首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The general morphology and surface ultrastructure of the gills of adult and larvae medaka (Oryzias latipes) were studied in freshwater and seawater using scanning electron microscopy. The gills of all examined fish were structurally similar to those of other teleosts and consisted of four pairs of arches supporting (i) filaments bearing lamellae and (ii) rakers containing taste buds. Three cell types, specifically pavement cells, mitochondria‐rich cells (MRCs), and mucous cells, constituted the surface layer of the gill epithelium. Several distinctive characteristics of medaka gills were noted, including the presence of regularly distributed outgrowth on the lamellae, enlarged filament tips, the absence of microridges in most pavement cells in the filament and lamellae and the presence of MRCs in the arch at the filament base. A rapid mode of development was recorded in the gills of larval fish. At hatching, the larvae already had four arches with rudimentary filaments, rakers, and taste buds. The rudimentary lamellae appeared within 2 days after hatching. These results suggest the early involvement of larval gills in respiratory and osmoregulation activities. The responses of the macrostructures and microstructures of gills to seawater acclimation were similar in larvae and adult fish and included modification of the apical surface of MRCs, confirming the importance of these cells in osmoregulation. The potential roles of these peculiarities of the macrostructures and microstructures of medaka gills in the major functions of this organ, such as respiration and osmoregulation, are discussed.  相似文献   

2.
Summary Salinity tolerance and histology of gills were studied in Rana cancrivora larvae. The tadpoles at the external gill stages (W stages 21–22) were able to survive in media containing up to 40% seawater, but died in water of higher salinity. Their external gills appear to have no critical role in adaptation to seawater. However, advanced tadpoles with internal gills (T-K stages I–XVIII) were able to tolerate 50% or higher seawater. In the internal gills, there are numerous mitochondriarich cells (MR cells) scattered on the ventral and lateral epithelia of the gill arches and the gill tufts in both freshwater-and seawater-acclimated tadpoles. In freshwater-acclimated tadpoles there are three types of MR cell: (1) microplicated, (2) microvillous, and (3) apically vacuolated. In tadpoles acclimated to dilute seawater, the ratio of type-1 to type-2 cells is lower, although all three types of MR cell are present. In 60%-seawater-acclimated tadpoles, a few MR cells with a lumen and concave cytoplasm at the apical membrane (type 4) are present. The changes in MR cell morphology under ambient conditions of low or high salinity may reflect alterations in the physiological roles of the gills with regard to transport of ions.  相似文献   

3.
The brood pouch of the male pipefish (Syngnathus schlegeli) is a ventral organ located on the tail, with the anterior region closely associated with the genital pore. The embryos in the pouch are attached to highly vascularized placenta-like tissue which seals the pouch folds from inside during incubation. The epithelium of the placenta-like tissue consists of mitochondria-rich cells (MRCs) and pavement cells. Differences in MRC morphology in the brood pouch epithelium, the gills and the larval epidermis of the pipefish were examined by light and electron microscopy. Transmission electron microscopy revealed that the MRCs in the brood pouch and the gills shared common characteristics: the presence of numerous mitochondria packed among a well-developed tubular system and the close association of the basal parts with the capillaries running underneath the epithelia. The size of the apical opening of the elongate, flask-shaped brood pouch MRC was about one-tenth that of the apical pit of the gill MRC. The gill and larval epidermal MRCs formed a multicellular complex, in contrast to solitary brood pouch MRCs. The brood pouch MRCs were intensively stained by immunocytochemistry with an antiserum specific for Na+,K+-ATPase. The Na+ concentrations in the brood pouch were maintained near those in the serum rather than seawater during incubation. We conclude that the brood pouch MRCs function as an ion-transporting cell, absorbing ions from the brood pouch lumen, perhaps to protect the embryos from the hyperosmotic environment.  相似文献   

