首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herrick JR  Swanson WF 《Theriogenology》2003,59(7):1503-1513
Salt-stored domestic cat oocytes are routinely used to study sperm function in domestic and nondomestic felids. Our objectives were to assess the effects of in vitro maturation (IVM), salt storage and storage duration on penetration of domestic cat oocytes by homologous spermatozoa. In Experiment 1, domestic cat spermatozoa were coincubated with fresh immature oocytes, salt-stored (2-3 weeks) immature oocytes, or salt-stored (2-3 weeks) IVM oocytes matured in Minimum Essential Medium containing 0.1IU FSH and 0.1IU LH/ml (IVM1) or 0.5IU FSH and 2.2IULH/ml (IVM2). In Experiment 2, all oocytes were matured (IVM2) and inseminated fresh or after salt storage for 2-3 weeks, 2-3 months or 9 months. In Experiment 1, penetration of the outer zona pellucida (OZP) was greater (P<0.05) in salt-stored IVM2 oocytes than in salt-stored immature oocytes, whereas penetration of salt-stored IVM1 oocytes was intermediate (P>0.05). In Experiment 2, penetration of the OZP and inner zona pellucida (IZP) was higher (P<0.05) in fresh IVM2 oocytes than in salt-stored oocytes, and a higher (P<0.05) proportion of oocytes had IZP sperm after 2-3 weeks of storage than after 2-3 months. Penetration of the perivitelline space was higher (P<0.05) in fresh IVM2 oocytes than in oocytes stored for 2-3 weeks or 2-3 months. These results suggest that oocyte penetration is improved by IVM, but is impaired by exposure to salt-storage solution and prolonged storage duration.  相似文献   

2.
In this study, we evaluated mitochondrial distribution and ATP content of individual bovine oocytes before and after in vitro maturation (IVM). Cumulus-oocyte complexes were classified according to morphological criteria: category 1, homogeneous oocyte cytoplasm, compact multilayered cumulus oophorus; category 2, cytoplasm with small inhomogeneous areas, more than five layers of compact cumulus; category 3, heterogeneous/vacuolated cytoplasm, three to five layers of cumulus including small areas of denuded zona pellucida; category 4, heterogeneous cytoplasm, completely or in great part denuded. In immature oocytes, staining with MitoTracker green revealed mitochondrial clumps in the periphery of the cytoplasm, with a strong homogenous signal in category 1 oocytes, a weaker staining in category 2 oocytes, allocation of mitochondria around vacuoles in category 3 oocytes, and poor staining of mitochondria in category 4 oocytes. After IVM, mitochondrial clumps were allocated more toward the center, became larger, and stained more intensive in category 1 and 2 oocytes. This was also true for category 3 oocytes; however, mitochondria maintained their perivacuolar distribution. No mitochondrial reorganization was seen for category 4 oocytes. Before IVM, the average ATP content of category 1 oocytes (1.8 pmol) tended to be higher than that of category 2 oocytes (1.6 pmol) and was significantly (P < 0.01) higher than in category 3 (1.4 pmol) and 4 oocytes (0.9 pmol). The IVM resulted in a significant (P < 0.01) increase in the average ATP content of all oocyte categories, with no difference between oocytes extruding versus nonextruding a polar body. After in vitro fertilization (IVF) and culture, significantly (P < 0.05) more category 1 and 2 than category 3 and 4 oocytes developed to the morula or blastocyst stage (determined 168 h after IVF). Total cell numbers of expanded blastocysts derived from category 1 and 2 oocytes were significantly (P < 0.05) higher than of those originating from category 3 and 4 oocytes. These data indicate that mitochondrial reorganization and ATP levels are different between morphologically good and poor oocytes and may be responsible for their different developmental capacity after IVF.  相似文献   

3.
The temporary preservation of oocytes without freezing would be useful for some experiments. ICR mouse oocytes were kept in a preservation medium under mineral oil for 1, 2, 3, 4 or 7 days at 5 degrees C, and 1 or 2 days at 37 degrees C. In vitro fertilization was attempted on oocytes rinsed with TYH medium after preservation. More than 70% of morphologically normal oocytes were recovered from each preservation group. Fertilization rates of oocytes preserved for 1, 2, 3, 4 or 7 days at 5 degrees C were 69.9, 66.5, 45.3, 26.7 and 8.8% respectively. Fertilization rates of oocytes preserved for 1 or 2 days at 37 degrees C were 9.6 and 1.6%, respectively. Preservation of oocytes at 5 degrees C has some capability as a method of short-term storage without freezing.  相似文献   

