to supplement thylakoid pigment. It was shown that CHLOX is associated with both Photosystem I and LHC-rich thylakoid subfractions but that purified LHC has negligible associated CHLOX activity and stimulates the rate of bleaching by isolated entire chloroplast membranes. Non-senescent tissue of Bf 993 and Rossa had essentially identical thylakoid CHLOX levels, which subsequently declined during senescence in darkness. The half-life of CHLOX from the mutant was three times greater than that of the normal genotype. In both cultivars, the amount of CHLOX assayed in thylakoids isolated at different times during senescence was more than adequate to support the corresponding in-vivo rate of pigment degradation as calculated from the half-life for chlorophyll. It was concluded that the non-yellowing mutation is not expressed through a lack of CHLOX activity. The role of linolenic acid metabolism in the regulation of thylakoid structure and function during senescence, and as a likely site of the non-yellowing lesion, are discussed.Abbreviations CHLOX linolenic acid-dependent oxidative chlorophyll bleaching activity - CHLPX chlorophyll peroxidase - CPI chlorophyll-protein complex I - LHC light-harvesting complex - LNA linolenic acid - PSI photosystem I - PSII photosystem II - S relative senescence rate - t 1/2 lialf time for degradation  相似文献   

18.
Changes in primary metabolism of lettuce, Lactuca sativa L. (cv. Cobham Green), induced by compatible interaction with the biotrophic oomycete pathogen Bremia lactucae Regel (race BL 16), under two intensities of illumination in the presence and absence of exogenous cytokinins were studied by chlorophyll fluorescence imaging. Thirteen days post-inoculation leaf discs infected by B. lactucae exhibited impairments of photosynthesis associated with biotrophic infections, including: reductions in photosynthetic pigment contents and the maximum quantum yield of photosystem II photochemistry (FV/FM), inhibition of electron transport (ΦPSII) and increased non-photochemical chlorophyll fluorescence quenching (NPQ). Detected changes in photosynthetic parameters correlated with the leaf area colonized by the pathogen’s intercellular hyphae. Applications of two cytokinins, benzylaminopurine and meta-topolin, previously shown to suppress B. lactucae sporulation if applied 24 h prior to inoculation at a concentration of 200 μM, retarded the pathogen’s asexual reproduction with no apparent negative effects on the host’s photosynthetic apparatus. However, long-lasting treatment of healthy tissues with this high concentration of exogenous cytokinin led to effects parallel to pathogenesis: reductions in photosynthetic pigment contents accompanied by inhibition of photosystem II photochemistry and electron transport. These effects of both prolonged exposure to cytokinins and the pathogenesis were weaker in discs exposed to the lower photosynthetic photon flux density. The role of cytokinins in plant-biotrophic pathogen interactions and their potential as disease control agents are discussed.  相似文献   

19.
The effects of mycotoxin zearalenone (ZEN) on the photochemical activity of photosystem II (PSII) in wheat and soybean leaf discs incubated in ZEN solutions as well as the after-effects of pre-sowing soaking of seeds in solutions containing ZEN on the photochemical activity of PSII and on the seedlings growth under salt stress (NaCl solutions were investigated). The incubation of wheat leaf discs in ZEN solutions strongly inhibited the energy flux per cross section (CS) for absorption (ABS/CS), trapping (TRo/CS) and electron transport (ETo/CS), while the effects of ZEN action on soybean discs were opposite and the values of those parameters significantly increased with the increase in ZEN concentration. Incubation of seeds in a ZEN solution resulted in an increase in photochemical efficiency of PSII in soybean seedlings, but did not induce any response of PSII in those of wheat at medium illuminations. Only at the stronger illumination for both species did ZEN induce an increase in efficiency of excitation energy capture by open PSII reaction centers, photochemical quenching of chlorophyll a fluorescence and quantum yield of PSII electron transport. Pre-sowing soaking of seeds in a ZEN solution decreased the photoinhibitory injuries of PSII in wheat and soybean due to safe scattering of the excess excitation energy through an increase in energy-dependent quenching (qE) and state transition quenching (qT). ZEN when added to NaCl solutions during the period of germination contributed to reduction in the growth inhibition of wheat seedlings. The incubation of wheat leaf discs in ZEN solutions strongly inhibited CS, ABS/CS, TRo/CS and ETo/CS. Possible effects of ZEN on some physiological processes in plants have been discussed especially in the context with photochemical activity of PSII and a salt stress.  相似文献   

20.
Ubiquitin, a key component in an ATP-dependent proteolytic pathway, participates in the response of various eucaryotic organisms to high temperature stress. Our objective was to determine if ubiquitin serves a similar capacity for metabolizing altered proteins in higher plants during stress. Degradation of total proteins was measured, and ubiquitin pools (free versus conjugated) were extracted with an improved protocol from wheat (Triticum aestivum L. cv Len) roots treated at 22, 27, 32, 37, and 42°C for 1 hour and assayed by western blots and radioimmunoassays. Heat-shock protein synthesis was detected by in vivo labeling and autoradiography. Mean half-life of total root proteins decreased from 51 hours at 22°C to 23 hours at 40°C. Ubiquitin pools were extracted better and proteolysis was slowed more by the improved protocol than by a conventional procedure for plant proteins. Amounts of high molecular mass conjugates were elevated and levels of low molecular mass conjugates and free ubiquitin were depressed when roots were treated at 37 or 42°C than at lower temperatures; the same high temperatures also induced synthesis of heat-shock proteins. We concluded that high temperatures increase breakdown of root proteins, which are degraded via the ubiquitin proteolytic pathway. A conjugate with an apparent molecular mass of 23 kilodaltons was tentatively identified as an ubiquitinated histone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号