4.
We examined, from a morphological and ultrastructural point of view, the gill epithelium of Triturus italicus, both in basal conditions and after acute exposure to low pH. Our analysis of gill morphology began with the aim of determining lethal pH levels; we found that the pH value at which 50% of mortality occurs (LC50) is 4.0. We then investigated the effects of the larvae's exposure to a critical value of pH (pH 4.5). No change was observed in the gill during the first 24 hr. After 48 hr, a cellular response was evident and the gills appeared covered with a dense mucous layer. Observations that were carried out by light microscopy (LM) and electron microscopy, both scanning (SEM) and transmission (TEM), showed considerable histological and ultrastructural changes. As regards the principal filament, the alterations resulted in the presence of an external keratinized layer. More changes affected the mitochondria-rich cells (MRCs) in both a qualitative and quantitative way; this cell type shows a wide surface and seems to protrude more than the near pavement cells that, in normal conditions, partially cover the MRCs, thus reducing their external surface. The microvilli were extremely lengthened and often anatomized each other. Changes in the secondary filament affected the thickness of the epithelium, which appeared considerably smaller in the gills of the newts exposed to acid stress. The ciliated cells appeared to be more numerous than in the control specimens and the MRCs showed a widening of the apical surface.  相似文献   

5.
In this study on the internal gills of the larvae of Bufo bufo we examined the ultrastructural features and, using cytochemical methods, showed the localization of guanylate cyclase in the presence of atrial natriuretic peptide. The gill apparatus consists of a series of arches each with a dorsal part or gill rakers with filtering and glandular functions. In the epithelium, cells were found that contain granular secretions similar to those atrial natriuretic factor-immunoreactive granules of larval Bufo arenarum gill rakers. The ventral portion of the gill arches is made up of gill tufts with a respiratory function. The cytochemical localization of the guanylate cyclase in the presence of exogenous atrial natriuretic peptide demonstrates that the internal gills of the larvae are an important target organ for the peptide and therefore, it is proposed that, at this level, the atrial natriuretic peptide carries out an important osmoregulatory role.  相似文献   

6.
Summary (1) Scanning electron microscopy and vascular casting were used to study the morphology and vascular anatomy of the fully developed internal gills of Litoria ewingii tadpoles. — (2) The four pairs of gills were located in two branchial baskets on either side of the heart. Each gill consisted of a branchial arch with gill tufts projecting ventrally and gill filters running dorsally. The gills bore a variable number of gill tufts in which a complex three-dimensional array of capillary loops, of varying lengths and diameters, was trailed in the path of the ventilatory current. — (3) The evidence presented in this paper suggests that the gill tufts have greater potential as gas exchangers than either the gill filters or skin. — (4) The study revealed structural and functional evidence for the existence of branchial shunts between afferent and efferent branchial arteries.  相似文献   

7.
Respiration and ion regulation are the two principal functions of teleostean gills. Mainly found in the gill filaments of fish, mitochondria-rich cells (MRCs) proliferate to increase the ionoregulatory capacity of the gill in response to osmotic challenges. Gill lamellae consist mostly of pavement cells, which are the major site of gas exchange. Although lamellar MRCs have been reported in some fish species, there has been little discussion of which fish species are likely to have lamellar MRCs. In this study, we first compared the number of filament and lamellar MRCs in air-breathing and non-air-breathing fish species acclimated to freshwater and 5 g NaCl L(-1) conditions. An increase in filament MRCs was found in both air-breathing and non-air-breathing fish acclimated to freshwater. Lamellar MRCs were found only in air-breathing species, but the number of lamellar MRCs did not change significantly with water conditions, except in Periophthalmus cantonensis. Next, we surveyed the distribution of MRCs in the gills of 66 fish species (including 29 species from the previous literature) from 12 orders, 28 families, and 56 genera. Our hypothesis that lamellar MRCs are more likely to be found in air-breathing fishes was supported by a significant association between the presence of lamellar MRCs and the mode of breathing at three levels of systematic categories (species, genus, and family). Based on this integrative view of the multiple functions of fish gills, we should reexamine the role of MRCs in freshwater fish.  相似文献   