4.
Immature ovine oocytes were collected from ovaries obtained from an abattoir and assigned to one of three treatment groups for in vitro maturation. For Treatment 1 (T1), oocytes were matured in a conventional incubator, in tissue culture wells in an atmosphere of 5% CO(2) and air. Maturation medium consisted of bicarbonate buffered Tissue Culture Medium 199 (TCM199) supplemented with fetal calf serum (FCS), follicle stimulating hormone (FSH), luteinizing hormone (LH), and penicillin/streptomycin (pen/strep). For Treatment 2 (T2), oocytes were matured in a portable incubator, in plastic tubes containing the same medium as T1. The medium was equilibrated with 5% CO(2) and overlayed with oil. For Treatment 3 (T3) oocytes were matured in the portable incubator without CO(2) equilibration, in tubes containing HEPES buffered TCM 199 supplemented as in T1. After 24 hours at 39 degrees C, the percentage of oocytes undergoing normal nuclear maturation was 72.55, 68.14 and 66.96% for T1, T2 and T3, respectively (P >0.05). In a second experiment oocytes were matured in the 3 treatments described, then fertilized in vitro using frozen-thawed ram sperm. Fertilization rates were 44.09, 58.62 and 55.69% for T1, T2 and T3, respectively. T1 and T2 were significantly different (P < 0.05). For Experiment 3, oocytes matured and fertilized as described were cultured in drops of Modified Brinster's Mouse Ova Culture (MBMOC) containing bovine oviductal cells. These were incubated at 39 degrees C in an atmosphere of 5% CO(2) and air for 7 days. T1, T2 and T3 resulted in 20.26, 16.94 and 24.43% development to morulae, and 4.01, 3.06 and 1.85% development to blastocysts, respectively (P >0.05). The results of these experiments indicate that maturation, fertilization, and developmental rates of ovine oocytes matured in the portable incubator are similar to those of oocytes matured in a conventional incubator. This technique shows promise for transportation of oocytes to laboratories where abattoirs are not in close proximity, and holds promise for transportation of oocytes from non-domestic animals collected in the field or remote locations, to facilities capable of utilizing and preserving the gametes.  相似文献   

5.
In vitro maturation and fertilization of prepubertal goat oocytes   总被引:3,自引:0,他引:3  
The aim of this work was to study the IVM-IVF of prepubertal goat oocytes collected from a slaughterhouse as an alternative source of oocytes to those of FSH-primed adult goats. In Experiment 1, IVM of prepubertal goat oocytes in co-culture with granulosa cells were compared with IVM in 50 microl microdrops of medium. There was no significant difference in the percentage of maturation (72.0 vs 76.9%) between the 2 groups. In Experiment 2, a low percentage of normal fertilization (24.4%) was observed for prepubertal goat oocytes matured with granulosa cells from prepubertal goats. This result was significantly lower than that obtained for ovulated (62.2%) or in vitro-matured (48.7%) oocytes from adult goats. There were no significant differences with respect to the oocytes from adult goats matured in vitro when prepubertal goat oocytes were cultured with adult goat granulosa cells (33.3%) or in microdrops (29.7%). No differences were observed among the treatments in the percentage of oocytes showing evidence of fertilization (normal fertilization + abnormal fertilization + polyspermy). In Experiment 3, it was shown that there were no differences in the percentage of normally fertilized oocytes after in vitro maturation in microdrops containing oocytes with 1 to 2 and 3 or more complete layers of cumulus cells (32.1 and 33.3% respectively). In conclusion, the ovaries of prepubertal slaughterhouse goats were found to be an economical alternative for an abundant source of oocytes for IVM-IVF research. In vitro maturation of oocytes in microdrops yielded maturation and fertilization rates comparable to those obtained with oocytes from FSH-primed adult goats. Moreover, similar maturation and fertilization rates were obtained using oocytes with 1 to 2 layers or 3 or more layers of cumulus cells.  相似文献   

6.
Mechanisms of cAMP/PKA-induced meiotic arrest in oocytes are not completely identified. In cultured, G2/M-arrested PDE3A-/- murine oocytes, elevated PKA activity was associated with inactivation of Cdc2 and Plk1, and inhibition of phosphorylation of histone H3 (S10) and of dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15). In cultured WT oocytes, PKA activity was transiently reduced and then increased to that observed in PDE3A-/- oocytes; Cdc2 and Plk1 were activated, phosphorylation of histone H3 (S10) and dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15) were observed. In WT oocytes, PKAc were rapidly translocated into nucleus, and then to the spindle apparatus, but in PDE3A-/- oocytes, PKAc remained in the cytosol. Plk1 was reactivated by incubation of PDE3A-/- oocytes with PKA inhibitor, Rp-cAMPS. PDE3A was co-localized with Plk1 in WT oocytes, and co-immunoprecipitated with Plk1 in WT ovary and Hela cells. PKAc phosphorylated rPlk1 and Hela cell Plk1 and inhibited Plk1 activity in vitro. Our results suggest that PKA-induced inhibition of Plk1 may be critical in oocyte meiotic arrest and female infertility in PDE3A-/- mice.  相似文献   

7.
Mechanisms of cAMP/PKA-induced meiotic arrest in oocytes are not completely identified. In cultured, G2/M-arrested PDE3A-/- murine oocytes, elevated PKA activity was associated with inactivation of Cdc2 and Plk1, and inhibition of phosphorylation of histone H3 (S10) and of dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15). In cultured WT oocytes, PKA activity was transiently reduced and then increased to that observed in PDE3A-/- oocytes; Cdc2 and Plk1 were activated, phosphorylation of histone H3 (S10) and dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15) were observed. In WT oocytes, PKAc were rapidly translocated into nucleus, and then to the spindle apparatus, but in PDE3A-/- oocytes, PKAc remained in the cytosol. Plk1 was reactivated by incubation of PDE3A-/- oocytes with PKA inhibitor, Rp-cAMPS. PDE3A was co-localized with Plk1 in WT oocytes, and co-immunoprecipitated with Plk1 in WT ovary and Hela cells. PKAc phosphorylated rPlk1 and Hela cell Plk1 and inhibited Plk1 activity in vitro. Our results suggest that PKA-induced inhibition of Plk1 may be critical in oocyte meiotic arrest and female infertility in PDE3A-/- mice.Key words: mice oocytes, PDE3A, cAMP, PKA, polo-like kinase 1, centrosome, prophase arrested  相似文献   

8.
The present study was designed to examine the influence of oocyte quality, culture media and gonadotropins on cleavage rate and development of in vitro fertilized buffalo embryos. Three experiments were conducted. In experiment 1, oocytes were classified by number of cumulus cell layers and morphology of the ooplasm as good, fair or poor. Oocytes were cultured for IVM, IVF and IVC in CR1aa medium. In experiment 2, good quality oocytes were cultured for maturation in: (1) CR1aa; (2) CR2aa; (3) TCM-199; (4) MEM or (5) RPMI-1640, and then fertilized using frozen thawed buffalo spermatozoa in CR1aa. The oocytes were cultured in the same medium used for maturation after fertilization. In experiment 3, oocytes were classified into three groups: group (1) was without gonadotropin and serve as a control; group (2) in which IVM medium was supplemented with 10microg/ml FSH and group (3) in which IVM medium was supplemented with 10IUml(-1) eCG. In all experiments, oocytes were kept at 38.5 degrees C under 5% CO(2) for IVM, IVF, IVC and examined for cleavage and embryo development rates on days 3 and 8, respectively. Good and fair quality oocytes produced a higher cleavage rate (P<0.01) than poor quality oocytes. Morula production rate was also higher (P<0.01) for good as compared with fair quality oocytes. Embryo development with poor quality oocytes was arrested at the two to sixteen cell stage. In experiment 2, the cleavage rate was higher (P<0.05) in CR1aa than CR2aa, and higher (P<0.01) than TCM-199, MEM and RPMI-1640. The numbers of morulae and blastocysts were higher (P<0.01) for oocytes cultured in CR1aa and CR2aa media than TCM-199 or MEM. In experiment 3, the addition of FSH or eCG to the maturation medium increased (P<0.01) cleavage and developmental rates of buffalo embryo compared with control medium. In conclusion, the IVM of good quality buffalo oocytes in CR1aa or CR2aa medium and the addition of FSH or eCG in maturation medium produced higher cleavage and developmental rates of IVF buffalo embryos.  相似文献   