8.
The Neotropical armoured catfish Corydoras paleatus is a facultative air-breathing teleost commonly exported as ornamental fish. In this species, air breathing enables it to survive and inhabit freshwater environments with low oxygen levels. Therefore, it is important to analyse the gills from a morphological aspect and its dimensions in relation to body mass with reference to aquatic respiration. For that, the gills were analysed using a stereoscopic microscope for morphometric studies, and structural and ultrastructural studies were carried out to compare the four branchial arches. Furthermore, two immunohistochemical techniques were used to locate and identify the presence of a Na+/K+ pump. The characterization of the potential for cell proliferation of this organ was assessed using an anti-PCNA antibody. The results show that gills of C. paleatus present some characteristics related to its diet and lifestyle, such as the limited development of gill rakers and the abundance of taste buds. In addition, other special features associated with the environment and bimodal breathing were observed: scarce and absent mucous cells (MCs) in the gill filaments and branchial lamellae, respectively, and the localization of mitochondria-rich cells (MRCs) covering the basal third of the branchial lamellae, which reduces the gill respiratory area. A peculiar finding in the gill epithelium of this armoured catfish was the presence of mononuclear cells with sarcomeres similar to myoid cells, whose functional importance should be determined in future studies. Finally, in C. paleatus, the interlamellar space of gill filaments is an important site for cell turnover and ionoregulation; the latter function is also performed by the branchial lamellae.  相似文献   

9.
Terminal buds on the gill arches of larval Lampetra planeri have been investigated by scanning and transmission electron microscopy. Each terminal bud is composed of two types of elongated cells, which extend from an apical depression to the basal lamina; one type bears a pair of cilia and the other, microvilli. In addition there are peripheral and basal cells. Nerve-fibre profiles are lacking within the terminal bud epithelium and contacts between nerves and ciliated cells are established through holes in the basal lamina. The presence of ciliated receptor cells with such a mode of innervation presents a distinct contrast to the morphology of the taste buds of gnathostome vertebrates.  相似文献   

10.
In this cytological and immunohistological study, we clarified the localization of the membrane transporters Na+, K+‐ATPase (NKA), vacuolar‐type H+‐ATPase (VHA), and epithelial sodium channel (ENaC) and distinguished ionocyte subtypes in the gill of the Japanese salamander (Hynobius nigrescens). In larvae (IY stages 43–65), NKA immunoreactivity was observed on the basolateral plasma membrane in more than 60% cells and less than 20% cells in the primary filaments and secondary lamellae of the external gills, respectively. VHA immunoreactivity was observed on the apical membrane of some epithelial cells in the secondary lamellae of the external gills. High ENaCα immunoreactivity was widely observed on the apical cell membrane of a population of squamous cells, presumably pavement cells (PVCs), and mitochondria‐rich cells (MRCs), in the primary filaments and secondary lamellae of the external gills. Using double immunofluorescence microscopy, epithelial cell types involved in ionic regulation were characterized and divided into three ionocyte types: NKA‐, NKA‐ and ENaC‐, and VHA‐positive cells. VHA‐immunoreactive cells as well as NKA‐positive cells were observed during IY stages 43–65 of the salamander larvae. During late stages of metamorphosis, NKA, VHA, and ENaCα immunoreactivities in the external gills decreased and finally disappeared during the completion of metamorphosis (IY stage 68). PVCs and MRCs in the external gills are probably involved in acid–base balance regulation and osmoregulation in urodele amphibian larvae. The results are discussed in relation to the ionocytes previously reported in fish gills and the frog skin epithelium. J. Morphol., 2011. © 2011Wiley‐Liss, Inc.  相似文献   

11.
The fish gill is a multifunctional organ responsible for gas exchange and ionic regulation. It is hypothesized that both morphological and functional differentiation can be found in the gills of the aquatic air-breathing fish, Trichogaster leeri. To test this, we used the air-breathing fish, Trichogaster leeri, to investigate various morphological/functional parameters. First, we evaluated the importance of performing the aquatic surface respiration behavior in T. leeri. A reduced survival rate was observed when fish were kept in the restrained cages in hypoxic conditions. On the gross anatomy of gills, we found evidence of both morphological and functional modification in the first and the second gills and are responsible for ionic regulation. There were large-bore arterioarterial shunts in the fourth gill arch. It is specialized for the transport of oxygenated blood and is less responsive to environmental stress. In addition, the anterior and the posterior gills differed in the Na+, K+-ATPase activity upon ionic stresses. That is, only the Na+, K+-ATPase activity of the anterior two gills was up-regulated significantly in the deionized water. Lastly, we found that the number of mitochondria-rich cells in the first and the second gills increased following ionic stress and no difference was found in the third and the fourth gills following such an exposure. These results supported the hypothesis that there are morphological and functional differences between anterior and posterior gill arches within the air-breathing Trichogaster leeri. In contrast, no significant difference was found among gills in gross anatomy, filament density and Na+, K+-ATPase activity in the non-air-breather, Barbodes schwanenfeldi.  相似文献   

12.
Characterization of mussel gill cells in vivo and in vitro   总被引:1,自引:0,他引:1  
Mussel gill cells are attractive models in ecotoxicological studies because gills are the first uptake site for many toxicants in the aquatic environment; gill cells are thus often affected by exposure to pollutants. Our aim was to characterize mussel gill cells in vivo and in vitro by using morphological, histochemical and functional end-points. In paraffin sections stained with haematoxylin–eosin, three zones were distinguished in the long central gill filaments: frontal, intermediate and abfrontal. Various types of ciliated cells were present in the frontal zone, and both ciliated and non-ciliated cells were found in the abfrontal zone. The intermediate zone was comprised of flattened endothelial cells. Lipofuscin granules occurred in the three zones in variable amounts, depending on the specimen. Haemocytes were found in the haemolymph sinus of gill filaments. Mucocytes were identified in both frontal and abfrontal zones by means of periodic acid Schiff-alcian blue (PAS-AB) staining. In cryostat sections, succinate dehydrogenase (SDH) activity was mainly found in ciliated cells, whereas neutral lipids and acid-phosphatase-reactive lysosomes were present in all portions of the gill filament, mostly being related to lipofuscin granules. In mussels exposed to 5-bromo-2-deoxyuridine in vivo, proliferating cells were scattered throughout the gill filament. Gill cells (typically 2×107 cells/ml per mussel; 95% viability) were isolated by dissociation with dispase. Gill cell suspensions were heterogeneous: 58% were ciliated epithelial cells (positive for SDH), 42% were non-ciliated cells (including epithelial cells and haemocytes), 2.3% were mucocytes (positive for PAS-AB) and 4.25% were haemocytes (able to phagocytose neutral red-stained zymosan). Gill cell cultures were maintained up to 18 days without changing the culture medium, viability decreasing below 50% at day 18. Primary cultures of mussel gill cells might therefore be useful models for the in vitro assessment of xenobiotic impacts on coastal and estuarine ecosystems.This work was funded by the Spanish Ministry of Science and Technology (project AMB99-0324), by the Basque Government through the Cooperation Fund Aquitaine/Euskadi 2001, by the University of the Basque Country through a grant to Consolidated Research Groups and by the European Commission (BEEP project, contract no. EVK3-CT2000-00025). Amagoia Gómez-Mendikute is the recipient of a predoctoral fellowship from the Spanish Ministry of Education and Culture.  相似文献   

13.
Summary Thin sections and freeze-fracture replicas have been used to study the structure of the zonulae occludentes of the branchial chloride cells in young adults of the anadromous lamprey Geotria australis, caught during their downstream migration to the sea and after acclimation to full-strength seawater (35). The chloride cells in the epithelium of the gill filaments of both freshwater- and seawater-acclimated animals form extensive multicellular complexes. In freshwater animals, the majority of chloride cells (64%) are covered by pavement cells and are thus not exposed to the external environment. Most of the other chloride cells are separated from each other by pavement cells or their processes. The zonulae occludentes between chloride cells and pavement cells and between adjacent chloride cells are extensive and characterised by a network of 4 (range 3–7) superimposed strands. In seawater-acclimated animals, the pavement cells cover only 30% of the chloride cells and their processes no longer occur between chloride cells. Whereas the zonulae occludentes between chloride cells and pavement cells are still extensive, those between chloride cells are shallow and comprise only a single strand or two parallel strands. The zonulae occludentes between the chloride cells of lampreys acclimated to seawater are similar to those in the gills of teleosts in seawater, and are thus considered to be leaky and to provide a low-resistance paracellular pathway for the passive transepithelial movement of Na+.  相似文献   