9.
研究以银鲫为材料, 根据银鲫(Carassius auratus gibelio)卵母细胞生发泡(Germinal vesicle, GV)边移程度及剥离GV中减数分裂前期染色体的凝集状态, 将银鲫Ⅳ时相的卵母细胞分为GV0、GV1、GV2和GV3四个时期; 并进一步比较了分别处于这4个时期银鲫卵母细胞体外诱导培养的成熟率、卵裂率和孵化率。结果表明, GV1期之后的卵母细胞均可有效进行体外诱导成熟, 可正常受精发育, 由于GV1期卵母细胞有较长时间用于显微操作, 因此GV1期卵母细胞被选为进行体外诱导的最早时期的卵母细胞。以GV1期卵母细胞为研究材料, 摸索了银鲫卵母细胞体外诱导成熟的适宜条件: 取GV1期的Ⅳ时相卵母细胞, 放置于pH 8.5、加有1 μg/mL孕酮激素(17α, 20β-dihydroxy-4-pregnen-3-one, DHP)的格氏平衡盐溶液(Gey’s balanced salt solution, GBSS)中, 在23℃培养箱中体外诱导12h后, 将滤泡膜剥离后再进行人工体外授精, 其所获胚胎的孵化率可达55.5%。此外, 将体外转录合成的带GFP标签的h2af1o mRNA注射到GV1期卵母细胞, 发现经显微操作和体外诱导后不仅可以通过GFP绿色荧光信号活体观察GVBD、受精、卵裂和早期胚胎发育的全过程, 而且诱导成熟的卵子仍可正常受精和胚胎发育。研究建立的银鲫卵母细胞体外诱导成熟技术为银鲫和其他鱼类卵母细胞发育过程研究及其相关基因和细胞显微操作提供了技术平台。  相似文献   

10.
Administration of FSH increases the number of developing follicles, and affects oocyte health and cleavage rate. To determine the optimal level of FSH treatment, studies were conducted during the normal breeding season and seasonal anestrus. In Experiment 1, ewes were implanted with SyncroMate-B (SMB; norgestomet) for 14 days during the breeding season. Beginning on day 12 or 13 after SMB implantation, ewes were treated with saline (control; n=10), or treated with FSH for two days (2D; n=9) or three days (3D; n=10). In Experiment 2, conducted during seasonal anestrus, ewes were implanted with SMB for 14 days (n=23) or were not implanted (n=26). The SMB-implanted and nonimplanted ewes were assigned to one of three treatments as in Experiment 1: control (n=13), 2D (n=21) or 3D (n=15). In Experiments 1 and 2, ewes were laparotomized to count the number of follicles < or = 3 mm and > 3 mm and to retrieve oocytes. Healthy oocytes from each treatment were used for IVF. In Experiment 3, ewes (n=6) were implanted twice with SMB for 14 days during seasonal anestrus. Ewes were injected with FSH for 2 days, and the oocytes were collected and fertilized as in Experiments 1 and 2. In Experiment 1, FSH-treatment increased (P < 0.05) the number of follicles > 3 mm, the number of oocytes retrieved from follicles < or = 3 mm and > 3 mm, the proportion of healthy oocytes, and the number of oocytes used for IVF. Oocytes from control and 2D ewes had greater (P < 0.01) cleavage rates than 3D ewes (68% and 71% vs. 42%). In Experiment 2, implanted and nonimplanted ewes had similar (P > 0.05) numbers of follicles, total oocytes, and healthy oocytes; therefore, data were combined. The FSH treatment increased (P < 0.01) the number of follicles > 3 mm, and the number of oocytes recovered from follicles > 3 mm. The recovery rate of oocytes and the percentage of healthy oocytes were similar for control and FSH-treated ewes. The cleavage rate in Experiment 2 ranged from 4 to 16%. In Experiment 3, the cleavage rate for ewes treated twice with SMB was 27% which tended to be greater (P < 0.07) than for the 2D ewes that received one SMB implant in Experiment 2. These data indicate that FSH increased the number of developing follicles and the number of healthy oocytes retrieved from ewes during the breeding season and seasonal anestrus. However, cleavage rates during seasonal anestrus were lower than during the normal breeding season in both FSH-treated and control ewes. Treatment of ewes for 2 days with FSH resulted in a greater cleavage rate than treatment of ewes for 3 days.  相似文献   

11.
Choi YH  Okada Y  Hochi S  Braun J  Sato K  Oguri N 《Theriogenology》1994,42(5):795-802
Frozen-thawed ejaculated stallion spermatozoa were preincubated for 3 h in BO medium containing 5 mM caffeine and then treated with 0.1 mu M calcium ionophore A23187 for 60 sec. Aliquots of the sperm suspension (final concentration 1-2 x 10(7)/ml) were added to the oocytes which had been matured in vitro for 32 h. In Experiment 1, there were 3 groups of oocytes; cumulus intact, denuded zona-intact, and zona-free. Cumulus cells were removed with 0.5% hyaluronidase and the zona pellucida with 0.1% protease. The oocytes were fixed 20 h after insemination with acetic acid:ethanol (1:3) and stained with 1% orcein. The sperm penetration rate of zona-free oocytes was 83%, whereas the sperm penetration rate was very low (1 to 3%) in the cumulus-enclosed or zona-intact oocytes. In Experiment 2, denuded zona-intact oocytes were placed in PBS supplemented with 10% fetal bovine serum 1 h before the end of in vitro maturation. The zona pellucida was micromanipulated with a metal microblade under x 100 magnification within 20 min of treatment with 0.3 M sucrose. For partial zona dissection, a slit in the zona pellucida was made. For partial zona removal, oocytes were transferred to protein-free PBS to fix the oocytes on the bottom of the Petri-dish and to remove a piece of the zona pellucida. Micromanipulated oocytes were subjected to in vitro fertilization as described above. Zona-intact and zona-free oocytes treated with sucrose solution for 20 min were used as controls. The penetration rates were 4 (2 57 ), 12 (7 58 ), 52 (31 60 ), and 86% (44 51 ) for zona-intact, partially zona dissected, partially zona removed, and zona-free oocytes, respectively. Proportions of oocytes with monospermic penetration were 100 (2 2 ), 57 (4 7 ), 58 (18 31 ), and 34% (15 44 ), respectively. In Experiment 3, sperm penetration and male pronucleus formation in the partially zona removed oocytes were examined at 2.5 to 20.0 h of insemination. Sperm penetration started 2.5 h post-insemination (22%, 11 49 ), and increased to 38% (21 55 ) at 5 h, to 46% (23 50 ) at 10 h, and to 56% (27 48 ) at 20 h. The transformation of sperm heads into male pronuclei was first observed 10 h post insemination. These results indicate that assisted fertilization techniques may be a useful tool for achieving fertilization and embryo production in vitro in horses.  相似文献   

12.
This study was designed to test 3 approaches for insemination and transfer of oocytes to recipient mares. Oocytes were recovered transvaginally from naturally cycling donor mares 24 to 26 h after an intravenous injection of 2500 IU of hCG when follicles reached 35 mm in diameter. Multiple oocytes (1 to 4) were transferred surgically into the oviducts of 4 or 5 recipient mares per group. Three groups of transfers were compared: 1) transfer of oocytes cultured in vitro for 12 to 14 h postcollection with insemination of the recipient 2 h postsurgery; 2) transfer of oocytes into the oviduct within 1 h of collection, with completion of oocyte maturation occurring within the oviduct, and insemination of the recipient 14 to 16 h postsurgery; and 3) transfer of spermatozoa and oocytes (cultured 12 to 14 h in vitro) into the oviduct. Numbers of embryos detected by Day 16 of gestation were not different (P>0. 1) for groups 1, 2, and 3 (57%, 43% and 27%). Therefore, equine oocytes successfully completed the final stages of maturation within the oviduct, and sperm deposited within the oviduct were capable of fertilizing oocytes.  相似文献   

13.