14.
Odontesthes argentinensis was collected from Mar Chiquita Coastal Lagoon, the Southernmost coastal Atlantic Lagoon of Argentina. The morphology of the gills was analyzed by scanning electron microscopy. The morphology of the superficial structures of the gill filaments and pharyngeal region of the gill arch was discussed and related to their functional aspects. The gills arches are structurally similar to those of other teleosts and bring out the osmoregulatory capacity of this species. The epithelium that covers the surface of the filaments and the pharyngeal region of the gill arch is formed by polygonal pavement cells with conspicuous microridges. These folds in the membrane are not denoted in the epithelium of the respiratory lamellae. Apical crypts of chloride cells are present on the afferent and interlamellar filament surfaces, but are absent elsewhere on the gill arch. The highest density of mucous cells is observed into the gill filament and the pharyngeal region which indicates the existence of a protective strategy of the respiratory lamellae and the pharynx. The epithelium of the gill arches and the rakers is studded with spines. There are taste buds along the whole pharyngeal region that may be associated with their participation in tasting at this zone.  相似文献   

15.
Morphological features of the gill and opercular epithelia of tilapia (Oreochromis mossambicus) have been compared in fish acclimated to either fresh water (FW) or hypersaline water (60 S) by scanning electron and fluorescence microscopy. In hyperosmoregulating, i.e., FW-acclimated, tilapia only those mitochondria-rich (MR) cells present on the filament epithelium of the gill were exposed to the external medium. After acclimation of fish to hypersaline water these cells become more numerous, hypertrophy extensively, and form apical crypts not only in the gill filament but also in the opercular epithelium. Regardless of salinity, MR cells were never found to be exposed to the external medium on the secondary lamellae. In addition, two types of pavement cells were identified having distinct morphologies, which were unaffected by salinity. The gill filaments and the inner operculum were generally found to be covered by pavement cells with microridges, whereas the secondary lamellae were covered exclusively by smooth pavement cells.  相似文献   

16.
The larval ultrastructure of Brycon gouldingi related to swimming and feeding from hatching to total yolk absorption is described from scanning electron micrographs. Newly hatched larvae (time zero) had no mouth opening, undefined optic vesicles, an olfactory plate visible as a shallow depression, rudimentary gill arches, neural groove, embryonic fin and a primary neuromast in the dorsal region of the head. At the time of yolk absorption, 55 h post hatching, the larvae presented an optic vesicle comprising an optic cup and crystalline lens; a mouth with tongue, tapered teeth and taste buds; a ciliated olfactory cavity; branched gill arches; filled neural groove signalling central nervous system development; caudal, pectoral, dorsal and anal fins; and neuromasts distributed throughout the head and body. These characters are related to prey capture and swimming ability, key aspects of survival during the larval stage. The results of this study provide important information for exploitation and aquaculture of B. gouldingi.  相似文献   

17.
Pavement cells and the mitochondria-rich cells (MRCs) are two of the main types of cells in fish gill epithelia. The pavement cells are generally responsible for gas exchange and MRCs for ion regulation. MRCs are found especially in the trailing edge and the interlamellar region of gill filament. In some species, MRCs are also observed in the gill lamellae. A previous study reported the likelihood of having lamellar MRCs in air-breathing fishes. Nevertheless, the source of lamellar MRCs is unclear. We used the air-breathing fish, Trichogaster leeri, to investigate the source of proliferated cells on the lamellae when 5-bromo-2-deoxyuridine (BrdU) was injected at different times before fish were sampled from deionized water. There were two major findings in this study. First, undifferentiated cells were found in the lamellae, as well as in the filaments. And, within 12-24 hr, a proliferated cell, identified as BrdU cell, could differentiate to an MRC in the gill lamellae. Second, the filaments and the lamellae in T. leeri responded to ionic stress differently but the proportion of the proliferated MRCs to the BrdU cells remained constant. Our results suggested that the lamellar MRCs were mainly differentiated from the cells that proliferated earlier from the lamellae.  相似文献   