Background

During the last years, several studies have reported the significant relationship between the production of soluble HLA-G molecules (sHLA-G) by 48–72 hours early embryos and an increased implantation rate in IVF protocols. As consequence, the detection of HLA-G modulation was suggested as a marker to identify the best embryos to be transferred. On the opposite, no suitable markers are available for the oocyte selection.

Methodology/Principal Findings

The major finding of the present paper is that the release of ICAM-1 might be predictive of oocyte maturation. The results obtained are confirmed using three independent methodologies, such as ELISA, Bio-Plex assay and Western blotting. The sICAM-1 release is very high in immature oocytes, decrease in mature oocytes and become even lower in in vitro fertilized embryos. No significant differences were observed in the levels of sICAM-1 release between immature oocytes with different morphological characteristics. On the contrary, when the mature oocytes were subdivided accordingly to morphological criteria, the mean sICAM-I levels in grade 1 oocytes were significantly decreased when compared to grade 2 and 3 oocytes.

Conclusions/Significance

The reduction of the number of fertilized oocytes and transferred embryos represents the main target of assisted reproductive medicine. We propose sICAM-1 as a biochemical marker for oocyte maturation and grading, with a possible interesting rebound in assisted reproduction techniques.  相似文献   

14.
Immature mouse oocytes undergo spontaneous meiotic maturation when released from antral follicles into culture media. The first sign of meiotic resumption is germinal vesicle breakdown (GVB). Cytosolic free Ca2+ was measured in mouse oocytes during spontaneous maturation by monitoring fluorescence of indo-1 or fluo-3. The majority of oocytes showed a series of Ca2+ oscillations that continued for 1-3 h. Repetitive Ca2+ increases occurred every 1-3 min and lasted for 10-60 s. The Ca2+ oscillations appeared to be caused by an increase in inositol 1,4,5-trisphosphate (InsP3) because once they ceased, similar oscillations were triggered by injection of exogenous InsP3. Also, injection of the InsP3 receptor antagonist heparin (final concentration, 100 micrograms/ml) blocked the spontaneous Ca2+ oscillations. In contrast, Ca2+ oscillations induced by thimerosal were not inhibited by heparin. Treating oocytes with media containing 20 microM BAPTA/AM abolished Ca2+ oscillations in oocytes but did not affect the rate of GVB. The data show that cytosolic Ca2+ oscillations apparently caused by polyphosphoinositide turnover occur during mammalian oocyte maturation. However, the spontaneous oscillations do not appear to trigger GVB. Also, the data indicate that there are two separate Ca2+ release mechanisms in mouse oocytes, one sensitive to InsP3, the other to thimerosal.  相似文献   

15.
In the mare, rates of fertilization and development are low in oocytes matured in vitro, and a closer imitation of in vivo conditions during oocyte maturation might be beneficial. The aims of the present study were, therefore, to investigate whether (1) equine oocytes can be matured in vitro in pure equine preovulatory follicular fluid, (2) priming of the follicular fluid donor with crude equine gonadotrophins (CEG) before aspiration of preovulatory follicular fluid promotes the in vitro maturation rate, (3) the in vitro maturation rate differs between oocytes aspirated during estrus and those aspirated again 8 days after the initial follicular aspiration, and (4) high follicular concentrations of meiosis activating sterols (MAS) are beneficial for in vitro maturation of equine oocytes. During estrus, 19 pony mares were treated with 25 mg CEG. After 24 h (Al) and again after 8 days (A2), all follicles >4mm were aspirated and incubated individually for 30 h in the following culture media: standard culture medium (SM), preovulatory follicular fluid collected before CEG containing low MAS concentrations (FF1), preovulatory follicular fluid collected before CEG containing high MAS concentrations (FF2) or preovulatory follicular fluid collected 35 h after administration of CEG containing low MAS concentrations (FF3). Cumulus expansion rate was significantly affected by culture medium. The overall nuclear maturation rate was significantly higher for oocytes collected at A1 (67%) than for oocytes collected at A2 (30%). For oocytes collected at A1, the maturation rates were 71% (FF1), 61% (FF2), 79% (FF3) and 56% (SM). An electrophoretic protein analysis of the culture media revealed the presence of a 200-kDa protein in FF3. The results demonstrate that (1) equine oocytes can be matured during culture in pure equine preovulatory follicular fluid, (2) preovulatory follicular fluid collected after gonadotrophin-priming seems superior in supporting in vitro maturation than standard culture medium, (3) oocytes aspirated 8 days after a previous aspiration are less competent for in vitro maturation than oocytes recovered during the initial aspiration, and (4) the regulation of meiotic resumption during in vitro culture of equine oocytes might be related to the presence of a 200-kDa protein.  相似文献   

16.
N Nakagata 《Jikken dobutsu》1990,39(2):303-305
Unfertilized mouse oocytes from inbred strains (BALB/c, C3H/He and C57BL/6) were frozen ultrarapidly by direct plunging into liquid nitrogen, immediately after exposure to a highly-concentrated solution (DAP 213: 2 M dimethyl sulphoxide, 1 M acetamide, and 3 M propylene glycol in PB 1), and were later thawed in a 37 degrees C waterbath. After thawing, 76.8-90.9% of recovered oocytes were morphologically normal. Following fertilization in vitro of cryopreserved oocytes, the proportion of 2-cell embryos 24 h after insemination ranged from 70.7% to 83.4%. Nearly all 2-cell embryos obtained from cryopreserved oocytes were transferred to the oviducts of pseudopregnant recipients and 31.0-43.0% of 2-cell embryos developed into normal young.  相似文献   

17.
Bovine cumulus oocyte complexes (COCs) as used for in vitro maturation and fertilization can be classified into different categories by light microscopical inspection. We have distinguished four categories based on compactness and transparency of the cumulus investment and homogeneity and transparency of the ooplasm. The four categories were studied for their morphological characteristics at the ultrastructural level and for their developing capacity in an in vitro maturation system. In categories 1 and 2 oocytes, organelles were evenly distributed. In categories 3 and 4, oocytes organelles were clustered and the distribution of the organelles mimicked the characteristics of oocytes during final maturation. Cumulus cell process endings penetrated the cortex of the oocyte or were located superficial to the cortex of the oocyte. In category 1 oocytes, most of the process endings penetrated the cortex. In category 4 oocytes, most of the process endings did not penetrate. In categories 2 and 3 oocytes, both forms of process endings did occur. After in vitro maturation, only category 4 oocytes showed a decreased developing capacity. Categories 1–3 oocytes showed equal developing capacity in an in vitro maturation system.  相似文献   

18.
Factors affecting the survivability of bovine oocytes vitrified in droplets   总被引:8,自引:0,他引:8  
Vitrification of bovine oocytes performed using the traditional, in straw system has not given satisfactory results. Although an alternative approach based on minimizing the volume of the vitrified sample has recently resulted in a much more promising survival rate of vitrified oocytes, we attempted to examine some additional factors influencing the survival and subsequent fertilization and development rates of bovine oocytes subjected to vitrification according to the minimum drop size approach. In total, 748 bovine, in vitro matured oocytes were vitrified using VS14 vitrification solution, containing 5.5-M ethylene glycol and 1.0-M sucrose after different pre-equilibration and equilibration protocols performed at 35 degrees to 37 degrees C. Experiment 1 showed no significant toxic effect during pre-equilibration treatments of oocytes in 2%, 4% or 6% ethylene glycol solutions, except the lower cleavage rate of oocytes exposed to 6% ethylene glycol (77.2% vs. 93.9% in control, P< 0.05). In Experiment 2, 12 to 15 min of pre-equilibration treatments in 0%, 1% or 2% ethylene glycol solutions were tested, followed by 30 or 45 sec of equilibration in VS 14 solution and vitrification in droplets of medium dropped directly into liquid nitrogen. The development rate of vitrified oocytes to the blastocyst stage tended to be higher after 30-sec equilibration treatment (9.5%, 13.9% and 13.8% in groups of oocytes pre-equilibrated in 0%, 1% or 2% ethylene glycol solutions, respectively). Experiment 3 tested pre-equilibration treatments in 0%, 1%, 2%, 3%, 4%, 5% or 6% ethylene glycol solutions, followed by 30-sec equilibration and vitrification in droplets. The highest cleavage, blastocyst and hatched blastocyst rates, which were not significantly different from control, were achieved in a group of oocytes pre-equilibrated in 3% ethylene glycol solution (76%, 30% and 15% vs. 89%, 42% and 21% in control, respectively). A healthy calf was born on Feb 22 1999, after transfer of 4 morula/blastocyst stage embryos developed from oocytes vitrified in droplets after pre-equilibration in 3% ethylene glycol solution. We conclude that gentle pre-equilibration of bovine oocytes in diluted, 3% ethylene glycol solution is an important factor improving the effectiveness of vitrification in droplets of bovine oocytes.  相似文献   