18.
Fish gill morphology: inside out   总被引:13,自引:0,他引:13  
In this short review of fish gill morphology we cover some basic gross anatomy as well as in some more detail the microscopic anatomy of the branchial epithelia from representatives of the major extant groups of fishes (Agnathans, Elasmobranchs, and Teleosts). The agnathan hagfishes have primitive gill pouches, while the lampreys have arch-like gills similar to the higher fishes. In the lampreys and elasmobranchs, the gill filaments are supported by a complete interbranchial septum and water exits via external branchial slits or pores. In contrast, the teleost interbranchial septum is much reduced, leaving the ends of the filaments unattached, and the multiple gill openings are replaced by the single caudal opening of the operculum. The basic functional unit of the gill is the filament, which supports rows of plate-like lamellae. The lamellae are designed for gas exchange with a large surface area and a thin epithelium surrounding a well-vascularized core of pillar cell capillaries. The lamellae are positioned for the blood flow to be counter-current to the water flow over the gills. Despite marked differences in the gross anatomy of the gill among the various groups, the cellular constituents of the epithelium are remarkably similar. The lamellar gas-exchange surface is covered by squamous pavement cells, while large, mitochondria-rich, ionocytes and mucocytes are found in greatest frequency in the filament epithelium. Demands for ionoregulation can often upset this balance. There has been much study of the structure and function of the branchial mitochondria-rich cells. These cells are generally characterized by a high mitochondrial density and an amplification of the basolateral membrane through folding or the presence of an intracellular tubular system. Morphological subtypes of MRCs as well as some methods of MRC detection are discussed.  相似文献   

19.
Parasitosis by the trophozoite protozoan Perkinsus sp. (Apicomplexa, Perkinsea) induces in the gill filaments of the clam Tapes semidecussatus (Mollusca, Bivalvia) a cellular reaction, which is constituted by infiltrated granulocytes. This cellular reaction has characteristics of those of a holocrine gland, since the parasites are encapsulated by the secretion product of the granulocytes after cell death. An enriched fraction of prezoosporangia and their associated capsule was obtained after culture of the parasitized gills in fluid thioglycollate medium. Specific polypeptides from this fraction were separated by SDS-PAGE and isolated for rabbit immunizations. The serum obtained against an Mr 225 kDa polypeptide, revealed its exclusive localization in the capsule and in the granules of the infiltrated granulocytes, thus indicating that this polypeptide is synthesized by these cells and secreted, in a polarized way, around the trophozoites resulting in their encapsulation. Selective deglycosylation of the polypeptide, by Endo H and alkaline -elimination, did not show an effect on its molecular weight or antibody recognition. Furthermore, the absence of the 225 kDa band in the Western-blots of non-parasitized gills indicated the specific association of this polypeptide with the parasitosis. Finally, this is the first tissue-specific factor described in molluscs in relation to defence mechanisms.  相似文献   

20.
In this study, the cellular organization of the gill that harbors symbiotic bacteria is described in the thyasirid Thyasira falklandica collected from South Shetlands in Antarctic. Sections of the gills revealed that T. falklandica belongs to the gill type 3, as described by Dufour (Biol Bull, 208:200–212, 2005), with an elongated lateral zone along the frontal-abfrontal axis of the gill filaments. The ciliated and intermediary zones looked similar to those described in symbionts-bearing bivalves. The lateral zone is more complex in T. falklandica than in other Thyasiridae already described. Such a zone is composed of four different cell types. Bacteriocytes are abundant in the frontal and abfrontal positions, while the middle part of the lateral zone is occupied mostly by numerous granule cells devoid of bacteria. All along the lateral zone, TEM and SEM observations show some ciliated cells, which are regularly interspersed between bacteriocytes and/or granule cells. Such cells, according to the long double ciliary roots of their cilia, should have a sensory function. Intercalary cells, which have never been observed between bacteriocytes, are restricted to the middle part of the lateral zone where their expansions overlap the adjacent granule cells. Bacterial symbionts occur only extracellularly among long microvilli differentiated by the bacteriocytes. They are abundant, usually spherical in shape (around 0.7 μm length), and covered by the glycocalix from bacteriocyte microvilli. According to TEM views, the empty vesicles located in the periplasmic space should be sulfur storage, as known for other sulfur-oxidizing symbionts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号