19.
When oocytes resume meiosis, chromosomes start to condense and Cdc2 kinase becomes activated. However, recent findings show that the chromosome condensation does not always correlate with the Cdc2 kinase activity in pig oocytes. The objectives of this study were to examine 1) the correlation between chromosome condensation and histone H3 phosphorylation at serine 10 (Ser10) during the meiotic maturation of pig oocytes and 2) the effects of protein phosphatase 1/2A (PP1/ PP2A) inhibitors on the chromosome condensation and the involvement of Cdc2 kinase, MAP kinase, and histone H3 kinase in this process. The phosphorylation of histone H3 (Ser10) was first detected in the clump of condensed chromosomes at the diakinesis stage and was maintained until metaphase II. The kinase assay showed that histone H3 kinase activity was low in oocytes at the germinal vesicle stage (GV) and increased at the diakinesis stage and that high activity was maintained until metaphase II. Treatment of GV-oocytes with okadaic acid (OA) or calyculin-A (CL-A), the PP1/PP2A inhibitors, induced rapid chromosome condensation with histone H3 (Ser10) phosphorylation after 2 h. Both histone H3 kinase and MAP kinase were activated in the treated oocytes, although Cdc2 kinase was not activated. In the oocytes treated with CL-A and the MEK inhibitor U0126, neither Cdc2 kinase nor MAP kinase were activated and no oocytes underwent germinal vesicle breakdown (GVBD), although histone H3 kinase was still activated and the chromosomes condensed with histone H3 (Ser10) phosphorylation. These results suggest that the phosphorylation of histone H3 (Ser10) occurs in condensed chromosomes during maturation in pig oocytes. Furthermore, the chromosome condensation is correlated with histone H3 kinase activity but not with Cdc2 kinase and MAP kinase activities.  相似文献   

20.
The present study showed that treatment with a cell membrane-impermeable metal ion chelator, EDTA, of porcine oocytes at the germinal vesicle (GV) stage collected from follicles 2-6 mm in diameter induced artificial activation followed by formation of a pronucleus (PN). When the oocytes were cultured for 48 h in medium containing 0.1 to 2 mM EDTA disodium salt (Na-EDTA), they were activated to form PN, and the maximum PN formation rate (63%, n = 68) was achieved in oocytes cultured with 1 mM Na-EDTA. More than 90% of oocytes activated by 1 mM Na-EDTA treatment formed 1 PN without emission of the first and the second polar bodies (PB). This result suggests that EDTA at 1 mM may force the maturing (meiosis I) oocytes to form a PN without chromosome segregation. When oocytes at the GV stage that had been cultured with 1 mM Na-EDTA for 48 h were further cultured in 0.4% BSA-containing NCSU23 medium for 144 h, blastocysts that appeared to be morphologically normal were formed at the rate of 10%, whereas no blastocysts were formed from oocytes that had not been cultured with Na-EDTA. Next we examined the effects of Ca2+, Zn2+, Fe3+, or Cu2+-saturated EDTA (Ca-EDTA, Zn-EDTA, Fe-EDTA, and Cu-EDTA, respectively), and a Ca2+-specific chelator, EGTA, at a concentration of 1 mM. The Ca-EDTA, Fe-EDTA, and Cu-EDTA, but not Zn-EDTA or EGTA, had the ability to activate the oocytes. From these results, it is suggested that extracellular chelation of Zn2+ with EDTA of maturing (meiosis I) porcine oocytes results in parthenogenetic activation of the oocytes, which induces PN formation followed by development to blastocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号